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Abstract

Content-Based Image Retrieval (CBIR) systems are powerful search tools

in image databases that have been little applied to hyperspectral images.

Relevance Feedback (RF) is an iterative process that uses machine learning

techniques and user’s feedback to improve the CBIR systems performance.

We pursued to expand previous research in hyperspectral CBIR systems

built on dissimilarity functions defined either on spectral and spatial features

extracted by spectral unmixing techniques, or on dictionaries extracted by

dictionary-based compressors. These dissimilarity functions were not suitable

for direct application in common machine learning techniques. We propose

to use a RF general approach based on dissimilarity spaces which is more

appropriate for the application of machine learning algorithms to the Hyper-

spectral RF-CBIR. We validate the proposed RF method for hyperspectral

CBIR systems over a real hyperspectral dataset.
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relevance feedback.

1. Introduction1

The increasing interest in hyperspectral remote sensing [23] will yield2

to an exponential growth of hyperspectral data acquisition in a short time.3

Most spatial agencies have scheduled the launch of hyperspectral sensors on4

satellite payloads such as in EnMAP [6] or PRISMA [9] missions. That will5

involve the storage of a huge quantity of hyperspectral data. The problem6

of searching through these huge databases using Content-Based Image Re-7

trieval (CBIR) techniques has not been properly addressed for the case of8

hyperspectral images until recently. Recent works on hyperspectral CBIR9

systems [8, 28] make use of spectral and spectral-spatial dissimilarity func-10

tions to compare hyperspectral images. The spectral and spatial features are11

extracted by means of spectral unmixing algorithms [10]. In [27], authors de-12

fine dissimilarity functions built upon Kolmogorov complexity [15] and its ap-13

proximation by compression and dictionary distances [29, 14]. Compression-14

based distances require a high computational cost that make it unaffordable15

for the definition of CBIR systems. Dictionary distances operate over dictio-16

naries extracted from the hyperspectral images by the off-line application of17

a lossless dictionary-based compressor such as the Lempel-Ziv-Welch (LZW)18

compression algorithm [30]. In this work we pursued to extend these hyper-19

spectral CBIR systems by using the feedback of the user.20

Relevance Feedback (RF) is an iterative process that makes use of the21

feedback provided by the user to reduce the gap between the low-level fea-22

ture representation of the images and the high-level semantics of the user’s23
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queries [25]. Often, the user’s feedback comes on the form of a labelling of24

the previously retrieved images as relevant or irrelevant for the query. The25

set of labelled images is then used by the CBIR system to adapt the search26

to the query semantics. If each image is represented by a point in a feature27

space, the RF with both, positive and negative training examples, becomes28

a two-class classification problem or an online learning problem in a batch29

mode [31].30

Dictionaries and spectral-spatial features extracted from hyperspectral31

images cannot be directly represented as points in a feature space. Thus, they32

do not fit easily in feature-based machine learning techniques employed for33

the definition of RF processes. It is possible to treat dissimilarity functions as34

kernel functions in order to use them in kernel-based method, for instance in35

Support Vector Machine (SVM) [24]. However, these dissimilarity functions36

do not comply often with valid kernel conditions [21]. Authors in [20, 5]37

propose the definition of dissimilarity spaces as an alternative to feature38

spaces for machine learning. In dissimilarity spaces some data instances are39

used as reference points named prototypes. The data samples are compared40

to these prototype instances by some dissimilarity function. Then, for each41

data sample, the dissimilarities to the prototypes define the data coordinates42

in a so-called dissimilarity space. Thus, each prototype defines a dimension43

in this dissimilarity space. The dissimilarity space is analogous to a feature44

space so, once the data samples are represented as points in the dissimilarity45

space, all the available potential of machine learning techniques can then be46

used.47

In this paper we propose the use of dissimilarity spaces to define a RF48
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methodology for hyperspectral CBIR making use of the already available49

spectral, spectral-spatial and dictionary dissimilarity functions. The use of50

dissimilarity spaces to define RF processes is scarce on the literature. In51

[19], authors propose the use of dissimilarities to prototypes selected by an52

offline clustering process as the entry to a RF process defined as an one-class53

classification problem. Authors in [7] perform an online prototypes selec-54

tion instead, where the images retrieved to the user for evaluation are at the55

same time the prototypes and the training set. The RF process is defined56

as a new dissimilarity function based on the combination of the database57

images dissimilarities to the set of prototypes and the prototypes labeling.58

In [2], authors propose different strategies to characterize an image by a fea-59

ture vector based on the combination of dissimilarities to a set of prototypes.60

