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A B S T R A C T 

In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata the­
ory is proposed and as a result we present a set of probabilistic classification rules with self-learning 
capability. The probabilities of the classification rules change dynamically guided by a supervised rein­
forcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied 
to the automatic recognition of digital images corresponding to visual landmarks for the autonomous 
navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy 
of the proposed classifier and its comparison with well-established pattern recognition methods is finally 
reported. 

1. Probabilistic Knowledge-based Classification Rules with Self 
Learning Capability 

Knowledge-based classification rules of the type // {Condition} 
Then {Class} have been widely used in Machine Learning and Pat­
tern Recognition problems. In this paper we propose to enlarge 
knowledge-based classification rules with associated probabilities 
that can dynamically change in a supervised fashion in order to 
improve the classification accuracy of the global set of rules. 

We define a stochastic set of knowledge-based classification 
rules as a conventional base of knowledge rules in which each rule 
R¡ has an associated probability p,(fe). These probabilities change at 
each iterative instant k as a consequence of a supervised reinforce­
ment learning process to be explained later on. Our proposed 
classification rules have the following conjunctive normal form 
(CNF) generic structure: 

Ri -. If Xi is A A x2 is B A ... A x„ is Z Then Class Cs; p¡(k) (1) 

where Xi,x2,...,x„ are the discriminant variables or features, 
A,B,...Z are either fuzzy or Boolean subsets in which the features 
have been partitioned (interval or boxes-like partitions) and p,(k) 
is the probability associated to rule R¡ at the iterative generic instant 
k. These probabilities are a key element in the proposed classifier as 
they determine the strength or validity of the corresponding rule 
and change dynamically by virtue of a supervised reinforcement 
learning process aimed at optimizing the classifier accuracy. 

It can be noticed that thanks to the above mentioned conjunc­
tive normal form structure of the antecedent clauses of the classi­
fication rules these antecedent clauses can be straightforwardly 
equated to basic, atomic information granules according to the 
well-known granular computing paradigm [1]. 

Due to its fundamental role in the proposed classifier, in the 
next paragraph we explain in detail the process of building the 
antecedent clauses of the classification rules. 

2. Granulation process to build the antecedent clauses of the 
classification rules 

The granulation process is a fundamental phase in any particu­
lar classification problem. Since each discriminant variable or fea­
ture is usually represented by numeric values, we must create a set 
of clusters for each variable. If we define a large number of clusters, 
we will increase the detail in the feature description. However, it 
also affects to the size and performance of the classifier. Thus, we 
must take into account this important trade off at design stage. 
Basically, the granulation process is formed by the following steps: 

Step 1 Selection of the most representative or principal state vari­
ables of the system Xi, x2 , . . . , x„, which are the n principal 
state variables that optimize the representation of all the 
indistinguishable states or clusters. Obviously, in the 
particular case of pattern recognition systems, the state 
variables are usually known as discriminant variables. 

Step 2 Granulation or partition of all the state variables. In most 
cases before we have usually applied a Boxes-like [2] 
based granulation of the state variables with satisfactory 



results and in the application considered in this paper we 
have also applied the same idea as explained below. 
Roughly speaking, the interval granulation is a hard open 
problem in every particular application, which can be 
solved either by hand by the designers themselves if they 
have the necessary information or by means of an auto­
mated off-line optimization process based on e.g. evolu­
tionary techniques. In this paper we have applied a 
mixture of both approaches. 
Concretely we divide each discriminant variable x, at hand 
into the three following granules or intervals: low (x, < x, -
ka¡), middle (x¡ - ka¡ sg x¡ sg x¡ + ka¡), high (x¡ + ka¡ < x¡), as 
displayed in Fig. 1, where x, is the mean value of the dis­
criminant variable x¡,a¡ is its standard deviation, and k¡ is 
a real parameter to be optimized. This parameter is defined 
as granulation constant. 

Once the principal state variables have been selected and parti­
tioned in the corresponding intervals then the basic information 
granules or clusters emerge as a consequence of the processing 
of the labeled exemplars taken from the training dataset, so that 
the next step is to map the cluster space X = X],x2,... ,x„ to the 
classes space C = C-¡, C2,..., Cr. 

In the sequel we describe the basics of the method that we pro­
pose for this mapping process, which is simply based on the idea 
of modeling the information granules embedded in the antecedent 
clauses of the classification rules as the states of a learning automa­
ton operating in a random environment, so that the classification 
rules probabilities are updated by means of a conventional auto­
mata's reinforcement learning algorithm as explained below (notice 
that in this case rewards and penalties from the environment are 
equivalent to correct and incorrect classification, respectively). 

3. A brief description and introduction to learning automata 
theory 

Learning automata, also called stochastic automata with vari­
able structure, have received considerable attention as models of 
adaptive and learning systems [3]. 

