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Abstract

Depth data acquired by current low-cost real-time depth cameras provide

a more informative description of the hand pose that can be exploited for

gesture recognition purposes. Following this rationale, this paper introduces

a novel hand gesture recognition scheme based on depth information. The

hand is firstly extracted from the acquired data and divided into palm and

finger regions. Then four different sets of feature descriptors are extracted,

accounting for different clues like the distances of the fingertips from the

hand center and from the palm plane, the curvature of the hand contour

and the geometry of the palm region. Finally a multi-class SVM classifier is

employed to recognize the performed gestures. Experimental results demon-

strate the ability of the proposed scheme to achieve a very high accuracy on

both standard datasets and on more complex ones acquired for experimental

evaluation. The current implementation is also able to run in real-time.
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1. Introduction1

Hand gesture recognition is an intriguing problem for which many differ-2

ent approaches exist. Even if gloves and various wearable devices have been3

used in the past, vision-based approaches able to capture the hand gestures4

without requiring any physical device to be worn allow a more natural inter-5

action with computers and many other devices. This problem is currently6

raising a high interest due to the rapid growth of application fields where it7

can be efficiently applied, as reported in recent surveys, e.g. (Wachs et al.,8

2011; Garg et al., 2009). These include human-computer interaction, where9

gestures can be used to replace the mouse in computer interfaces and also10

to allow a more natural interaction with mobile and wearable devices like11

smartphones, tablets or newer devices like the Google glasses. Also the nav-12

igation of 3D virtual environments is more natural if controlled by gestures13

performed in the 3D space. In robotics gestures can be used to control and14

interact with the robots in a more natural way. Another key field is computer15

gaming, where devices like Microsoft’s Kinect have already brought gesture16

interfaces to the mass market. Automatic sign-language interpretation will17

also allow to help hearing and speech impaired people to interact with the18

computer. Hand gesture recognition can be applied in the healthcare field to19

allow a more natural control of diagnostic data and surgical devices. Gesture20

recognition is also being considered for vehicle interfaces.21

Several hand gesture recognition approaches, based on the analysis of im-22

ages and videos, can be found in literature (Wachs et al., 2011; Zabulis et al.,23

2009). Images and videos provide a bidimensional representation of the hand24
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pose, which is not always sufficient to capture the complex movements and25

inter-occlusions characterizing hand gestures. Three dimensional representa-26

tions offer a more accurate description of the hand pose, but are more difficult27

to be acquired. The recent introduction of low-cost consumer depth cameras,28

such as Time-Of-Flight cameras and Microsoft’s KinectTM, has made depth29

acquisition available to the mass market, thus widely increasing the interest30

in gesture recognition approaches taking advantage from three-dimensional31

information.32

In order to recognize the gestures from depth data the most common33

approach is to extract a set of relevant features from the depth maps and34

then exploit machine learning techniques to the extracted features. Kurakin35

et al. (2012) uses a single depth map and extract silhouette and cell occu-36

pancy features for building a shape descriptor that is then fed into a classifier37

based on action graphs. Suryanarayan et al. (2010) extract 3D volumetric38

shape descriptors from the hand depth to be classified with a Support Vector39

Machine. Volumetric features and an SVM classifier are also used by Wang40

et al. (2012). In Keskin et al. (2012) the classification is instead performed41

using Randomized Decision Forests (RDFs). RDFs are also used by Pugeault42

and Bowden (2011) that also combines together color and depth information43

to improve the accuracy of the classification. Another approach consists in44

analysing the segmented hand shape and extract features based on the con-45

vex hull and on the fingertips positions as in Wen et al. (2012) and Li (2012).46

A similar approach is used also by the Open-source library XKin (Pedersoli47

et al., 2012). Finally, Ren et al. (2011b) and Ren et al. (2011a) compare the48

histograms of the distance of hand edge points from the hand center.49
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If the target is the recognition of dynamic gestures, motion information50

and in particular the trajectory of the hand’s centroid in the 3D space can51

be exploited (Biswas and Basu, 2011). In Doliotis et al. (2011) a joint depth52

and color hand detector is used to extract the trajectory that is then fed53

to a Dynamic Time Warping (DTW) algorithm. Finally, Wan et al. (2012)54

exploits both the convex hull on a single frame and the trajectory of the55

gesture. A related harder problem is the estimation of the hand pose from56

the depth data (Oikonomidis et al., 2011),(Ballan et al., 2012),(Keskin et al.,57