We propose an hyperspectral RF process defined as a two-class classifica-61

tion problem based on dissimilarity spaces. The input to the classifier is a62

dissimilarity representation defined over the unmixing and dictionary-based63

hyperspectral dissimilarity functions respect to offline and online selected64

prototypes.65

The paper is divided as follows. In section 2 we outline the dissimilarity66

functions used in the definition of hyperspectral CBIR systems and in section67

3 we outline the dissimilarity spaces approach. In section 4 we introduce the68

proposed hyperspectral RF process. In section 5 we define the experimen-69

tal methodology and in section 6 we comment on the results. Finally, we70

contribute with some conclusions in section 7.71
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2. Hyperspectral dissimilarity functions72

Here, we outline the dissimilarity functions used on the literature to com-73

pare hyperspectral images. Firstly, we describe the spectral and spectral-74

spatial dissimilarity functions defined over the results of a spectral unmixing75

process. Secondly, we describe the dictionary distance defined over dictionar-76

ies extracted from the hyperspectral images by means of lossless dictionary-77

based compressors.78

2.1. Unmixing-based dissimilarity functions79

Spectral unmixing pursues the decomposition of an hyperspectral image80

into the spectral signatures of its main constituents and their corresponding81

spatial fractional abundances. Most of the unmixing methods are based on82

the Linear Mixing Model (LMM) [11, 1]. The LMM states that an hyper-83

spectral sample is formed by a linear combination of the spectral signatures84

of pure materials present in the sample (endmembers), plus some additive85

noise. Often, the spectral signatures of the materials are unknown, and the86

set of endmembers must be built by either manually selecting spectral sig-87

natures from a spectral library, or by automatically inducing them from the88

image itself. The latter involves the use of some endmember induction algo-89

rithm (EIA). The hyperspectral literature features plenty of such algorithms.90

Some reviews on the topic can be found in [22, 26, 1]. Once the set of end-91

members has been induced, their corresponding per-pixel abundances can be92

estimated by a Least Squares method [12].93

The dissimilarity functions based on the spectral unmixing make use of94

the spectral and spectral-spatial characterization of the hyperspectral im-95
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ages [8, 28]. Given an hyperspectral image, Hα, whose pixels are vectors in a96

q-dimensional space, its spectral characterization is defined by the set of end-97

members, Eα =
{
eα1 , e

α
2 . . . e

α
mα

}
, where mα denotes the number of induced98

endmembers from the α-th image. The spectral-spatial characterization is99

defined as the tuple (Eα,Φα), where Φα =
{
φα1 , φ

α
2 , . . . , φ

α
mα

}
is the set of100

fractional abundance maps resulting from the unmixing process. To imple-101

ment this approach, an EIA is first used to induce the endmembers from the102

image and then, their respective fractional abundances are estimated by a103

Least Squares Unmixing algorithm.104

In order to compute the unmixing-based dissimilarities, the Spectral Dis-105

tance Matrix (SDM), Dα,β, between two given hyperspectral images, Hα106

and Hβ, has first to be computed. The SDM is the matrix Dα,β = [dij],107

i = 1, . . . ,mα, j = 1, . . . ,mβ, whose elements dij are the pairwise distances108

between the endmembers eαi , e
β
j ∈ Rq of each image. The spectral distance109

function d : Rq × Rq → R+ is often the angular pseudo-distance:110

d (ei, ej) = cos−1
eiej

‖ei‖ ‖ej‖
. (1)