3.1. Basic definitions 

A learning automaton is a sextuplet (x, Q,u,P(t),G,iz\ where x 
is the finite set of inputs, Q_ = {q^,q2. ..qm} is a finite set of internal 
states, u is the set of outputs, P(t) = ||p1(t),p2(t).. .pm(t)|| is the state 
probability vector at time instant t, G -. Q_ —> u is the output function 
(normally considered as deterministic and one-one), and V, is an 
algorithm called the reinforcement scheme, which generates 
P{t + 1) from P{t) and the particular input at a discrete instant t. 

The automaton operates in a random environment and chooses 
its current state according to the input received from the environ­
ment. The new state probabilities distribution P(t + 1) reflects the 
information obtained from the environment. The random environ­
ment has a set of inputs u and its set of outputs is frequently binary 
{0,1}, with '0' corresponding to the reward response and T to the 
penalty response. If the input to the environment is u¡ the environ­
ment produces a penalty response with probability c¡. 
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Fig. 1. Granules or intervals in which the discriminant variables have been divided. 

Fig. 2 shows the feedback configuration of a learning automaton 
operating in a random environment. At each instant t the environ­
ment evaluates the action of the automaton by either a penalty T 
or a reward '0'. The performance of the automaton's behavior is the 
average penalty 

1 m 
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which must be minimized. In order to minimize the expectation of 
penalty (Eq. 2), the reinforcement scheme modifies the state prob­
ability vector P(t). The basic idea is to increase p, if state q¡ generates 
a reward and to decrease p, when the same state has produced a 
penalty. A great number of reinforcement schemes for minimizing 
the expected value of penalty have been studied and compared. 
One of the most serious difficulties that arise in learning automata 
is the dichotomy between learning speed and accuracy. If the speed 
of convergence is increased in any particular reinforcement scheme, 
this action is almost invariably accompanied by an increase of con­
vergence to the undesired state [4,5]. 

In the next paragraph 3.2 we present the properties of a novel 
reinforcement scheme, previously introduced by ourselves in [6], 
that makes it possible to control simultaneously speed and accu­
racy of learning. 

3.2. Stochastic reinforcement algorithms in learning automata theory 

In the technical literature a widely used stochastic reinforce­
ment algorithms is LR_j, which stands for Linear Reward-Inaction 
algorithm. 

Let us suppose that the action chosen by the automaton at in­
stant k is <¡>¡, for the LR_j the updating of the action probabilities 
is as follows: 

pt(k + \)=pt(k) + W(k)[\-pt(k)] (3) 

Pj(k + 1) = Pj(k) - xp(k)P}(k) Vj * i, 1 < j < N (4) 

where 0 < X < 1 is the learning ratio and f¡{k) is the environment's 
response: /? = 1 (favorable response or reward) and /? = 0 (unfavor­
able response or penalty in which case the algorithm do not change 
the probability, i.e. inaction). 

3.3. A novel R-L algorithm: the incremental R-L Algorithm 

We have previously proposed a novel reinforcement algorithm 
for learning automata: the so-called Incremental R-L algorithm 
[6] that we describe in the sequel. 

This algorithm is based on the dynamic properties of the follow­
ing discrete stochastic process: 

m 

p,(k +1) = p,(k) + p,(k) ] T aijPj(t) 1 < i < m (5) 
¡=ij#¡ 
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Fig. 2. Interaction of learning automaton with random environment. 



which is a set of m nonlinear difference equations between proba­
bilities. Here we are only concerned with the most interesting prop­
erties of (5) from the standpoint of its application to learning 
automata. These properties are presented in the sequel. 

3.3.1. Constraints on the incremental R-L algorithm parameters 
The necessary and sufficient conditions that guarantee the 

probabilistic existence field of (5) are given by 

a,j = -a,-,- and max \a¡¡\ < 1 for 1 sí i, j si m (6) 

We have proved [7] that if (6) holds then 

m 

Vi:0<p ( ( t )< l and 5 > ( t ) = l (7) 
¡=i 

3.3.2. Solutions of stochastic process 
The system of difference Eq. (5) has the following m extreme 

solutions: 

(1 ,0 , . . . ,0) ; (0 ,1 , . . . ,0) ; . . . (0 ,0 , . . . ,1) (8) 

If m is odd then there exists an additional intermediate solution 
which may or may not belong to the existence field of (5). When 
m is even the existence of the additional solution is not always as­
sured. A remarkable result derived from the above constraints on 
the a¡j parameters given by expression (9) is the additional interme­
diate solution is unstable on nonabsorbing (see paragraphs 3.3.3 
and 3.3.4 below). 

