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Abstract14

With the increasing popularity of online crowdsourcing platforms such as

Amazon Mechanical Turk (AMT), building supervised learning models for

datasets with multiple annotators is receiving an increasing attention from

researchers. These platforms provide an inexpensive and accessible resource

that can be used to obtain labeled data, and in many situations the quality

of the labels competes directly with those of experts. For such reasons, much

attention has recently been given to annotator-aware models. In this paper,

we propose a new probabilistic model for supervised learning with multiple

annotators where the reliability of the different annotators is treated as a

latent variable. We empirically show that this model is able to achieve state

of the art performance, while reducing the number of model parameters, thus

avoiding a potential overfitting. Furthermore, the proposed model is easier to

implement and extend to other classes of learning problems such as sequence
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labeling tasks.

Keywords: Multiple Annotators, Crowdsourcing, Latent Variable Models,15

Expectation-Maximization, Logistic Regression16

1. Introduction17

Crowdsourcing (Howe, 2008) is rapidly changing the way datasets are18

built. With the development of crowdsourcing platforms such as Amazon19

Mechanical Turk (AMT)1, it is becoming increasingly easier to obtain la-20

beled data for a wide range of tasks covering different areas such as Com-21

puter Vision, Natural Language Processing, Speech Recognition, etc. The22

attractiveness of these platforms comes not only from their low cost and ac-23

cessibility, but also from the surprisingly good quality of the labels obtained,24

which in many cases competes directly with those of “experts” (Snow et al.,25

2008). Furthermore, by distributing the workload among multiple annota-26

tors, labeling tasks can be completed much faster.27

The current trend of social web, where citizens’ participation is growing28

in many forms, has come to stay, and information is being produced at29

a massive rate. This information can take many forms: document tags,30

opinions, product ratings, user clicks, contents, etc. These new sources of31

data also motivate the development of new machine learning approaches for32

learning from multiple sources.33

On another perspective, there are tasks for which ground truth labels34

simply cannot be obtained due to their highly subjective nature. Consider35

1http://www.mturk.com
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for instance the tasks of sentiment analysis, movie rating or keyphrase ex-36

traction. These tasks are subjective in nature and hence no absolute gold37

standard can be defined. In such cases the only attainable goal is to build a38

model that captures the wisdom of the crowds (Surowiecki, 2004) as well as39

possible. For such tasks crowdsourcing platforms like AMT become a natural40

solution. However, the large amount of labeled data needed to compensate41

for the heterogeneity of annotators’ expertise can rapidly rise its actual cost42

beyond acceptable values. Since different annotators have different levels of43

expertise, it is important to consider how reliable the annotators are when44

learning from their answers, and a parsimonious solution needs to be de-45

signed that is able to deal with such real world constraints (e.g. annotation46

cost) and heterogeneity.47

Even in situations where a ground truth can be obtained, it may be too48

costly. For example, in Medical Diagnosis, determining whether a patient49

has cancer may require a biopsy, which is an invasive procedure, and thus50

should only be used as a last resource. On the other hand, it is rather easy51

for a diagnostician to consult its colleagues for their opinions before making a52

decision. Therefore, although there is no crowdsourcing involved here, there53

are still multiple experts, with different levels of expertise, providing their54

own (possibly wrong) opinions, from which we have to be able to learn from.55

Many approaches have recently been proposed that deal with this increas-56

ingly important problem of supervised learning from multiple annotators in57

different paradigms: classification (Raykar et al., 2009; Yan et al., 2011),58

regression (Groot et al., 2011), ranking (Wu et al., 2011), etc. However,59

most of the work developed so far is centered on the unknown true labels of60
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the data, for which noisy versions are provided by the various annotators.61

Therefore, there has been a tendency to include these unobserved true labels62

as latent variables in a probabilistic framework, which, as we demonstrate,63

is not necessarily the best option. Furthermore, this choice of latent vari-64

ables hinders a natural extension of these approaches to structured prediction65

problems such as sequence labeling tasks due to combinatorial explosion of66

possible outcomes of the latent variables. Contrarily to these approaches, we67

argue that the focus should be on the annotators, and that including the also68

unknown reliabilities of the annotators as latent variables can be preferable,69

since it not only leads to simpler models that are less prone to overfitting,70

but also bypasses the problem of the high number of possible labelings to71

marginalize over.72

In this paper, we propose a new probabilistic model that explores these73

ideas, and explicitly handles the annotators’ reliabilities as latent variables.74