The Spectral dissimilarity [8] is then given by:111

sE (Hα,Hβ) = ‖mr‖+ ‖mc‖ , (2)

where ‖mr‖ and ‖mc‖ are the Euclidean norms of the vectors of row and112

column minimal values of the SMD, respectively. The Spectral-Spatial dis-113

similarity [28] is given by:114

sE,Φ (Hα,Hβ) =
mα∑
i=1

mβ∑
j=1

rijdij, (3)
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where dij is the aforementioned spectral distance and rij is the significance115

associated to dij. The significance matrix Rα,β = [rij], i = 1, . . . ,mα, j =116

1, . . . ,mβ is calculated on base to the normalized average abundances Φ̄α117

and Φ̄β by the most similar highest priority (MSHP) principle [13].118

2.2. Dictionary-based dissimilarity functions119

Given a signal x, a dictionary-based compression algorithm looks for pat-120

terns in the input sequence from signal x. These patterns, called words, are121

subsequences of the incoming sequence. The compression algorithm result122

is a set of unique words called dictionary. The dictionary extracted from a123

signal x is hereafter denoted as D (x), with D (λ) = ∅ only if λ is the empty124

signal. The Normalized Dictionary Distance (NDD) [16] is given by:125

sNDD (x, y) =
D (x ∪ y)−min {D (x) , D (y)}

max {D (x) , D (y)}
, (4)

where D (x ∪ y) and D (x ∩ y) respectively denote the union and intersection126

of the dictionaries extracted from signals x and y. The NDD is a normalized127

admissible distance satisfying the metric inequalities. Thus, it results in a128

non-negative number in the interval [0, 1], being zero when the compared129

signals are equal and increasing up to one as the signals are more dissimilar.130

3. Dissimilarity spaces131

The dissimilarity space is a vector space in which the dimensions are132

defined by dissimilarity vectors measuring pairwise dissimilarities between133

individual objects and reference objects (prototypes) [5]. Given a set of pro-134

totypes P = {p1, . . . , pr}, where r denotes the number of prototype objects135
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on P, and a set of objects X = {x1, . . . , xN}, , where N denotes the num-136

ber of individual objects on X, the dissimilarity representation D (X,P) is137

a data-dependent mapping D (·,P) : X → <r from a set of objects X to138

the dissimilarity space specified by the prototypes set P. Each dimension139

in the dissimilarity space corresponds to a dissimilarity to a prototype ob-140

ject, D (X, pi). The dissimilarity representation D (X,P) is thus defined as141

a N × r dissimilarity matrix, where each object x ∈ X is described by a142

vector of dissimilarities sx = D (x,P) = [s (x, p1) , . . . , s (x, pr)]. The pair-143

wise dissimilarity function s (x, pi) is not required to be metric and can be144

defined ad-hoc for the given prototype. The dissimilarity space is a vector145

space equipped with an inner product and an Euclidean metric. Thus, the146

vector of dissimilarities to the set of prototypes, sx, can be interpreted as a147

feature, allowing the use of machine learning techniques commonly defined148

over feature spaces.149

4. Relevance feedback by dissimilarity spaces150

The use of dissimilarity spaces allows one to use the previously mentioned151

hyperspectral dissimilarity functions to define a RF process based on conven-152

tional machine learning techniques. The proposed hyperspectral RF process153

follows the general approach in [7, 2, 19] and it is depicted in Fig.1. First, the154

user defines a zero-query by feeding the system with some positive sample.155

Next, an initial ranking is obtained comparing the database images to the156

query sample by some hyperspectral dissimilarity function and some images157

are retrieved for user’s evaluation. Then, the user labels the images retrieved158

by the system, a set of prototype images is selected and the RF process starts.159
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Figure 1: CBIR system diagram with the proposed relevance feedback by dissimilarity

spaces approach.