2011).58

In most of the previously cited works depth data is mainly used to reliably59

extract the hand silhouette in order to exploit approaches derived from hand60

gesture recognition schemes based on color data. This paper instead uses61

a set of three-dimensional features to properly recognize complex gestures62

by exploiting the 3D information on the hand shape and finger posture con-63

tained in depth data. Furthermore instead of relying on a single descriptor64

extraction scheme, different types of features capturing different clues are65

combined together to improve the recognition accuracy. In particular the66

proposed hand gesture recognition scheme exploits four types of features:67

the first two sets are based on the distance from the palm center and the68

elevation of the fingertips, the third contains curvature features computed69

on the hand contour and the last set of features is based on the geometry70

of the palm region accounting also for fingers folded over the palm. The71

constructed feature vectors are then combined together and fed into an SVM72

classifier in order to recognize the performed gestures. The proposed ap-73

proach introduces several novel elements: it jointly exploits color and depth74
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data to reliably extract the hand region and is able to extract wrist, palm75

and finger regions; it fully exploits three-dimensional data for the feature ex-76

traction, and finally it combines features based on completely different clues77

to improve the recognition rate.78

The paper is articulated as follows: Section 2 introduces the general ar-79

chitecture of the proposed gesture recognition system, Section 3 explains how80

the hand region is extracted from the acquired depth data and segmented81

into arm, palm and fingers regions. Section 4 describes the computation of82

the proposed feature descriptors, and Section 5 presents the classification83

algorithm. Section 6 reports the experimental results and finally Section 784

draws the conclusions.85

2. Proposed gesture recognition system86

The proposed gesture recognition system (Fig. 1) encompasses three main87

steps. In the first step the hand samples are segmented from the background88

exploiting both depth and color information. The previous segmentation is89

then refined by further subdividing the hand samples into three non over-90

lapping regions, collecting palm, fingers and wrist/arm samples respectively.91

The last region is discarded, since it does not contain information useful for92

gesture recognition. The second step consists in extracting the four feature93

sets that will be used in order to recognize the performed gestures, i.e.:94

• Distance features: this set describes the Euclidean 3D distances of95

the fingertips from the estimated palm center.96

• Elevation features: this set accounts for the Euclidean distances of97

the fingertips from a plane fitted on the palm samples. Such distances98

5



may also be considered as the elevations of the fingers with respect to99

the palm.100

• Curvature features: this set describes the curvature of the contour101

of the palm and fingers regions.102

• Palm area features: this set describes the shape of the palm region103

and helps to state whether each finger is raised or bent on the palm.104

Finally, during the last step, all the features are collected into a feature105

vector to be fed into a multi-class Support Vector Machine classifier in order106

to recognize the performed gesture.107

Extraction of 
the hand region

Multi-class SVM

Curvature
features extraction

Hand 
samples

Circle fitting 
on the palm

Distance 
features extraction

Extraction of 
hand parts

Depth data

Palm 
samples

Recognized
gesture

PCA

Training 
data

Finger 
samples

Wrist samples
(discarded)

Color data

Palm area
features extraction

Elevation
features extraction

Figure 1: Architecture of the proposed gesture recognition system.
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3. Hand segmentation108

The first step in the proposed method is the segmentation of the hand.109

Although depth information alone may be enough for this purpose, we ex-110

ploit both depth and color information in order to recognize the hand more111

robustly. The data acquired by the KinectTM color camera is first projected112

on the depth map and both a color and a depth value are associated to each113

sample. Note that the KinectTM depth and color cameras have been pre-114

viously jointly calibrated by the method proposed in (Herrera et al., 2012).115

After projection, the acquired depth map D(u, v) is thresholded on the basis116

of color information. More specifically, the colors associated to the samples117

are converted into the CIELAB color space and compared with a reference118

skin color that has been previously acquired1. The difference between each119

sample color and the reference skin color is evaluated and the samples whose120

color difference is below a pre-defined threshold are discarded. This first121

thresholding will only retain depth samples associated with colors compati-122

ble with the user’s skin color that are very likely to belong to the hand, the123

face or other uncovered body parts. After the skin color thresholding the124

hand region has a higher chance to be the object nearest to the KinectTM.125

Note that this is the only step of the algorithm where color data is used. In126

applications where the hand is proven to be always the closest object to the127

sensor, the usage of color information may be skipped in order to simplify128

the acquisition of the data and to improve computation performances.129

1A reference hand or alternatively a standard face detector (Viola and Jones, 2001) can

be used to extract a sample skin region.
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Let us denote with Xu,v a generic 3D point acquired by the depth camera,130

