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ABSTRACT

Moment invariants have been thoroughly studied and repeatedly proposed as one of the most powerful
tools for 2D shape identification. In this paper a set of such descriptors is proposed, being the basis func-
tions discontinuous in a finite number of points. The goal of using discontinuous functions is to avoid the
Gibbs phenomenon, and therefore to yield a better approximation capability for discontinuous signals, as
images. Moreover, the proposed set of moments allows the definition of rotation invariants, being this the
other main design concern. Translation and scale invariance are achieved by means of standard image
normalization. Tests are conducted to evaluate the behavior of these descriptors in noisy environments,
where images are corrupted with Gaussian noise up to different SNR values. Results are compared to
those obtained using Zernike moments, showing that the proposed descriptor has the same performance
in image retrieval tasks in noisy environments, but demanding much less computational power for every

stage in the query chain.

1. Introduction

Moment invariants have become a major topic in image descrip-
tion research from their initial proposal by Hu (1962). From then on,
many attention has been paid to improve the theoretical basis of
their definition and to generate new and better ways of building
such descriptors (Reiss, 1991; Flusser and Suk, 2009). One of the
main streams in this research has been to define moment invariants
using orthonormal basis, given the links between them and Fourier
decompositions postulated by Hilbert algebra; according this theo-
retical corpus, in addition to the advantages of using invariants,
orthonormal basis offer optimal image description and reconstruc-
tion, in terms of computational effort (Rudin et al., 1991; Teague,
1980). In this way, many works have been devoted to explore the
available orthonormal basis and their performance as image
descriptors, setting comparative tests among them (Teh and Chin,
1988), or exploring their specific capabilities (Khotanzad and Hong,
1990). Given the description power that this kind of descriptors have
shown for 2D images, some efforts have been devoted even to extend
descriptions to 3D objects (Xu and Li, 2008). Recent efforts have been
routed to mix the power of moment invariants with the analysis
capabilities of waveletes, like (Chen et al,, 2011).

In this paper, a set of orthonormal functions for moment invari-
ants analysis is defined, being its main distinctive feature that they
are discontinuous in a finite set of points, contrary to other well
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known moment sets, as Zernike or Legendre. This feature has been
introduced in order to get a set that is well suited to analyse signals
with discontinuities as well, like images have (Lee and Tarng,
1999), that originate undesired effects like Gibbs phenomenon
when continuous functions are used to analyse them (Hewitt and
Hewitt, 1979); it has been reported to generate visible artifacts
in image reconstruction after filtering, as well (Bovik et al., 2009).

According to Hilbert Algebra, orthonormal basis have the prop-
erty that descriptors obtained by projecting an image over each ba-
sis function contains exclusive information, i.e. it is not contained
in any other descriptor of the series. This fact allows, in one hand,
having the more compact representation in terms of descriptor ser-
ies length, and on the other that images can be easily reconstructed
just by combining their moment values, providing that the sub-
space spanned by the basis elements is dense (Rudin et al.,, 1991).

The goal of this work is, therefore, to generate a set of orthonor-
mal functions that yields an image decomposition gathering the
following properties:

o is well suited for analyzing 2D functions that may include step
discontinuities, images in this case. It has been proved that dis-
continuous basis, like Haar, are well suited to analyze discontin-
uous signals.

o it allows the definition of rotation invariants, in order to generate
the same descriptors for rotated instances of the same object.

In order to test the achievements of this work, results have been
compared to those reached using Zernike moments; there are



many works supporting the idea that Zernike moments are among
the best suited sets of moments for image analysis (Teh and Chin,
1988; Chen et al., 2011).

2. Derivation of the basis functions

The general definition of moments is the following: given an
image I(x,y], its moment M,, is computed as (Flusser and Suk,
2009);

Mo (f) = / ! /y " P (X)) dxy (1)

where p,,,(x,y) is a function which belongs to the moment basis,
having orders n for the x component and m for the y, and [xo, X;]
and [y,,y;] are the limits of the region where both the image
I{x,y) and p,,,(x,y) are defined.

Note that according to Hilbert Algebra, Eq. (1) can be inter-
preted as the inner product between both functions,
Pum (%, ¥),1{x,y)). This fact allows the introduction of the concept
of orthonormality between each pair of functions belonging to
the proposed basis.