We empirically show, using both simulated annotators and human annota-75

tors from AMT, that for many tasks the new model can be competitive with76

the state of the art methods, and can even significantly outperform previ-77

ous approaches under certain conditions. Although we focus on multi-class78

Logistic Regression as the base classifier, the proposed model is simple and79

generic enough to be implemented with other classifiers. Furthermore the80

extension to structured prediction problems such as sequence labeling tasks81

can be much easier than with latent ground truth models (e.g. Raykar et al.82

(2010); Yan et al. (2011)).83

The remainder of this paper is organized as follows: Section 2 provides84

the reader with an overview of state of the art; Section 3 clarifies the problem85
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with latent ground truth models; Section 4 presents the proposed model, and86

Section 5 compares the results obtained by this model with two majority87

voting baselines and a state of the art approach; the article will end with a88

short discussion and conclusions (Section 6).89

2. State of the art90

There is considerable work on estimating ground truth labels from the91

responses of multiple annotators. Most of the early important works were in92

the fields of Biostatistics and Epidemiology. In 1979, Dawid and Skene (1979)93

proposed an approach for estimating the error rates of multiple patients94

(annotators) given their responses (labels) to multiple medical questions.95

However, like most of the early works with multiple annotators, this work96

only focused on estimating the unobserved ground truth labels. Only later,97

researchers started paying more attention to the specific problem of learning98

a classifier from the multiple annotator’s data. In 1995, Smyth et al. (1995)99

proposed a similar approach to the one from Dawid and Skene (1979) to100

estimate the ground truth from the labels of multiple experts, which was101

then used to train a classifier. As with previous works, the authors employed102

a model where the unknown true labels were treated as latent variables.103

More recently, with the increasing popularity of AMT and other crowd-104

sourcing and work-recruiting platforms, researchers started recognizing the105

importance of the problem of learning from the labels of multiple non-expert106

annotators. The researchers’ interest grew even further with works such as107

(Snow et al., 2008) and (Novotney and Callison-Burch, 2010), which show108

that, for many tasks, learning from multiple non-experts can be as good as109
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learning from an expert.110

With the rising interest in crowdsourcing as a source of labeled data,111

more challenging approaches for learning from multiple annotators started112

to appear. In 2009, Raykar et al. (2009) proposed an innovative probabilis-113

tic approach where the unknown ground truth labels and the classifier are114

learnt jointly. By handling the unobserved ground truth labels as latent vari-115

ables, the authors are able to find the maximum likelihood parameters for116

their model by iteratively estimating the posterior distribution of the ground117

truth labels and then using this estimate to determine the qualities of the118

annotators and the parameters of a Logistic Regression model. Unlike most119

of the previous works, this approach also has the advantage of relaxing the120

requirement of repeated labeling, i.e. the same instance being annotated by121

multiple annotators. Later works then relaxed other assumptions made by122

the authors. For example, Yan et al. (2010) relaxed the assumption that123

the quality of the labels provided by the annotators does not depend on the124

instance they are labeling.125

This main line of work also inspired many variations and extensions in the126

past couple of years. Groot et al. (2011) proposed an extension of Gaussian127

processes to do regression in a multiple annotator setting. In the field of128

ranking, Wu et al. (2011) presented an approach to learn how to rank from129

the opinions of multiple annotators. In an active learning setting, Yan et al.130

(2011) proposed an approach for multiple annotators by providing answers to131

the following questions: what instance should be selected to be labeled next132

and which annotators should label it? On a different perspective, in (Donmez133

et al., 2010) the authors propose the use of a particle filter to model the134
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time-varying accuracies of the different annotators. Despite the plausibility135

of their assumptions, i.e. it is legitimate to assume that the quality of the136

labels provided by an annotator will vary with time, the results obtained137

showed only a small improvement on the performance of their model through138

the inclusion of this time dependance.139

The approaches above mentioned typically treat the unknown ground140

truth labels as latent variables and build a model on that basis. We argue141

that explicitly handling the reliabilities of the annotators as latent variables,142

as opposed to the true labels, in a fashion that slightly resembles a mixture of143

experts (Jacobs et al., 1991; Bishop, 2006), brings many attractive advantages144

and can, under certain conditions, outperform latent ground truth models.145

3. The problem with latent ground truth models146

In order to help motivate the proposed model, we now introduce a typ-147

ical class of approaches for learning from multiple annotators, in which the148

unknown true labels are treated as latent variables (e.g. Raykar et al. (2009,149

2010); Yan et al. (2010)).150

Let yr
i be the label assigned to instance xi by the rth annotator, and let151

yi be the true (unobserved) label for that instance. Contrarily to a typical152

classification problem with a single annotator, in a setting with R annotators,153

a dataset D with size N consists of a set of labels {y1
i , y

2
i , ..., y

R
i } for each of154

the N instances xi.155

In general, the class of models we refer to as “latent ground truth mod-156

els” tend to assume the following generative process: for each instance xi157

there is an unobserved true label yi, and each of the different annotators in-158
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Figure 1: Plate representation of general latent ground truth model.