We follow by describing the zero-query and the relevance feedback processes160

in detail, and then we discuss on the prototypes selection and the selection161

of the images retrieved by the system for evaluation.162

4.1. Zero query163

First, a query Ql (Hα) is defined following the query-by-image approach.164

Hα denotes the hyperspectral image selected as the query and l ∈ Z+, named165

the scope of the query, denotes the number of images that should be retrieved166

by the system. Every image Hβ in the dataset is compared to the query image167

by some hyperspectral dissimilarity function, s (Hα, Hβ). The dissimilarities168
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to the query image are represented as a vector sα = [sα,1, . . . , sα,N ], where N169

is the number of images in the dataset and sα,β is the dissimilarity between170

the query image Hα and the dataset image Hβ, with β = 1, . . . , N . Then, we171

sort the components of sα in increasing order, and the resulting shuffled image172

indexes constitute the zero ranking Ω0
α = [ωq ∈ {1, . . . , N}], q = 1, . . . , N , so173

that sα,ωq ≤ sα,ωq+1 . Then, some selection criterion is followed to select l174

images from the zero ranking and retrieve them for user’s evaluation. The175

user labels these images as relevant or non-relevant for the query. The set of176

relevant images, denoted as R, and the set of non-relevant images, denoted177

as NR, form the training set, T = {R ∪NR}, with which the relevance178

feedback process starts.179

4.2. Relevance feedback180

We propose a RF process defined as a two-class problem where the classes181

are the set of relevant (positive class) and the set of irrelevant (negative182

class) images respect to the query. The input to the two-class classifier183

is a feature vector composed of the dissimilarity values computed from a184

given image respect to each of the images of the prototypes set. The output185

of the classifier should be an scalar representing any measure of an image186

identification with the positive class respect to the negative class, for instance187

a class probability. The classifier outputs are ordered to define a ranking of188

the database images respect to the user’s query. Finally, the ranking is used189

to select some database images that will be retrieved for the user’s evaluation190

and so, proceed with a new RF iteration. Thus, the RF process is divided in191

two steps, a training phase and a testing phase.192
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4.2.1. Training phase193

Let P = {Hpi}
r
i=1 be the set of prototypes where pi is an index point-194

ing to a database image and r is the number of prototype instances. Let195

T =
{
Hqj

}t
j=1

be the set of training samples where qj is an index pointing196

to a database image, t denotes the number of training samples and each im-197

age Hqj has been labelled as belonging to the positive class, C+, or to the198

negative class, C−. Then, the system calculates the t × r dissimilarity ma-199

trix D (T,P) =
[
s
(
Hqj , Hpi

)]
, j = 1, . . . , t, i = 1, . . . , r; using some given200

hyperspectral dissimilarity function s (·, ·). The rows of D (T,P) are the geo-201

metrical coordinates of the training samples in the dissimilarity space defined202

by the set of prototypes, and would be used as feature vectors to train the203

two-class classifier.204

4.2.2. Testing phase205

For each imageHβ in the dataset we calculate the dissimilarity vector sβ =206

D (Hβ,P) = [s (Hβ, Hpi)]
r
i=1, given the hyperspectral dissimilarity function207

s (·, ·). The dissimilarity vector, sβ, represents a point in the dissimilarity208

space and is used as the input to the trained classifier. The classifier will209

return an scalar, cβ, measuring the probability or the degree of inclusion210

of the image Hβ respect to the query class C+. An image Hk having a211

classification value higher than an image Hl, that is ck ≥ cl, should be ranked212

in a better position. The values obtained by the classifier for all the images213

in the dataset are then represented as a vector cα = [c1, . . . , cN ], where N is214

the number of images in the dataset. The vector of classification values cα is215

sorted in decreasing order and the resulting shuffled image indexes constitute216

the ranking Ωt
α =

[
ωtq ∈ {1, . . . , N}

]
, q = 1, . . . , N , so that cωtq ≥ cωtq+1

. The217
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superscript t in Ωt
α denotes the iteration in turn on the RF process, being218

t a positive integer, t > 0. The ranking serves to select some images that219

are retrieved to the user for evaluation, and then included in the training220

set. The RF process ends when the user is satisfied, a maximum number of221

iterations, tmax, is achieved, or no new images are being incorporated to the222

training set.223

4.3. Prototypes selection224

The general RF process depicted in Fig.1 requires of a set of prototypes.225

We distinguish between two criteria to build the prototypes set, an offline226

selection and an online selection. In the former, the prototypes are a priori227

representative subset of the images in the database. A common procedure is228

to perform a clustering and keep the centres of the clusters as the prototypes.229