In this work, the space to be analyzed is the 2D image domain,
with the particularity that it is expressed in polar coordinates and
restricted to the unit circle, instead the common cartesian coordi-
nates; this representation has been used before, e.g. for Zernike
moments based image analysis. Therefore, any image, I{p, 0), is de-
fined as:

1p,0): Q[0,1], Q={(p,0)cR2: 0<p<1, 0<0<2m} @)

Given this workspace the proposed structure for the family of
functions that build up the moments basis must depend upon
parameters (p, 0), i.e. radial and an angular components. The radial
component of each basis function, which will be named I1,(p) for
its nth order, is built up by concatenating step-like functions, sim-
ilar to Haar’s, which commutes between —1 and 1, but removing
the restriction that forces lower and upper steps to be of the same
size. This radial analysis must be combined with an angular com-
ponent, which in this case has been selected to be the Fourier basis,
e™? for its mth order: this choice is due to the fact that it allows an
easy generation of rotation invariants based on moment values,
due to the following property (Flusser, 2000). Given a rotated ver-
sion of an image, I'(p, 6) = I(p, 6 + o), their nm moment are related
by @, = ®ume™*, so it can be easily stated that [|@um||, i.e. the
magnitude of the complex value of nm moment, is a rotation
invariant. Therefore, the generic formulation for one function of
the proposed base is:

(an(P, 0) = Hﬂ(p)eimga
being

{n,m} eN 3)

a(p) = te(p) + > (=1)' 2uo(p - p,1). P €[0,1],

i=1

Vi, pyi € (0,1) @

where uy(p — o) represents a unit step triggered at p = o.
Gathering all these conditions, the definition of the proposed set
of moments turns to be:

27 1
Oun = U(p.0. unl PO =1 [ [ 160.0005m(p.0)pdpd0 (5

where * stands for the complex conjugate operator. Note that Eq. (5)
corresponds to the transformation of Eq. (1) to polar coordinates.
Now, in order to follow the derivation that will be explained
hereafter, the following notation is introduced: the radial compo-
nent of the base functions, I1,(p), will be represented as the set
of zero crossing points (ZCP), adding as well the beginning and

the end of the interval for convenience: p,, =0, p,,,; = 1. There-
fore, from now on it will be written:

I(0) = {Pu} = {0, Pn1s Puzs - - Pun 1}, Vi=1,00m,

Pni €(0,1) (6)
Given these definitions for the set of functions ¢, {(p, ), the

next step is to force the orthonormality condition among all of

them. Let ¢,,(p,0) and ¢,(p,8) be two functions belonging to
the proposed base. Then their scalar product must be:

1 27 1
<<pnm(p,0),<pm<p,0)>:gl A%m(p,@)mz(p,e)pdpd@

= 5nk5nl (7)
where
1 u=v
Syp =0{U— V) = . 8
! =) {O otherwise ()

Developing each basis function into its constituent parts, as de-
scribed in Eq. (3), Eq. (7) becomes:

1 27 1 . .
<(pnm(pa 9), (pkl(pa 0)> = E /O /O Hn(p)elmgnk(p)eflmp dp de (9)

Since terms depending on p and on 6 are decoupled, i.e. no term of
Eq. (9) depends upon both parameters, it can be written as:

1 2n
(Pan($.0) 9ulps) = % [ o) | [ eme v pap 10)

as can be easily seen, the term into brackets is the scalar product of
two elements of the Fourier base, which are known to be orthonor-
mal, and therefore its clear that:

27
/ eMeMdg — 276,y (11)
0

Then, entering with Eq. (11) in Eq. (10), the scalar product turns
into:

1
(Pun (0, 0), Pulp, 0)) :25m1/0 I(p)k(p)pdp (12)

Therefore, and recalling the condition expressed in Eq. (7), the
design of the orthonormal basis is reduced to the design of a uni-
dimensional orthonormal basis using the functions proposed in
Eq. (4) for describing the variation along p dimension, namely
IT,(p). Then, it must be ensured that, from Eq. (12):

1
2 [ M(p)(p)pdp = ou (13)
0

The case where n = k, which should equals Eq. (13) to 1, is trivial
since IT3(p) = 1, Vp € [0, 1]. Then, Eq. (13) must vanish ¥n = k.