3.3.3. Global convergence of stochastic process 
This property is of considerable importance in order to apply (5) 

as a reinforcement scheme of learning automata. It can be proved 
that, forming the determinant of (5) 

Aim 
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0 
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if one row of (9), and only one is each case, has all its elements po­
sitive, then the system of (5) converges globally to the respective 
solution. That is, for fixing ideas, if all coefficients in the first row 
c¡i2,c¡i3 £¡im are positive, then the stochastic process converges 
unconditionally to the extreme position (1,0,... ,0), whatever the 
system's starting position would be. 

3.3.4. Nonabsorbing nature of stochastic process 
According to the above property the £¡y coefficients govern the 

convergence of the stochastic process of (5) to one of its m internal 
states. Furthermore, the extreme solutions are absorbing. This fact 
is an undesirable characteristic from the learning automaton 
(whose state probabilities will hold the set of equations given by 
Eq. 5) when it locks on a particular state. If the random environ­
ment's penalty likehoods change, and so does the optimum state, 
absorption prevents the automaton tending to the new optimum 
state. Nevertheless, it can be proved that the system (5) does not 
reach any extreme solution in a finite time. 

3.3.5. Incremental reinforcement scheme 
The unconditional convergence of the stochastic process of (5) 

to one of the extreme solutions is vital in order to establish an algo­
rithm for the updating of the state probabilities. Since it is desired 
to obtain a convergence to the less punished state with probability 
1, one can plan to adapt the state probabilities of the automaton to 
the system (5). Furthermore, as the coefficients a,j control the con­
vergence the basic idea behind the new algorithm is rather simple. 

If the automaton selects a state qk at instant t and a reward occurs, 
the coefficients ak¡, with 1 sí j si m, are increased. When the same 
state is chosen but a penalty occurs then the proper action is to de­
crease the akj. Therefore, if the automaton has selected the state q¡ 
at a generic instant t and a reward has occurred, the state probabil­
ities are given by 

m 

P((t +1) = P((t) + Y, (a>¡ + ^a)PÁt)Pj(t)Ph(t +1) 

m 

= PhW+ Y. ah)Ph(,t)Pj(t) 
j=lj#i,h 

+ +{ahi - Aaih)ph{t)Pi{t) 1 

< h < m; h¥=i (10) 

when the same state produces a penalty from the environment, the 
above expressions are valid, except that the sign of the increments 
Aa¡j and Aaih must be changed. 

3.3.6. Comparison between incremental and classical reinforcement 
schemes 

We shall only comment on the most significant experimental 
results obtained from computer simulations performed in order 
to compare the incremental algorithm with the reward-inaction 
scheme, which was chosen because of its excellent properties [3]. 
The parameters taken into account were (a) level of learning, and 
(b) the average penalty received by the automaton. The results 
can briefly be summarized as follows: (i) As far as the number of 
trials is concerned, the automaton's behavior is slightly better 
when the incremental scheme is applied, (ii) The minimization of 
the average penalty is very similar for the two algorithms, (iii) 
For a nonstationary environment the incremental scheme pro­
duces a much better performance of the automaton. In our opinion 
this is the main reason that justify the use of the new algorithm. 

4. Automatic recognition of visual landmarks in topological 
maps 

We have applied the classifier proposed in this paper to the rec­
ognition of visual landmarks of the topological map used for the 
autonomous navigation of an unmanned aerial vehicle (UAV). 
The UAV is a conventional AR. Drone by Parrot [8] depicted in 
Fig. 3. 

We have presented elsewhere [9,10] an approach based on evo­
lutionary reinforcement learning for the autonomous navigation of 
an UAV. However, in this paper the UAV's navigation system is 
based on a visual topological map implemented as a labeled graph 
in which the nodes correspond to visual landmarks and the edges 
or arcs to specific UAV's control maneuvers. 

The UAV's navigation system utilizes the front on-board cam­
era, which is a HD camera that is able to capture 640 x 360 images 
at 30 fps. The images are used by the UAV's controller, which is 
based on a dual feedforward/feedback architecture [11,12], to gen­
erate the control commands in real-time. The system processes the 
images and generates new control signals each 30 ms. Fig. 4 dis­
plays the dual feedforward/feedback controller in which the error 
signal is obtained as the histogram of the goal landmark image 
minus the histogram of the current image captured by the UAV. 

The visual error signal and the corresponding control actions 
during the UAV's maneuver of door approximation and crossing 
are displayed in Fig. 5. This maneuver is one of the basic behaviors 
in UAV [13] as well as in conventional autonomous robots [14]. In 
Fig. 6 a sequence of the images captured by the UAV's on-board 
camera while performing the door approximation and crossing 
maneuver is also shown. 