This criterion could lead to a dramatical reduction in the computational230

costs of the CBIR system, but on the other hand it defines a fixed set of231

prototypes for all the possible queries, limiting the adaptability of the CBIR232

system. The later builds the set of prototypes during the RF process. In233

each iteration some images are retrieved to the user for evaluation and then234

included on the training set. These same images or a subset of them are also235

used as prototypes. This allows to adapt the set of prototypes to the query.236

However, it increases the computational burden.237

4.4. Image retrieval238

A key aspect of RF-CBIR systems is the criterion to select from a given239

ranking those images that will be retrieved to the user for evaluation. Let l240

denote the scope of the query, that is, the number of images that should be241
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retrieved to the user. If the criterion is to return the best l images given by the242

l best ranked images on the database, is likely that the training set is biased243

towards the positive class. So, a better criterion seems to retrieve the l/2244

best images and the l/2 worst images, hereafter denoted as the Best-Worst245

(BW) criterion. However, the best and worst images are not necessarily the246

most informative ones. The active learning paradigm [3] states that the most247

ambiguous images, those that are close to the class boundaries, are the most248

informative. Thus, the Active Learning (AL) criterion will return the l/2249

most ambiguous images labelled as belonging to the positive class, and the250

l/2 most ambiguous images labelled as belonging to the negative class.251

5. Experimental methodology252

5.1. Dataset253

The hyperspectral HyMAP data was made available from HyVista Corp.254

and German Aerospace Center’s (DLR) optical Airborne Remote Sensing255

and Calibration Facility service1. The scene corresponds to a flight line256

over the facilities of the DLR center in Oberpfaffenhofen (Germany) and its257

surroundings, mostly fields, forests and small towns. The data cube has 2878258

lines, 512 samples and 125 spectral bands. We have removed non-informative259

bands due to atmospheric absorption and 113 spectral bands remained.260

We cut the scene in patches of 64×64 pixels size for a total of 360 patches261

forming the hyperspectral database used in the experiments. We grouped the262

patches by visual inspection in five rough categories. The three main cat-263

1http://www.OpAiRS.aero
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(a) (b) (c) (d) (e)

5 most

ambiguous positive and negative instances

Figure 2: Examples of the five categories patches: (a) Forests, (b) Fields, (c) Urban Areas,

(d) Mixed, (e) Others.

egories are ’Forests’, ’Fields’ and ’Urban Areas’, representing patches that264

mostly belong to one of this categories. A ’Mixed’ category was defined for265

those patches that presented more than one of the three main categories, be-266

ing not any of them dominant. Finally, we defined a fifth category, ’Others’,267

for those patches that didn’t represent any of the above or that were not268

easily categorized by visual inspection. The number of patches per category269

are: (1) Forests: 39, (2) Fields: 160, (3) Urban Areas: 24, (4) Mixed: 102,270

and (5) Others: 35. Figure 2 shows examples of the five categories patches.271

5.2. Methodology272

We test the use of the proposed hyperspectral RF-CBIR using the un-273

mixing and dictionary-based hyperspectral dissimilarity functions. For the274

unmixing-based dissimilarities, the spectral (2) and the spectral-spatial (3)275

dissimilarity functions, we conduct for each image in the database an un-276

mixing process in order to obtain the set of induced endmembers and their277

corresponding fractional abundances. In order to do that we use the Vertex278

Component Analysis (VCA) [18] endmember induction algorithm and a par-279

tially constrained least squares unmixing (PCLSU) [12] algorithm. As VCA280
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is an stochastic algorithm we perform 20 independent runs for each image and281

we keep the one with the lowest averaged root squared mean reconstruction282

error:283

ε
(
H, Ĥ

)
=

1

M

M∑
i=1

√√√√1

q

q∑
j=1

(
H

(j)
i − Ĥ

(j)
i

)2
(5)

where H
(j)
i denotes the j-th band value of the i-th pixel in the hyperspectral284