Since we do not actually observe the true labels y

i

we must treat them as
latent variables and marginalize them out of the likelihood, and this leads
us to the first problem with this approach: although this marginalization is
not di�cult for classification problems where the number of classes (K) is
small, for other types of problems like sequence labeling tasks (or tasks with
structured outputs in general), marginalizing over the output space can be
problematic since the number of possible labeling grows exponentially with
the length of the sequence.

The second problem with this class of models is related with the prob-
ability p(yr

i

|y
i

), which for a classification problem with K classes requires a
K ⇥K table of parameters for each annotator. Even though this approach
allows to capture certain biases in the annotators answers, in practice, on a
crowdsourcing platform like AMT, each annotator only labels a rather small
set of instances. Therefore, under such conditions, having a model with so
many parameters can lead to overfitting.

Having these issues in consideration, we developed a new probabilistic
model for learning from multiple annotators, which we present in the follow-
ing section.

4. Proposed model

4.1. Maximum likelihood estimator

Given a dataset D = {y1
i

, ..., y

R

i

,x

i

}N

i=1 with N instances and R di↵erent
annotators, and assuming the instances are i.i.d., the likelihood is given by

p(D|✓) =
N

Y

i=1

p(y1
i

, ..., y

R

i

|x
i

, ✓) (2)

where ✓ denotes the model parameters.

6

Figure 1: Plate representation of general latent ground truth model.

dependently provides its own version (yr
i ) of this true label, which in practice159

corresponds to an approximation to the real label yi. Figure 1 depicts such160

a model in plate notation. Shaded nodes represent observed variables, and161

non-shaded nodes represent unobserved (latent) variables.162

If besides the dataset D = {y1
i , ..., y

R
i ,xi}N

i=1 we were given the true labels

Y = {yi}N
i=1 as well, the likelihood for this model would take the form

p(D,Y) =
N∏

i=1

(
p(yi|xi)

R∏
r=1

p(yr
i |yi)

)
. (1)

Since we do not actually observe the true labels yi we must treat them as163

latent variables and marginalize them out of the likelihood, and this leads164

us to the first problem with this approach: although this marginalization is165

not difficult for classification problems where the number of classes (K) is166

small, for other types of problems like sequence labeling tasks (or any task167

with structured outputs), marginalizing over the output space is intractable168

in general (Sutton, 2012). If we consider, for example, the tasks of part-169

of-speech (POS) tagging or Named Entity Recognition (NER), which are170

usually handled as a sequence labelling problems, it is easy to see that the171

number of possible label sequences grows exponentially with the length of172

the sentence, deeming the marginalization over the output space intractable.173
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The second problem with this class of models is related with the prob-174

ability p(yr
i |yi), which for a classification problem with K classes requires a175

K ×K table of parameters for each annotator. Even though this approach176

allows to capture certain biases in the annotators answers, like for example177

the tendency to confuse two classes, in practice, on a crowdsourcing platform178

like AMT, each annotator only labels a rather small set of instances. There-179

fore, under such conditions, having a model with so many parameters for180

the reliability of the annotators can easily lead to overfitting. Consider, for181

example, a classification problem with 10 classes. Such a problem requires a182

total of 100 parameters (a 10× 10 probability table) to model the expertise183

of a single annotator. To effectively learn such a number of parameters, each184

annotator would be required to label a large number of instances, at least in185

the order of the thousands, something that is both unrealistic and hard to186

control in a crowdsourcing platform.187

Taking these issues into consideration, we developed a new probabilis-188

tic model for learning from multiple annotators, which we present in the189

following section.190

4. Proposed model191

4.1. Maximum likelihood estimator192

Given a dataset D = {y1
i , ..., y

R
i ,xi}N

i=1 with N instances and R different

annotators, and assuming that the instances are independent and identically

distributed (i.i.d.), the likelihood is given by

p(D|θ) =
N∏

i=1

p(y1
i , ..., y

R
i |xi, θ) (2)
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Figure 2: Plate representation of the proposed model.

Let us now assume the following generative process of the annotators
labels: when the r

th annotator is asked to provide a label to a given instance
x

i

, she flips a biased coin, and based on the outcome of that coin flip, she
decides whether or not to provide the correct label. This intuition amounts
to introducing a binary random variable z

r

i

, whose value indicates whether
the r

th annotator labeled the i

th instance correctly or not. Hence, z

r

i

⇠
Bernoulli(⇡

r

), where ⇡

r

= accuracy

r

. The expectation of this Bernoulli
random variable E{zr

i

} = p(zr

i

= 1) can be interpreted as the probability
of an annotator providing a correct label or, in other words, as an indicator
of how reliable an annotator is. For the sake of simplicity, we assume that
an unreliable annotator provides labels according to some random model
p

Rand

(yr

i

= k|x
i

).
Figure 2 shows a plate representation of this generative model. Notice

that the variables z

r

i

are not observed in this model, hence their nodes are
not shaded in the figure.