i.e., the back-projection of the depth sample in position (u, v). A search for131

the sample with the minimum depth value Dmin on the thresholded depth132

map is performed. The corresponding point Xmin is chosen as the starting133

point for the hand detection procedure. In order to avoid to select as Xmin an134

isolated artifact due to measurement noise, our method verifies the presence135

of an adequate number of samples with a similar depth value in a 5×5 region136

around Xmin. If the cardinality threshold is not satisfied we select the next137

closest point and repeat the check.138

Let us now denote by H the hand samples set. Points belonging to H139

cannot have a depth that differs from Xmin of more than a value Tdepth that140

depends on the hand size. H may be then expressed as:141

H = {Xu,v|D(u, v) < Dmin + Tdepth} (1)

Tdepth can be measured from a reference user’s hand, but we experimentally142

noted that an empirical threshold of Tdepth = 10cm is acceptable in most143

cases (we used this value for the experimental results). In order to remove144

also most of the retained arm samples, we perform a further check on H,145

namely we remove each Xu,v ∈ H that has a distance in the 3D space from146

Xmin larger than a threshold Tsize that also depends on the hand size (for the147

experiments we set Tsize = 20cm). Note how Tdepth and Tsize only depend on148

the physical hand size and not on the hand position or the sensor resolution.149

The proposed algorithm allows to reliably segment the hand samples from150

the scene objects and from the other body parts. An example of a thresholded151

depth map obtained with our approach is shown in Fig. 2c. Now, in order152

to extract the feature sets described in Section 2 it is necessary to detect153
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the palm region. A 2D binary mask B(u, v) is built on the lattice (u, v)154

associated to the acquired depth map in the following way:155

B(u, v) =

 1 if Xu,v ∈ H

0 otherwise
(2)

i.e., the entries of B(u, v) are non-zero for the indexes corresponding to the156

samples in H.157

Our palm detection approach consists in estimating the largest circle that158

can be fitted on the palm region in B(u, v). For this purpose, it is first159

necessary to find a good starting point C for the circle fitting algorithm. In160

order to select point C we exploit the fact that the palm region in B has the161

highest point density, since usually the palm area is larger than the fingers162

and the wrist. We filter B(u, v) with a 2D Gaussian kernel with a very large163

standard deviation. We used σ = 150 · 1[m]
Dmin

. Note that the value of σ is164

scaled according to the minimum distance in order to make the window size165

in metric units invariant to the hand distance from the KinectTMand ensure166

that the support of the filter is always large enough to capture the thickness167

of the hand or arm regions. The Gaussian filter output consists in a blurred168

grayscale image Bf (u, v) with values proportional to points density (see Fig.169

2d). We set C = Cg, where Cg is the point of Bf (u, v) that has the maximum170

gray level value (i.e., density). In some unlucky cases Cg may not lie near171

the palm center, but somewhere in the arm region if the arm points density is172

higher than the hand ones. Note also that there may also be multiple points173

with the maximum density. In order to avoid these situations and deliver a174

suitable position for Cg we perform a further thresholding on Bf (u, v). Let175

us denote with bmax = maxu,v(B
f (u, v)) the maximum computed density and176
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with Td ∈ [0, 1] a threshold value (in our experiments we set Td = 0.9, i.e.,177

Td · bmax correspond to 90% of the maximum density). A new 2D binary178

mask BT (u, v) is computed:179

BT (u, v) =

 1 if Bf (u, v) ≥ Td · bmax
0 otherwise

(3)

BT (u, v) contains one or more blobs representing possible candidates to con-180

tain Cg. We compute each blob centroid and we eventually choose as Cg the181

centroid of the nearest blob to Xmin defined above.182

The circle fitting procedure is the following: a circle with initial center po-183

sition C = Cg and radius r = 1[pxl] is first expanded in B(u, v) by increasing184

r until the 95% of the points inside it belong to H (we left a tolerance of 5%185

to account for errors due to noise or artefacts of the depth sensor). After the186

maximum radius value satisfying the threshold is found, C is shifted towards187

the direction that maximizes the density of the samples inside H contained188

in the circle. The radius r is then increased again, and we continue to iterate189

the two phases until the largest possible circle has been fitted on the palm190

area (Fig. 2e). The final position of C, denoted by Cf corresponds to the191

center of the palm. The corresponding 3D point Cf , that from now on we192

will call the centroid of the hand, will play an important role in the proposed193

algorithm together with the final radius value rf . Furthermore the position194

of the centroid is also useful in order to reconstruct the trajectory followed195