image H and Ĥ = ΦE is the hyperspectral image reconstructed by the set285

of induced endmembers E and their corresponding fractional abundances Φ.286

For the Normalized Dictionary Distance (4), we first convert each hyperspec-287

tral image to a text string in two ways, using the average of the spectral bands288

and band-by-band. For the former, we calculate the mean of each hyperspec-289

tral pixel along the spectral bands. For the later we transform each spectral290

band independently. In both cases we traverse the image in a zig-zag way.291

The averaged band transformation incurs in a big lost of spectral information292

compared to the band by band transformation, but by contrast it yields to293

a more compact dictionary and so, to speed up the NDD computation.294

Thus, we compare the use of the four hyperspectral dissimilarities, the295

Spectral, the Spectral-Spatial, the Averaged Band NDD and the Band-by-296

Band NDD, in the RF process respect to their use in the zero-query. In297

order to do that, we run independent retrieval experiments over the HyMAP298

dataset. Each of the 360 patches was a priori labelled as belonging to one299

of the five categories defined above. The query is a categorical search, where300

the images belonging to the same category than the query image form the301

positive class and the remaining ones form the negative class. We perform302

an independent search for each of the 360 patches. Thus, user’s evaluation303
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was not required and the experiment was fully automatized. The maximum304

number of iterations on the retrieval feedback process was set to tmax = 5.305

For the RF process we compare the use of a k-NN classifier and a two-class306

SVM classifier with a radial basis kernel. The k-NN classifier does not require307

of a training phase and returns the fraction of the k most similar images in308

the training set respect to the query image belonging to the positive class,309

that is, c =
∑k
i=1 I(Hi,Hα)

k
, where I denotes an indicator function returning 1 if310

the two images belong to the same class, and 0 otherwise. The SVM classifier311

outputs the probability that the tested image belongs to the positive class.312

The parameters of the SVM classifier where selected using a 5-fold cross313

validation. For the k-NN the knnclassify MATLAB function was used. For314

the SVM, we used the C-SVM classifier of the LIBSVM [3] library.315

We also compare the use of online and offline prototypes selection pro-316

cesses. For the offline prototypes selection process we performed a hierarchi-317

cal segmentation using each of the four hyperspectral dissimilarity functions318

and we keep 10 clusters. Then, for each cluster ζ we selected the image Ho
ζ319

minimizing the averaged distance to the rest of images grouped into the same320

cluster:321

Ho
ζ = arg min

i

1

|ζ|
∑
Hj∈ζ

s (Hi, Hj) (6)

where |ζ| denotes the cardinality of the cluster ζ.322

Finally, we compare the results obtained using three different criteria to323

select the images to be retrieved to the user for evaluation: the BW criterion,324

the AL criterion and a combination of both, BW+AL. For the BW criterion325

the system retrieves the 5 best and worst ranked images in the database.326

For the AL criterion the system retrieves the 5 most ambiguous positive and327

17



negative instances, that is, the ones closed to the class boundary on each side.328

For both, BW and AL criteria, the scope is then l = 10. For the BW+AL329

criterion the system returns the 3 best and worst ranked images, and the 3330

most ambiguous positive and negative instances, for a total scope of l = 12.331

5.3. Performance measures332

Evaluation metrics from information retrieval field have been adopted333

to evaluate CBIR systems quality. The two most used evaluation measures334

are precision and recall [25, 4]. Precision, p, is the fraction of the returned335

images that are relevant to the query. Recall, q, is the fraction of retrieved336

relevant images respect to the total number of relevant images in the database337

according to a priori knowledge. If we denote L the set of returned images338

and R the set of all the images relevant to the query, then p = |L∩R|
|L| and339

r = |L∩R|
|R| . Precision and recall follow inverse trends when considered as340

functions of the scope of the query. Precision falls while recall increases as341

the scope increases. Thus, precision and recall measures are usually given as342

precision-recall curves for a fixed scope. To evaluate the overall performance343

of a CBIR system, the Average Precision and Average Recall are calculated344

over all the query images in the database. For a query of scope l, these are345

defined as:346

p̄l =
1

N

N∑
α=1

pl(Hα) (7)

and347

r̄l =
1

N

N∑
α=1

rl(Hα). (8)