First of all, the product of I',{p) and IT;(p) must be computed.
In order to obtain this result let’s use the notation introduced in Eq.
(6) to define;

(o) (p) = {pn} U{pr} = {Pui} (14)
being {p,,} and ordered set such that:

{pnk} = {pnki €10,1], Vi=1,...,n+k Puri € {pn} U {pk}
DPauki = Puki-1y> Prko = 0, Prknikr1 = 1} (15)

Using this notation it’s easy to compute the integral described in Eq.
(13), knowing that each element in {p,, } correspond to a ZCP of the
product IT,{p)I1;(p), starting with:

(o) (p) =1, Vp € [0, Py (16)

Then, back to Eq. (13) for the case n # k and using the list in Eq.
(15), it can be written:



1

k<H

pnk2x+l k<m+2[+1 Prk 2i
/ -y / pdp| =0 (17)
Prk2i k=1 7 Puk2i1

with each integral resulting in the difference of its squared limits:

1 ket
2 /O IL(0)T(p) pdp = > (Phaiss — Pixai)
k=0
kel
- Z (P%kz:‘ - P%kzm) =0 (18)

k=1

Making use of Eq. (18) it is possible to build the set of equations
which allows the derivation of the elements in {p,} and {p,}. For
this sake, it is necessary to define I1o{p) in advance, because it will
be used to initialize the set of equations. Its definition is set as:

o(p)=1, Ypel01] (19)

which corresponds to the definition of the zeroth order moment for
other widely used families of moments, like Zernike or Legendre.

Departing from IIy(p), and forcing the condition expressed in
Eq. (18) for the successive functions in the base, the following sys-
tem of equations is derived, where the symbol | denotes the
orthogonality condition:

Mo(p) LTh(p): piy =1-pi,

Mo(p) LTL(p): P51+ (1= p%) = P2 — Pa

Mi(p) LTL(p): p31 + (0% — pT1) = (P31 — p31) + (1 = piy)
3(p) LTo(p) = p3y + (P35 — p3) = (p32 P31 + (1 - p3y)
s(p) LI(p): p3; + (pF; — P32) (1-p3)

= (p% — P51) + (P — Ph)
P51 — (P53 — p31) + (P33 — P3)
= (p%l - p%l) + (P%z - p%z) +(1- P§3)

Ms(p) L Tha(p) -

(20)

Therefore, in order to calculate the set {p,} which defines IT,(p) a
system of ””2“ equations with the same number of unknowns,
namely the elements of {p,},{p,_1},...,{p1}, is generated.

It is worth to mention that it’s possible that some mistake could
be made in hypothesizing the relative position of elements of {p, }
and {p,} during the process of intermingling them to build {p,,},
but given the fact that the set of equations described in (20) can
be solved progressively, from lower to upper orders, at the time
of computing the position of the elements of one set, all the lower
order sets are known, and since the solution for the equations is
unique, the resulting set is always properly placed and ordered.

The results of solving the system of equations in (20) are shown
in Fig. 1.

Note that this set of functions can straightforwardly be recog-
nized as a warped version of the ordered Walsh function series,
being the most notorious difference with respect to them that
the ZCP distribution in the proposed set is unevenly distributed
in the [0, 1] interval (Rao et al., 1983). After the derivation of this
set of functions can be stated that they should be used to provide
orthogonality in the p coordinate of a polar system, whilst the ori-
ginal Walsh functions should be used in the cartesian case.

3. Noise sensitivity

In real world applications images are seldom completely clean,
having arbitrary amounts of noise. In this section, the proposed

family of invariants is tested against images corrupted with differ-
ent amounts of additive Gaussian noise, in order to check their
ability to preserve image information from noise, following the
experiment described in Teh and Chin (1988). For the sake of pro-
viding a baseline, results are compared to those obtained using
Zernike moments under the same conditions.

Zernike moments are defined departing from Zernike

polynomials:
- (n-s)
2 g n—s)! 1. S

Ram (p) :z(;(_l) s,(n+\m\ s),(nf\m\ s)yp ’ @
= N2 =S5) 02 —3)

R(p) ={Rum(p)] n=0,1,...,00, Jm| <n, n—|m| even}

and, from this definition, the Zernike moment of order nm of an im-
age I(p, 0) is:

2n 1
| [ Wanto.0100.0)pdpas (22)

n+1

Anm =

where V(p, 6) is defined as:
Vim(p,0) = Ran(p)e™ (23)

Only the magnitude of its complex value ||Aun|, which is rotation
invariant (Teague, 1980), will be used as a descriptor.