by the hand in dynamic gestures, that is very useful in many applications196

(e.g., for the control of virtual mouses or of browsing of 3D scenes) and is197

one of the key points for the recognition of dynamic gestures.198
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Sometimes the circle does not accurately correspond to the palm area,199

mostly because the shape of the palm can be narrow and long and because200

in many acquired gestures the hand is not parallel to the imaging plane and201

the circular shape gets distorted by the perspective projection. In order202

to deal with these issues we also introduced a more accurate model where203

an ellipse is fit to the palm region. We start from Cf and build 12 regions204

corresponding to different partially superimposed angular directions (we used205

an overlap of 50% between each sector and the next one as shown in Fig. 2g)206

and for each region we select the point of the hand contour inside the region207

that is closest to the center. In this way we get a polygon contained inside the208

hand contour that approximates the hand palm. The choice of using partially209

superimposed sectors and to take the minimum distance inside each sector210

ensures that the polygon corners are chosen at the basis of the fingers and211

the finger samples are not included in the polygon. Finally the ellipse that212

better approximates the polygon in the least-square sense is computed using213

the method from Fitzgibbon and Fisher (1995) (Fig. 2h).214

Once all the possible palm samples have been detected, we fit a 3D plane215

π on them by using SVD and RANSAC. Then Principal Component Analysis216

(PCA) is applied to the 3D points in H in order to extract the main axis217

that roughly corresponds to the direction ix of the vector going from the wrist218

to the fingertips. Note that the direction computed in this way is not very219

precise and depends on the position of the fingers in the performed gesture. It220

gives, however, a general indication of the hand orientation. In order to build221

a 3D coordinate system centred on the point Cf previously defined, the axis222

ix is then projected on plane π. Let us denote by iπx this projection, and by iπz223
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f) g) h) i) l)

Figure 2: Extraction of the hand and palm samples: a) Acquired color image; b) Acquired

depth map; c) Extracted hand samples (the closest sample is depicted in green); d) Output

of the Gaussian filter applied on the mask corresponding to H with the maximum (i.e.,

Cg) in red; e) Circle fitted on the hand with the point Cp in green; f) Palm (blue), finger

(red) and wrist (green) regions subdivision; g) Angular sectors used for the computation

of the ellipse; h) Fitting of the ellipse over the palm; i,l) Comparison of the circle and

ellipse fitting on the same sample gesture. (Best viewed in colors)
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the normal to plane π; note that iπx and iπz are orthogonal by definition. The224

missing axis iπy is obtained by the cross-product of iπz and iπx thus forming225

a right-handed reference system (iπx, i
π
y, i

π
z). The points coordinates in this226

reference system will be denoted with (x2D, y2D, z2D).227

Note also that Cf does not necessary lie on π (e.g. it could lie on a finger228

folded over the palm). In order to place Cf closer to the real hand center, we229

project it on π. Let us denote the corrected centroid by Cp. The proposed230

coordinate system is depicted in Fig. 3.231

π

i π
z

iπ
z

iπ
y

iπ
x

Cp

Figure 3: Reference system (iπx, i
π
y, i

π
z ) computed on the basis of the estimated plane and

of the PCA output, used for the features extraction.

At this point, we have all the information required to segment H into232

three regions:233

• P containing points corresponding to the hand palm (the samples inside234
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the circle or ellipse).235

• W containing the points of H lying on the sub-space x2D ≤ −rf . Such236

samples belong to the wrist and forearm, and will be discarded next.237

• F containing the points of H−P−W , which correspond to the fingers238

region.239

Finally, the set He = (H −W) = (P + F) containing the hand palm and240

fingers points is also computed. At this point all the information needed by241

the proposed feature extraction scheme is available.242

4. Extraction of the relevant features243

4.1. Distance features244

The computation of this feature set starts from the construction of a his-245

togram representing the distance of the edge samples in F from the hand246

centroid Cp (note that the proposed scheme considers only finger edges, dif-247

ferently from other schemes like Ren et al. (2011b)).248

Let Rf be the 3D radius rf back-projected to the plane π. Note that if the249

more accurate fitting model with the ellipse is employed Rf represents the250

distance from Cf to the edge of the ellipse and is not a constant value. For251

each 3D point Xi = Xu,v ∈ F in the fingers set, we compute its normalized252

distance from the centroid dXi
= ‖Xi − Cp‖ − Rf ,Xi ∈ F and the angle253

θXi
between vector Xπ

i − Cp and axis iπx on the palm plane π, where Xπ
i is254

the projection of Xi on π. We then quantize θ with a uniform quantization255

step ∆ (in the current implementation we used ∆ = 2◦) into a discrete set256

of values θq. Each θq value thus corresponds to an angular sector I(θq) =257
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θq − ∆
2
< θ ≤ θq + ∆