The Normalized Rank [17] was used to summarize the system performance348

into an scalar value. The normalized rank for a given image query, denoted349
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as Rank (Hα), is defined as:350

Rank (Hα) =
1

NNα

(
Nα∑
i=1

Ωi
α −

Nα (Nα − 1)

2

)
, (9)

where N is the number of images in the dataset, Nα is the number of rele-351

vant images for the query Hα, and Ωi
α is the rank at which the i-th image352

is retrieved. This measure is 0 for perfect performance, and approaches 1353

as performance worsens, being 0.5 equivalent to a random retrieval. We cal-354

culated the Rank (Hα) for each of the images in the dataset and then we355

calculated the average normalized rank (ANR):356

ANR =
1

N

N∑
α=1

Rank (Hα) . (10)

6. Results357

Tables 2-3 show the ANR (10) values of the comparing hyperspectral dis-358

similarities, using the proposed RF-CBIR respect to the zero-query, for the359

Forest, Fields and Urban areas categorical queries respectively. We run the360

experiments using different values of k for the k-NN classifier, but we only361

show the results using k = 7 as in general it outperforms the other k values.362

The ANR results correspond to the ranking obtained in the fifth RF itera-363

tion. In general, the hyperspectral RF process yields to better ANR results364

than the zero query for the four compared hyperspectral dissimilarity func-365

tions. The online prototype selection leads to better results than the offline366

selection, and so it does the 7-NN classifier compared to the SVM classifier.367

The use of AL for the image retrieval selection outperforms the BW criterion,368

and often the combination of both, BW+AL. As it was expected, the results369
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Table 1: ANR values of the hyperspectral RF-CBIR for the Forests categorical search.

Avg.Band NDD By-Band NDD Spectral Spectral-Spatial

Zero Query 0.0809 0.0613 0.1360 0.0552

Online Prot.

7NN

BW 0.0343 0.0426 0.1394 0.0630

AL 0.0280 0.0258 0.0869 0.0337

BW+AL 0.0287 0.0281 0.0770 0.0330

SVM

BW 0.0383 0.1392 0.2600 0.0852

AL 0.0596 0.1155 0.3947 0.2371

BW+AL 0.0462 0.0358 0.2143 0.2430

Offline Prot.

7NN

BW 0.0662 0.0723 0.1922 0.0543

AL 0.0329 0.0631 0.1735 0.0494

BW+AL 0.0448 0.0633 0.1848 0.0473

SVM

BW 0.0758 0.0478 0.2502 0.1063

AL 0.0542 0.0409 0.3116 0.1678

BW+AL 0.0642 0.0538 0.3180 0.1055

using the Band-by-Band NDD and the Spectral-Spatial dissimilarity func-370

tions outperform the Averaged Bands NDD and the Spectral dissimilarity371

functions.372

There are however some discrepancies depending on the categorical query.373

This effect is specially relevant for the Urban areas category and it is related374

to the asymmetry in the number of images present in the database for each375

class. The low number of images belonging to the Urban areas category376

makes the training set very unbalanced yielding to poor classification re-377

sults, and so, to a low performance in the CBIR ranking. Figures 4-5 show378
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Table 2: ANR values of the hyperspectral RF-CBIR for the Fields categorical search.

Avg.Band NDD By-Band NDD Spectral Spectral-Spatial

Zero Query 0.2171 0.1641 0.1594 0.1599

Online Prot.

7NN

BW 0.1552 0.0634 0.1776 0.1494

AL 0.1388 0.0495 0.1573 0.1514

BW+AL 0.1433 0.0587 0.1862 0.1883

SVM

BW 0.1898 0.2462 0.1511 0.1983

AL 0.1808 0.0914 0.1526 0.0924

BW+AL 0.1567 0.0812 0.1477 0.1184

Offline Prot.

7NN

BW 0.1847 0.0756 0.2607 0.1779

AL 0.1802 0.0533 0.2660 0.2158

BW+AL 0.1694 0.0569 0.2957 0.1994

SVM

BW 0.2033 0.0724 0.2136 0.1936

AL 0.1831 0.0660 0.2112 0.1700

BW+AL 0.2008 0.0497 0.2171 0.1442
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Table 3: ANR values of the hyperspectral RF-CBIR for the Urban areas categorical search.