If we were told the true values for Z = {z1
i

, ..., z

R

i

}N

i=1, and assuming
the annotators make their decisions independently of the each other, the
complete-data likelihood could then be factored as

p(D,Z|✓) =
N

Y

i=1

R

Y

r=1

p(zr

i

|⇡
r

) p(yr

i

|x
i

, z

r

i

,w) (3)

where ✓ = {⇡,w} and ⇡ = {⇡
r

}R

r=1.
Following our generative story, we can now define p(yr

i

|x
i

, z

r

i

,w) as

p(yr

i

|x
i

, z

r

i

,w) =
n

p

LogReg

(yr

i

|x
i

,w)
o(zr

i

)n

p

Rand

(yr

i

|x
i

)
o(1�z

r

i

)

(4)

where p

LogReg

(yr

i

|x
i

,w) denotes the likelihood of the label provided by the r

th

annotator for the instance x

i

according to a multi-class Logistic Regression
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Figure 2: Plate representation of the proposed model.

where θ denotes the model parameters.193

Let us now assume the following generative process of the annotators’

labels: when the annotators are asked to provide a label to a given in-

stance xi, they flip a biased coin, and based on the outcome of those coin

flips, they decide whether or not to provide the correct label. This intuition

amounts to introducing a binary random variable zr
i , whose value indicates

whether the rth annotator labeled the ith instance correctly or not. Hence,

zr
i ∼ Bernoulli(πr), where πr is the accuracy of the rth annotator, and

p(zr
i |πr) = (πr)

zr
i (1− πr)

1−zr
i . (3)

The expectation of this Bernoulli random variable E[zr
i ] = p(zr

i = 1) can be194

interpreted as the probability of an annotator providing a correct label or, in195

other words, as an indicator of how reliable an annotator is. For the sake of196

simplicity, we assume that an unreliable annotator provides labels according197

to some random model pRand(y
r
i = k|xi).198

Figure 2 shows a plate representation of this generative model. Notice199

that the variables zr
i are not observed in this model, hence their nodes are200

not shaded in the figure.201

If we were told the true values for Z = {z1
i , ..., z

R
i }N

i=1, and assuming
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the annotators make their decisions independently of the each other, the

complete-data likelihood could then be factored as

p(D,Z|θ) =
N∏

i=1

R∏
r=1

p(zr
i |πr) p(yr

i |xi, z
r
i ,w) (4)

where θ = {π,w} are the model parameters. The values of π = {πr}R
r=1202

correspond to the parameters of the R Bernoulli distributions (one for each203

annotator). In turn, w are the weights of a Logistic Regression model.204

Following the generative process described above, we can now define

p(yr
i |xi, z

r
i ,w) as

p(yr
i |xi, z

r
i ,w) =

(
pLogReg(y

r
i |xi,w)

)zr
i
(
pRand(y

r
i |xi)

)1−zr
i

(5)

where pLogReg(y
r
i |xi,w) denotes the likelihood of the label provided by the rth

annotator for the instance xi according to a multi-class Logistic Regression

model with parameters w, which for a classification task with K classes is

given by

pLogReg(y
r
i = k|xi,w) =

exp(wT
k xi)∑K

k′=1 exp(wT
k′xi)

. (6)

Similarly, pRand(y
r
i |xi) denotes the likelihood of the label yr

i according to a

random model, which we assume to be uniformly distributed. Hence,

pRand(y
r
i = k|xi) =

1

K
. (7)

To summarize, this is akin to saying that if zr
i = 1 then the label provided205

by the rth annotator (yr
i ) fits a Logistic Regression model, which is assumed206

to capture the correct (true) labeling process. Conversely, if zr
i = 0 then207

yr
i is assumed to be drawn from a random model where all the classes are208

equiprobable.209
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Since we do not actually observe the set Z we must treat the variables

zr
i as latent and marginalize them out of the likelihood by summing over all

its possible outcomes. The (observed) data likelihood then becomes

p(D|θ) =
N∏

i=1

R∏
r=1

∑
zr
i ∈{0,1}

p(zr
i |πr) p(yr

i |xi, z
r
i ,w). (8)

Making use of equations 3 and 5, this expression can be further simplified,

giving

p(D|θ) =
N∏

i=1

R∏
r=1

(
πr pLogReg(y

r
i |xi,w) + (1− πr) pRand(y

r
i |xi)