2
. We then select the farthest point inside each sector258

I(θq), thus producing a histogram L(θ):259

L(θq) = max
I(θq)

dXi
(4)

For each gesture in the database we build a reference histogram Lrg(θ) of the260

type shown in Fig. 4. We also define a set of angular regions corresponding261

to the raised fingers intervals in each gesture (shown in Fig. 4) that will be262

used for computing the features.263

As pointed out in Section 2, the direction of the PCA main axes is not264

very precise and furthermore is affected by several issues, e.g., the number265

of raised fingers in the performed gesture and the size of the retained wrist266

region after hand detection. The generated distance histogram may, then,267

not be precisely aligned with the gesture templates, and a direct comparison268

of the histograms in this case is not possible.269

For this reason, in order to compare the performed gesture histogram270

with each gesture template we first align them by looking for the argument271

maximizing the cross-correlation between the acquired histogram and the272

translated version of the reference histogram of each gesture2. We also con-273

sider the possibility of flipping the histogram to account for the fact that the274

hand could have either the palm or the dorsum facing the camera, evaluating:275

∆g = argmax
∆

(
ρ
(
L(θ), Lrg(θ + ∆)

))
(5)

∆rev
g = argmax

∆

(
ρ
(
L(−θ), Lrg(θ + ∆)

))
where symbol ρ(a(·), b(·)) denotes the value of the cross correlation between276

2In Equations (5) and (6) L is considered as a periodic function with period 2π.
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a(·) and b(·). This gives us the translational shift ∆ that aligns the acquired277

histogram with the reference histograms of each gesture. Let us denote by278

Lg(θ) the histogram aligned to the gesture reference histogram Lrg(θ). The279

translational shift to be applied to L(θ) will be either ∆g and ∆rev
g depending280

on the one maximizing the correlation, i.e. we define Lg(θ) as:281

Lg(θ) =

 L(θ −∆g) if max
∆

ρ
(
L(θ), Lrg(θ + ∆)

)
≥ max

∆
ρ
(
L(−θ), Lrg(θ + ∆)

)
L(−θ −∆rev

g ) otherwise

(6)

Note that there can be a different alignment ∆g for each gesture, and282

that we can define different regions in each gesture reference histogram cor-283

responding to the various features of interest. This approach basically com-284

pensates for the limited accuracy of the direction computed by the PCA in285

Section 2.286

The alignment procedure solves one of the main issues related to the287

direct application of the approach of Ren et al. (2011b). Fig. 5 shows some288

examples of the computed histograms for three different gestures. Note that289

the fingers raised in the various gestures are clearly visible from the plots.290

If the database has G different gestures to be recognized, the feature set291

F l contains a value for each finger j ∈ {1, .., 5} in each gesture g ∈ {1, .., G}.292

The feature value f lg,j associated to finger j in gesture g corresponds to the293

maximum of the aligned histogram in the angular region I(θg,j) = θming,j <294

θ < θmaxg,j associated to finger j in gesture g (see Fig. 4), i.e. :295

f lg,j =

max
I(θg,j)

Lg(θ)

Lmax
(7)
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a) b)

Figure 4: Histogram of the edge distances with the corresponding feature regions: a) finger

edges F ; b) associated histogram L(θ) with the regions corresponding to the different

features f lg,j (feature points highlighted with red stars).

All the features are normalized by the length Lmax of the middle finger in296

order to scale them within range [0, 1] and account for the fact that the297

hands of different people have different size. Note that there can be up to298

G×5 features, though their actual number is smaller since not all the fingers299

are raised in each gesture (e.g., in the experimental results dataset there are300

10 different gestures and we used 24 features). The distance features are301

collected into feature vector Fl.302

4.2. Elevation features303

The construction of the elevation features is analogous to the one em-304

ployed for the distance features of Section 4.1.305

We start by building an histogram representing the distance of each sample306

in F from the palm plane π, namely, for each sample Xj in F we compute307
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Gesture Rep. 1 Rep. 2 Rep. 3