For this experiment, a set of one hundred images has been ran-
domly extracted from our test database, which contains more than
30.000 binary, 128 x 128 normalized images; the normalization
process ensures translation and scale invariance! (Khotanzad and
Hong, 1990). A few samples of the images contained in this database
can be seen in Fig. 2. For each of these images, four corrupted copies
have been generated, adding Gaussian noise in order to create four
noisy instances corresponding to SNR;, = {4,2,1,0.5}, being:

pre}mp’) 7(/0’9)}2
Z\f{p,e}[n(p’ ) ﬁ(p, 9)]2

where n{p, 0) is the additive noise, and I, 7 stand for the respective
means of image and noise values (Chen et al.,, 2011). Note that by
the addition of Gaussian noise to a binary image, a gray level in-
stance is generated.

The moment transformation of each set of four images have
been computed, using both families of moments; in both cases,
only their norms are kept, ||Aum|l, ||@mm|l. To evaluate the quality
of the transformation after the addition of noise, the SNR,,,; of each
order of moments have been calculated, using:

SNRy, = (24)

o for Zernike moments, ||A,n||, being m =0 for n even and m = 1
for n odd.
o for the proposed set, |||, being m = O for all values of n.

In this case, the SNR,,, of the moment set is defined as:

21170;) [(p;m - anm] ’

SNRym = (25)
nm 100 [K' _ an} 2

where ¢! stands for the moment (||A,,|| or ||®yy||) of the ith image,

and ki, stands for the moment (||Ay, | or | ©um||) of the noise added

to the ith image (Teh and Chin, 1988).

Results of this experiment are shown in Fig. 3. They have been
generated extending the Zernike order up to 17th (dashed lines)
and the proposed set up to 16th order (continuous lines). Repre-
sentative numeric values are gathered in Table 1.

! Image database is available by sending a request by e-mail to the author.
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Fig. 2. Examples of images contained in the database.

It can be observed that the slope of SNR,,, for the set ||®,,| in
the presence of noise is slightly faster than for ||Anm|. It can be
thereafter concluded that the analysis of images using ||Ppml|
cannot be extended to very high orders, because it could be possi-
ble to represent signal and noise with practically the same strength
in a descriptor. This restriction will be applied in the following
sections.

4. Results in image retrieval

The proposed family of invariants has been used as image
descriptor in two image retrieval tasks in order to test it. Given
the results shown in Section 3, their order has been kept very
low, using theranks m=0,...,6, n=0,...,7, which sum up a to-
tal of 56 descriptors per image. Zernike moments have been ex-
tracted up to 17th order, that according with (Teh and Chin,
1988 and Mukundan, 2004) represents a good tradeoff between
quality of the representation and noise sensibility, giving a total
of 90 descriptors per image. This means that the length of the
description is roughly a 40% shorter using the proposed family of
invariants. This would represent a very desirable reduction both
in computing and storage in a real world application, but for this
sake, the performance of this description should be as good as
Zernike moments’.

The first retrieval experiment consisted of a set of 100 queries
launched against our binary test database. The second has con-
sisted of the same number of queries launched against a graylevel
copy of CalTech 101 (Fei-Fei et al., 2004), which contains roughly
9.500 images categorized in 101 classes. The performance evalua-
tion for each query has been carried out by comparing the retrieval
precision, defined as:

images correctly retrieved
number of retrieved images

precision = (26)
Its complementary measure, recall, has not been available since
labeling the complete binary database for each of the 100 queries
results in an overwhelming task (it would be necessary to evaluate
more than 3 million similarities).

In both cases the retrieved set size has been kept in 25 elements
per query; every query has been resolved using both descriptors,
|Anm|| and ||@ny||. Average precision has been computed for each
retrieval set size ranging from 1 to 25. Results are depicted in Fig. 4.

As can be seen in Fig. 4, both sets of invariants yield almost the
same performance in terms of their precision in an image retrieval
task. This fact confirms that the proposed set is as good as Zernike
moments for retrieval. Nevertheless, the proposed set of descrip-
tors is a 40% shorter than the set of Zernike moments used for
achieving the same result. This reduction carries out great benefits
for a retrieval system, since it will reduce computational needs in
every related task, in terms of:

o Storage requirements: the size of the database will be reduced
in a 40%, reducing in the same proportion the storage needs.

o Computation time: since the computational cost of a single
descriptor is the same in both cases, the reduction in size will
be straightforwardly mirrored by the same reduction in compu-
tation time for the descriptor set.