)
. (9)

Our goal is then to estimate the maximum likelihood parameters θML,210

which are found by determining θML = arg maxθ ln p(D|θ).211

At this point, it is important to note that extending this approach to212

sequence labeling problems, or any kind of structured prediction problems213

in general, could be as simple as replacing in equation 5 the probabilities214

pLogReg(y
r
i |xi,w) and pRand(y

r
i |xi) with their sequence labeling counterparts,215

which for pLogReg(·) could be an Hidden Markov Model (HMM) or a Condi-216

tional Random Field (CRF), and updating the remaining equations accord-217

ingly.218

4.2. Expectation-Maximization219

As with other latent variable models, we rely on the Expectation-220

Maximization (EM) algorithm (Dempster et al., 1977) to optimize this oth-221

erwise intractable maximization problem. The EM algorithm is an iterative222

method for finding maximum likelihood solutions for probabilistic models223

with latent variables, and consist of two steps: the E-step and M-step. In224
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the E-step the posterior distribution of the latent variables is computed based225

on the current model parameters. This posterior distribution is then used226

to estimate the new model parameters (M-step). These two steps are then227

iterated until convergence.228

If we observed the complete dataset {D,Z} then the loglikelihood func-229

tion would simply take the form ln p(D,Z|θ). Since we only have access to230

the “incomplete” dataset D, our state of the knowledge about the values231

of Z (the reliabilities of the annotators) can be given by the posterior dis-232

tribution p(Z|D, θ). Therefore, instead of the complete data loglikelihood,233

we consider its expected value under the posterior distribution of the latent234

variable p(Z|D, θ), which corresponds to the E-step of the EM algorithm.235

Hence, in the E-step we use the current parameter values θold to find the236

posterior distribution of the latent variables in Z. We then use this poste-237

rior distribution to find the expectation of the complete-data loglikelihood238

evaluated for some general parameter values θ. This expectation is given by239

Ep(Z|D,θold)

[
ln p(D,Z|θ)

]
=
∑
Z

p(Z|D, θold) ln p(D,Z|θ)

=
N∑

i=1

R∑
r=1

∑
zr
i ∈{0,1}

p(zr
i |yr

i ,xi, θold) ln
(
p(zr

i |πr) p(yr
i |xi, z

r
i ,w)

)
. (10)

The posterior distribution of the latent variables zr
i (denoted by γ(zr

i ))

13



  

can be estimated using the Bayes theorem giving

γ(zr
i ) = p(zr

i = 1|yr
i ,xi, θ

old)

=
p(zr

i = 1|πold
r ) p(yr

i |xi, z
r
i = 1,wold)

p(zr
i = 1|πold

r ) p(yr
i |xi, zr

i = 1,wold) + p(zr
i = 0|πold

r ) p(yr
i |xi, zr

i = 0,w)

=
πold

r pLogReg(y
r
i |xi,w

old)

πold
r pLogReg(yr

i |xi,wold) + (1− πold
r ) pRand(yr

i |xi)
(11)

where we also made use of equations 3 and 5.240

The expected value of the complete data loglikelihood then becomes

Ep(Z|D,θold)

[
ln p(D,Z|θ)

]
=

N∑
i=1

R∑
r=1

γ(zr
i ) ln

(
πr pLogReg(y

r
i |xi,w)

)
+ (1− γ(zr

i )) ln
(
(1− πr) pRand(y

r
i |xi)

)
. (12)

In the M-step of the EM algorithm we maximize this expectation with

respect to the model parameters θ, obtaining new parameter values θnew

given by

θnew = arg max
θ

Ep(Z|D,θold)

[
ln p(D,Z|θ)

]
. (13)

The EM algorithm can then be summarized as follows:241

E-step Compute the posterior distribution of the latent variables zr
i by mak-242

ing use of equation 11.243

M-step Estimate the new model parameters θnew = {πnew,wnew} given by

wnew = arg max
w

N∑
i=1

R∑
r=1

γ(zr
i ) ln pLogReg(y

r
i |xi,w) (14)

Ŷnew = arg max
bY

pLogReg(Ŷ|X ,wnew) (15)

πnew
r = accuracyr =

#{i : yr
i = ŷi}

Nr

(16)

14



  

where Nr denotes the number of instances labeled by annotator r. In order

to optimize equation 14 we use limited-memory BFGS (Liu and Nocedal,

1989). The first order derivate is given by

∇w =
N∑

i=1

R∑
r=1

(
γ(zr

i )
K∑

k=1

(
trik − pLogReg(yi = k|xi,w)