4.1. Discriminant features applied for landmark recognition 

Fig. 3. The Parrot AR. Drone 2.0 prior to takeoff in one of the experiments. 
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Fig. 4. The feedforward/feedback controller. The error signal of both controllers is 
obtained as the difference between the histogram of the recognized landmark, i.e. 
the goal image, H[Ig\ and the histogram of the current image H[I(k)\. 

Obviously, for an efficient control of the UAV it is vital a correct 
recognition of the visual landmarks to generate the proper signal 
error to the UAV's controller. In the sequel we describe our exper­
iments on visual landmarks recognition in which we have com­
pared the recognition accuracy of the classifier proposed in this 
paper with another well-known pattern recognition techniques. 

First, we have defined four different landmarks on the UAV's 
topological map: a door, a decorating figure, a TV set and a picture. 
Fig. 7 shows some images of these four landmarks. For landmarks 
recognition we have applied as discriminant variables several 
descriptors of the images histogram: standard deviation, skewness, 
kurtosis, uniformity and entropy. 

For the recognition of the landmarks we have applied as dis­
criminant variables several descriptors of the images histogram 
h{k): standard deviation a, skewness S(13), kurtosis /<(14), unifor­
mity U (15) and entropy E (16), where p{k) is the normalized his­
togram (11), fin is the statistical moment of the normalized 
histogram (12) and a2 = fi2. 
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In the next section we report and comment the experimental 
results that we have obtained with the classifier proposed in this 
paper for the recognition of the above mentioned visual landmarks. 
We also compare these results with those obtained with other 
standard pattern recognition methods like the minimum Euclidean 
distance and the k-nearest neighbor algorithm. 

5. Experimental results 

Each experiment consists of building a classifier and getting its 
averaged true classification ratio (which is the complementary of 
the true classification error) with the dataset described above 
(see Fig. 7). We employ the leave-one-out cross validation tech­
nique. Each experiment is run 200 times. We report the average 
and peak results. 

The proposed classifier gets an averaged true classification ratio 
of 0.813 and a peak ratio of 0.875. The best performance is ob­
tained with a granulation constant k = 0.4 and a learning ratio 
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Fig. 5. The visual error signal during the door-landmark approximation and crossing maneuver (left) and the control signals during the door approximation and crossing 
maneuver (right). 
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Fig. 6. The sequence includes the successive images captured by the UAV while performing a door approximation and crossing maneuver. 

Fig. 7. Some examples of the landmarks images of the dataset used for the design and testing of the classifiers. 

X = 0.25. All these parameters have been optimized by means of an landmark in the dataset shown in Fig. 7 (i.e. the picture), which is 
evolutionary algorithm. erroneously classified 40% that is recognized as the exit door (i.e. 

By analyzing the confusion matrix shown in Table 1 we can ob- first landmark). This confusion matrix corresponds to the best 
serve that the greatest number of errors are produced by the fourth classifier. After analyzing the results and the description vectors, 



Table 1 
Probabilistic knowledge-based classifier confusion matrix. 

Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 

Landmark 1 

8 
0 
1 
4 

Landmark 2 

0 
10 
0 
0 

Landmark 3 

1 
0 
9 
0 

Landmark 4 

1 
0 
0 
6 

Table 2 
True classification ratios of the probabilistic knowledge-based classifier and other 
traditional methods. 

Classifier Averaged ratio 

Probabilistic knowledge-based 0.813 
Minimum distance 0.475 
k-Nearest neighbor (k = 3) 0.700 
k-Nearest neighbor (k = 5) 0.675 
k-Nearest neighbor (k = 7) 0.600 

probably it is not an issue in the classifier and it could be produced 
by the descriptors that we have selected. 

We have also computed the results achieved by conventional, 
well-established pattern recognition methods as the minimum dis­
tance classifier and fe-nearest neighbor algorithm. We have used 
Euclidean distances in all the traditional methods. The results are 
summarized in Table 2. 

6. Conclusions and further work 

A novel pattern recognition method based on the fusion of 
probabilistic knowledge-based classification rules and learning 
automata theory has been introduced and tested with a challeng­
ing image recognition problem, in which we have used several sta­
tistical histogram-based descriptors, namely standard deviation, 
kurtosis, skewness, uniformity and entropy, as discriminant fea­
tures. We think that this idea of using such a reduced number of 
discriminant variables for the recognition of complex images is 

of great practical interest for other computer vision applications. 
Furthermore, as this reduced set of discriminant variables are 
based on the image histogram, makes them even more attractive 
due to the well-known robustness of the image histogram concern­
ing illumination and perspective changes as compared to the im­
age itself. Due to the excellent results obtained with this reduced 
set of discriminant variables and with the proposed classifier for 
our images data set we plan to extend in the future its application 
and testing to other publicly available standard image data sets. 
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