e Indexing system: multidimensional indexing gets more com-
plex as the size of the descriptor increases; the noticeable
reduction in the descriptor set will therefore reduce the com-
plexity of the indexing system, and increase consequently the
overall performance of the search engine.
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Table 1
Summary of results: SNR,,, stands for the SNR of each moment set at order n.
SNR;, Set SNR3,, SNRg, SNRg;, SNRy31, SNR s,
0.5 Zernike 48.21 136.16 12.44 20.61 641
Proposed 168.09 32.33 8.30 5.03 442
1.0 Zernike 89.14 243.54 19.66 31.13 1346
Proposed 153.77 64.84 15.93 9.55 10.02
2.0 Zernike 174.291 416.76 43.28 49.23 3420
Proposed 310.89 103.89 23.10 21.30 31.55
40 Zernike 237.26 955.63 78.33 120.44 53.81
Proposed 838.65 273.81 58.32 45.81 65.84

0.02 [\ /\
13
Q
g ——\/\
8 £ ool
Azl =
153
£ £ / \ /
o & 000 v
oh 53
@ =
5 a
Q>) L
< &ﬁ -0.01
4
<<
-0.02 V
0.0
5 10 15 20 25 0 5 10 15 20 25
Retrieved set size Retrieved set size
10 /\
0.02
08 5 /’\/
g 5
= 2 001
2 =]
3 06 b=
&
g ‘ £ ol /)
" b =4
& \\\ Z 000
= 04 S
2 \ o
< St g
=
02 g -0.01
4
<<
00 -0.02
5 10 15 20 25 0 5 10 15 20 25
Retrieved set size Retrieved set size

Fig. 4. Up: Results on binary images. Down: Results on graylevel images. Left: Comparison between average precision using ||A.| (dashed line) and ||®,» | (continuous line)
for different retrieved set sizes. Right: Difference between them.
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Table 2
Summary of results: P; stands for the average precision for a retrieval set containing i elements.
SNR;, Set # Moments Ps Pio P15 Py Pys
Noise free (binary) Zernike 90 0.510 0.373 0.301 0.262 0.227
Proposed 56 0.526 0.376 0317 0.279 0.252
Noise free (graylevel) Zernike 90 0414 0.298 0.250 0.226 0.212
Proposed 56 0.408 0.310 0272 0.247 0.229
1.0 Zernike 90 0.488 0.337 0.276 0.235 0.209
Proposed 56 0.520 0.369 0.297 0.259 0.231
0.5 Zernike 90 0.464 0.321 0.257 0.219 0.194
Proposed 56 0.512 0.368 0.298 0.258 0.228

o Comparison time: Ranking algorithms need to compute a met-
ric function over two descriptor sets in order to assess whether
the two corresponding images are similar or not. This task will
benefit from this size reduction as well.

An additional experiment was carried out in order to check
whether the proposed family of invariants shows a good behavior
for the same task in noisy environments. As explained before, usu-
ally images are fed into the system with arbitrary amounts of noise
masking the actual information, so this experiment will reflect
what the actual behavior of the descriptor set would be in a real
application. For this sake, the retrieval experiment on binary
images has been repeated twice, one for the same 100 images cor-
rupted with additive Gaussian noise up to a SNR;, = 1, and another
with a Gaussian noise yielding a SNR;, = 0.5. Results are shown in
Fig. 5.

As shown in Fig. 5 results are once again very similar, confirm-
ing that the proposed family of invariants have got the same over-
all behavior as Zernike moments, even in noisy environments.
These results are summarized in Table 2, where numerical values
of precision for different key sizes of the retrieval set are shown.

5. Conclusions

In this paper, a set of invariants has been introduced, having the
same properties and description power as Zernike moments but
requiring much shorter descriptions to achieve these results. These
new invariants have been derived from the concepts of Hilbert
space and Hilbert basis, and share with Zernike invariants the
properties of rotation invariance and orthonormality, that yields
optimal descriptions of the images to be analyzed.

The new set of moments has been tested against additive
Gaussian noise to measure its ability to filter it and preserve image
information, showing a behavior that forces to keep shorter
descriptions than those based on Zernike moments. This has forced

the use of low order moments to analyze an image. Nevertheless,
the same results in an image retrieval task can be achieved using
a descriptor which is 40% shorter than the Zernike based, not only
using clean instances of images for querying, but using instances
corrupted with different amounts of additive Gaussian noise as
well.
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