)
xix

T
i

)
(17)

where tr
i is a vector representation of yr

i in a 1-of-K coding scheme, thus trik244

would be 1 when k corresponds to the label provided by the rth annotator245

and 0 otherwise.246

Notice that this is very similar to the typical training of a multi-class247

Logistic Regression model. However, in this case, the contributions of the248

labels provided by each annotator to the loglikelihood are being weighted by249

her reliability, or in other words, by how likely it is for her to be correct.250

This makes our proposed approach quite easy to implement in practice.251

5. Experiments252

The proposed Multiple-Annotator Logistic Regression (MA-LR)2 model253

was evaluated using both multiple-annotator data with simulated annotators254

and data manually labelled using AMT. The model was compared with the255

multi-class extension of the model proposed by Raykar et al. (2009, 2010),256

which is a latent ground truth model, and with two majority voting baselines:257

• Soft Majority Voting (MVsoft): this corresponds to a multi-class Logis-258

tic Regression model trained with the soft probabilistic labels resultant259

from the voting process.260

2Source code is available at: http://amilab.dei.uc.pt/fmpr/malr.tar.gz
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• Hard Majority Voting (MVhard): this corresponds to a multi-class261

Logistic Regression model trained with the most voted labels resultant262

from the voting process (i.e. the most voted class for a given instance263

gets “1” and the others get “0”).264

In all experiments the EM algorithm was initialized with majority voting.265

5.1. Simulated annotators266

With the purpose of comparing the presented approaches in different267

classification tasks we used six popular benchmark datasets from the UCI268

repository3 - a collection of databases, domain theories, and data generators269

that are used by the machine learning community for the empirical analysis270

of machine learning algorithms. Since these datasets do not have labels from271

multiple annotators, the latter were simulated from the ground truth using272

two different methods. The first method, denoted “label flips”, consists in273

randomly flipping the label of an instance with a given uniform probability274

p(flip) in order to simulate an annotator with an average reliability of (1−275

p(flip)). The second method, referred to as “model noise”, seeks simulating276

annotators that are more consistent in their opinions, and can be summarized277

as follows. First, a multi-class Logistic Regression model is trained on the278

original training set. Then, the resulting weights w are perturbed, such that279

the classifier consistently “fails” in a coherent fashion throughout the test set.280

To do so, the values of w are standardized, and then random “noise” is drawn281

from a Gaussian distribution with zero mean and σ2 variance and added282

to the weights w. These weights are then “unstandardized” (by reversing283

3http://archive.ics.uci.edu/ml/index.html
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Table 1: Details of the UCI datasets

Dataset Num. Instances Num. Features Num. Classes

Annealing 798 38 6

Image Segmentation 2310 19 7

Ionosphere 351 34 2

Iris 150 4 3

Parkinson’s 197 23 2

Wine 178 13 3

the standardization process previously used), and the modified multi-class284

Logistic Regression model is re-applied to the training set in order to simulate285

an annotator. The quality of this annotator will vary depending on the value286

of σ2 used.287

Since in practice each annotator only labels a small subset of all the in-288

stances in the dataset, we introduce another parameter in this annotator289

simulation process: the probability p(label) of an annotator labeling an in-290

stance.291

Table 1 describes the UCI datasets used in these experiments. Special care292

was taken in choosing datasets that correspond to real data and that were293

among the most popular ones in the repository and, consequently, among294

the Machine Learning community. Datasets that were overly unbalanced,295

i.e. with too many instances of some classes and very few instances of oth-296

ers, were avoided. Despite that, the selection process was random, which297

resulted in a rather heterogeneous collection of datasets: with different sizes,298
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dimensionalities and number of classes.299

Figures 3 and 4 show the results obtained using 5 simulated annotators300

with different reliabilities using distinct simulation methods: “label flips”301

and “model noise” respectively. Although not all the results (i.e. using both302

simulation methods on all the six datasets) are presented here, we note that303

the omitted results are similar to those shown. Hence, to avoid redundancy304

and preserve brevity, only a random subset of these are presented. All the305

experiments use 10-fold cross-validation. Due to the stochastic nature of the306

simulation process of the annotators, each experiment was repeated 30 times307

and the average results were collected. The plots on the left show the root308

mean squared error (RMSE) between the estimated annotators accuracies309

and their actual accuracies evaluated against the ground truth. The plots310

on the center and on the right show, respectively, the trainset and testset311

accuracies. Note that here, unlike in “typical” supervised learning tasks,312

trainset accuracy is quite important since it indicates how well the models313

are estimating the unobserved ground truth labels from the opinions of the314

multiple annotators.315

From a general perspective on the results of figures 3 and 4 we can con-316

clude that both methods for learning from multiple annotators (MA-LR and317

Raykar) tend to outperform the majority voting baselines under most condi-318

tions. Not surprisingly, as the value of p(label), and consequently the average319

number of instances labeled by each annotator, decreases, both the trainset320

and testset accuracies of all the approaches decrease or stay roughly the same.321

As expected, a higher trainset accuracy usually translates in a higher testset322

accuracy and a better approximation of the annotators accuracies (i.e. lower323
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Figure 3: Results for the Annealing, Ionosphere and Parkinsons datasets using the “la-

bel flips” method for simulating annotators. The “x” marks indicate the average true

accuracies of the simulated annotators.