Avg.Band NDD By-Band NDD Spectral Spectral-Spatial

Zero Query 0.1217 0.0080 0.2068 0.0732

Online Prot.

7NN

BW 0.1920 0.0082 0.0509 0.0416

AL 0.1900 0.0096 0.0626 0.0392

BW+AL 0.2702 0.0282 0.1230 0.0654

SVM

BW 0.2675 0.0437 0.1120 0.2126

AL 0.5870 0.0416 0.2501 0.1603

BW+AL 0.3825 0.0415 0.1459 0.1712

Offline Prot.

7NN

BW 0.2578 0.0545 0.0799 0.0762

AL 0.2713 0.0276 0.0698 0.0570

BW+AL 0.3425 0.1061 0.1509 0.1224

SVM

BW 0.1562 0.0103 0.0833 0.1240

AL 0.2276 0.0273 0.2164 0.2651

BW+AL 0.1763 0.0246 0.0561 0.2032
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the average number of relevant (R) and non-relevant (NR) images in the379

training set for each RF iteration using the BW and the AL image retrieval380

selection criteria for the Forests, Fields and Urban areas categorical queries381

respectively. It is clear that the Urban areas category presents the most382

asymmetrical distribution of the training set into relevant and non-relevant383

images, what it can explain the poor results on the RF process for this cat-384

egory. In general, the asymmetry in the R/NR ratio is not so important as385

soon as there are some critical number of each on the training set. It is also386

possible to observe that the AL selection criterion yields to better training387

sets compared to the BW selection criterion, expressed as bigger and more388

equally distributed training sets. This issue seems to be a major drawback389

for the SVM classifier while the mpact on the 7-NN classifier is less severe as390

soon as there are enough positive samples present on the training set. This391

issue should be further addressed in future research in order to develop an392

operative hyperspectral RF-CBIR system.393

Finally, Figures 6 and 7 show the P-R curves (7) (8) for the zero-query394

and the best RF results respectively, using the four comparing dissimilarity395

functions. The improve on the P-R curves by the RF process is clear except396

for the Urban areas categorical search, due to the pernicious effect of the lack397

of positive samples and the consequent asymmetrical distribution of R/NR398

samples on the training sets.399
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Figure 3: Average number of relevant (R) and non-relevant (NR) images in the training

set for each RF iteration and comparing hyperspectral dissimilarity functions, using the

BW and the AL image retrieval selection criteria for the Forests categorical search.
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Figure 4: Average number of relevant (R) and non-relevant (NR) images in the training

set for each RF iteration and comparing hyperspectral dissimilarity functions, using the

BW and the AL image retrieval selection criteria for the Fields categorical search.
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Figure 5: Average number of relevant (R) and non-relevant (NR) images in the training

set for each RF iteration and comparing hyperspectral dissimilarity functions, using the

BW and the AL image retrieval selection criteria for the Urban areas categorical search.
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Figure 6: Precision-Recall curves for the zero query.
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Figure 7: Precision-Recall curves for the best RF results.
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7. Conclusions400

We have extended the hyperspectral CBIR systems present on the liter-401

ature by a RF process based on dissimilarity spaces. To define a relevance402

feedback process for hyperspectral CBIR systems is not easy as most of the403

available hyperspectral CBIR systems rely on feature respresentations and404

dissimilarity functions that do not fulfil the conditions to be used in com-405

mon machine learning RF processes. The proposed approach expands the406

available dissimilarity-based hyperspectral CBIR systems on the literature407

in a simple way by using dissimilarity space instead of the usual feature408

space. The proposed approach proved to improve the performance of the hy-409

perspectral CBIR systems in the preliminary experiments presented on this410

paper. Also, the selection of a proper training set for the RF process was411

pointed as a major issue affecting the performance of the proposed hyper-412

spectral RF-CBIR system. Further research will focus on this aspect and on413

the validation of the proposed system in a real scenario with a big database414

of hyperspectral images and real users.415
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