13

Figure 3: Results for the Annealing, Ionosphere and Parkinsons datasets using the “la-

bel flips” method for simulating annotators. The “x” marks indicate the average true

accuracies of the simulated annotators.
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Figure 4: Results for the Iris, Segmentation and Wine datasets using the “model noise”

method for simulating annotators. The “x” marks indicate the average true accuracies of

the simulated annotators.
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Figure 4: Results for the Iris, Segmentation and Wine datasets using the “model noise”

method for simulating annotators. The “x” marks indicate the average true accuracies of

the simulated annotators.

20



  

RMSE), since the approximation of the ground truth is also better.324

A more careful analysis of the results reveals that, contrarily to the model325

by Raykar et al. (2009, 2010), the proposed model (MA-LR) is less prone326

to overfitting when the number of instances labeled by each annotator de-327

creases. This is a direct consequence of the number of parameters used to328

model the annotators expertise. While the model by Raykar et al. (2009,329

2010) uses a K ×K confusion matrix for each annotator, making a total of330

RK2 parameters, the proposed model only has R parameters. However, it is331

important to note that there is a tradeoff here, since the model by Raykar et332

al. can capture certain biases in the annotators answers by keeping a K×K333

confusion matrix for each annotator, which is not possible with the MA-LR334

model. Notwithstanding, in practice, on crowdsourcing platforms like AMT,335

the number of instances labeled by each annotator is usually low. Hence, we336

believe that the proposed model is preferable in most situations. Further-337

more, our experimental results show that even when the number of instances338

labeled by each annotator is high, the MA-LR model can achieve similar or339

even better results than the model by Raykar et al. (2009, 2010).340

5.2. Amazon Mechanical Turk341

In order to assess the performance of the proposed model in learning from342

the labels of multiple non-expert human annotators and compare it with the343

other approaches, two experiments were conducted using AMT: sentiment344

polarity and music genre classification4.345

The sentiment polarity experiment was based on the sentiment analysis346

4Datasets are available at: http://amilab.dei.uc.pt/fmpr/mturk-datasets.tar.gz
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dataset introduced by Pang and Lee (2005), which corresponds to a collection347

of more than ten thousand sentences extracted from the movie review website348

RottenTomatoes5. These are labeled as positive or negative depending on349

whether they were marked as “fresh” or “rotten” respectively. From this350

collection, a random subset of 5000 sentences were selected and published on351

Amazon Mechanical Turk for annotation. Given the sentences, the workers352

were asked to provide the sentiment polarity (positive or negative). The353

remaining 5428 sentences were kept for evaluation.354

For the music genre classification experiment, the audio dataset intro-355

duced by Tzanetakis and Cook (2002) was used. This dataset consists of356

a thousand samples of songs with 30 seconds of length and divided among357

10 different music genres: classical, country, disco, hiphop, jazz, rock, blues,358

reggae, pop and metal. Each of the genres has 100 representative samples.359

A random 70/30 train/test split was performed on the dataset, and the 700360

training samples were published on AMT for classification. In this case, the361

workers were required to listen to a 30-second audio excerpt and classify it362

as one of the 10 genres enumerated above.363

On both experiments, the AMT workers were required to have an HIT364

approval rate - an AMT quality indicator that reflects the percentage of365

accepted answers of a worker - of 95%, which ensures some reliability on the366

quality of the answers.367

Table 2 shows some statistics about the answers of the AMT workers for368

both datasets. Figure 5 further explore the distributions of the number of369

5http://www.rottentomatoes.com/
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Table 2: Statistics of the answers of the AMT workers for the two experiments performed.

Note that the worker accuracies correspond to trainset accuracies.

Sentiment polarity Music genre

Number of answers collected 27747 2946

Number of workers 203 44

Avg. answers per worker (± std) 136.68 ± 345.37 66.93 ± 104.41

Min. answers per worker 5 2

Max. answers per worker 3993 368

Avg. worker accuracy (± std) 77.12 ± 17.10% 73.28 ± 24.16%

Min. worker accuracy 20% 6.8%

Max. worker accuracy 100% 100%

answers provided by each annotator and their accuracies for the sentiment370

polarity and music genre datasets. The figure reveals a highly skewed dis-371

tribution of number of answers per worker, which support our intuition that372

on this kind of crowdsourcing platforms each worker tends to only provide373

a small number of answers, with only a couple of workers performing high374

quantities of labelings.375

Standard preprocessing and features extraction techniques were performed376

on both experiments. In the case of the sentiment polarity dataset, the stop-377

words were removed and the remaining words were reduced to their root by378

applying a stemmer. This resulted in a vocabulary with size 8919, which still379

makes a bag-of-words representation computationally expensive. Hence, La-380

tent Semantic Analysis (LSA) was used to further reduce the dimensionally381
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Figure 5: Boxplots for the number of answers (a) and for the accuracies (b) of the AMT

workers for the sentiment polarity (top) and music genre (bottom) datasets.
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Table 3: Trainset and testset accuracies for the different approaches on the datasets ob-

tained from AMT.

Sentiment polarity Music genre

Method Train acc. Test acc. Train acc. Test acc.

MVsoft 80.70% 71.65% 67.43% 60.33%

MVhard 79.68% 70.27% 67.71% 59.00%

Raykar 49.91% 48.67% 9.14% 12.00%

Raykar (w/prior) 84.92% 70.78% 71.86% 63.00%

MA-LR 85.40% 72.40% 72.00% 64.00%

of the dataset to 1200 features.382

Regarding the music genre dataset, we used Marsyas6, a standard music383

information retrieval tool, to extract a collection of commonly used features384

in this kind of tasks (Tzanetakis and Cook, 2002). These include means and385

variances of timbral features, time-domain Zero-Crossings, Spectral Centroid,386

Rolloff, Flux and Mel-Frequency Cepstral Coefficients (MFCC) over a texture387

window of 1 second. A total of 124 features were extracted. The details on388

these features fall out of the scope of this article. The interested reader is389

redirected to the appropriate literature (e.g. Aucouturier and Pachet (2003);390

Tzanetakis and Cook (2002)).391

Table 3 presents the results obtained by the different methods on the sen-392

timent polarity and music genre datasets. As expected, the results indicate393

that both annotator-aware methods are clearly superior when compared to394

6http://marsyasweb.appspot.com
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the majority voting baselines. Also, notice that due to the fact some anno-395

tators only label a very small portion of instances, the “standard” model by396

Raykar et al. (2009, 2010) performs very poorly (as bad as a random classi-397

fier) due to overfitting. In order to overcome this, a prior had to be imposed398

on the probability distribution that controls the quality of the annotators.399

In the case of the sentiment polarity task, a Beta(1, 1) prior was used, and400

for the music genre task we applied a symmetric Dirichlet with parameter401

α = 1. Despite the use of a prior, the model by Raykar et al. (2009, 2010)402

still performs worse than the proposed MA-LR model, which takes advan-403

tage of its single quality parameter per annotator to produce better estimates404

of the annotators’ reliabilities. These results are coherent with our findings405

with the simulated annotators, which highlights the quality of the proposed406

model.407

6. Conclusions and Future Work408

In this paper we presented a new probabilistic model for supervised multi-409

class classification from multiple annotator data. Unlike previous approaches,410

in this model the reliabilities of the annotators are treated as latent variables.411

This design choice results in a model with various attractive characteristics,412

such as: its easy implementation and extension to other classifiers, the nat-413

ural extension to structured prediction problems (as opposed to the com-414

monly used latent ground truth models), and the ability to overcome the415

overfitting to which more complex models of the annotators expertise are416

susceptible as the number of instances labeled by each annotator decreases.417

We empirically showed, using both simulated annotators and human-418
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labeled data from Amazon Mechanical Turk, that under most conditions,419

the proposed approach achieves comparable or even better results when com-420

pared to a state of the art model (Raykar et al., 2009, 2010) despite its much421

smaller set of parameters to model the annotators expertise. In fact, it turned422

out that this reduced number of parameters plays a key role in making the423

model less prone to overfitting.424

Future work will explore the behavior of the proposed model when we425

relax the assumption that the reliability of the annotators does not depend426

on the instances that they are labeling, similarly to what is done in Yan et al.427

(2010). Furthermore, the generalization to sequence labeling tasks will also428

be investigated.429
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Highlights: 
 

  We propose a new probabilistic model for learning with multiple 
annotators. 

  The reliability of the different annotators is treated as a latent variable. 
  Model is able to achieve state of the art performance (or superior). 
  Reduced number of model parameters is able to avoid overfitting. 
  Model is easier to implement and extend to other classes of learning 

problems.  