Figure 5: Examples of aligned distance histogram Lg(θ) for 3 sample frames corresponding

to different gestures.
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its distance from plane π:308

eXj
= sgn

(
(Xj −Xπ

j ) · iπy
)
|Xj −Xπ

j |, Xj ∈ F (8)

where Xπ
j is the projection of Xj on π. The sign of eXj

accounts for the fact309

that Xj can belong to any of the two hemi-spaces defined by π, i.e., Xj can310

either be on the front or behind π.311

Now, as we did for the distance features, for each angular sector corre-312

sponding to a θq value we select the point with greatest absolute distance313

from the plane, thus producing an histogram E(θ):314

E(θq) =


max
I(θq)

eXj
if

∣∣∣∣max
I(θq)

eXj

∣∣∣∣ > ∣∣∣∣min
I(θq)

eXj

∣∣∣∣
min
I(θq)

eXj
otherwise

(9)

Histogram E(θq) uses the same regions computed in Section 4.1. The315

histogram E(θ) corresponding to the performed gesture is then aligned to316

the various reference gestures in G using the alignment information already317

computed in Section 4.1. Let Eg(θ) be histogram E(θ) aligned with the gth318

gesture template. The elevation features are then computed according to:319

f eg,j =


1

Lmax
max
I(θg,j)

Eg(θ) if

∣∣∣∣max
I(θg,j)

Eg(θ)

∣∣∣∣ > ∣∣∣∣ min
I(θg,j)

Eg(θ)

∣∣∣∣
1

Lmax
min
I(θg,j)

Eg(θ) otherwise
(10)

Note that in our approach the alignments computed in Section 4.1 are used320

here both to save computation time and because the correlations from dis-321

tance data are more reliable than the ones computed on elevation informa-322

tion. Finally note that the vector Fe of the elevation features has the same323

structure and number of elements of the vector Fl of the distance features.324
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4.3. Curvature features325

The third proposed descriptor is based on the curvature of the hand326

shape edges. Since depth data coming from real-time depth cameras are327

usually rather noisy we decided to avoid differential operators for curvature328

description relying, instead, on integral invariants (Manay et al., 2006; Kumar329

et al., 2012).330

Our feature extractor algorithm takes as input the hand edge points He and331

the binary mask B(u, v). Let us denote by Hc = ∂He the boundary of He,332

namely the subset of all the points Xi ∈ He belonging to the hand contour333

only. Consider a set of S circular masks Ms(Xi), s = 1, .., S with radius rs334

centred on each edge sample Xi ∈ Hc. In our experiments we used 25 masks335

with rs varying from 0.5cm to 5cm.336

Let V (Xi, s) denote the curvature in Xi, expressed as the ratio of the num-337

ber of samples of He falling in the mask Ms(Xi) over Ms(Xi) size, namely:338

V (Xi, s) =

∑
Xj∈Ms(Xi)

B(Xj)

|Ms(Xi)|
(11)

where |Ms(Xi)| denotes the cardinality of Ms(Xi). B(Xj) = B(uj, vj),339

where (uj, vj) are the 2D coordinates corresponding to Xj. Note that V (Xi, s)340

is computed for each sample Xi ∈ Hc. The radius rs value corresponds, in-341

stead, to the scale level at which feature extraction is performed. Differently342

from Kumar et al. (2012) and other approaches, the radius rs is defined in343

metrical units and is then converted to the corresponding pixel size on the344

basis of the distance between the camera and the hand. In this way the345

descriptor is invariant with respect to the distance between the hand and the346

camera.347
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Curvature masks are rotation invariant but for faster processing we also348

included the option of replacing the circular masks with simpler square masks349

and then using integral images for fast computation of the samples in the350

mask. This approach, even if not perfectly rotation invariant, proved to be351

significantly faster and the performance loss is practically unnoticeable.352

The values of V (Xi, s) range from 0 (extremely convex shape) to 1 (ex-353

tremely concave shape), with V (Xi, s) = 0.5 corresponding to a straight354

edge. We quantized the [0, 1] interval into N bins of equal size b1, .., bN . The355

set Vb,s of the finger edge points Xi ∈ Hc with the corresponding value of356

V (Xi, s) falling to bin b for the mask s is expressed as:357

Vb,s = {Xi|
(b− 1)

B
< V (Xi, s) ≤

b

B
} (12)

For each radius value s and for each bin b we choose as curvature feature,358

denoted by f cb,s, the cardinality of the set V (Xi, s) normalized by the contour359

length |Hc|, i.e.:360

f cb,s =
|Vb,s|
|Hc|

(13)

Note that, thanks to the normalization, the curvature feature f cb,s takes values361

in [0, 1], that is, the same interval shared by both the distances and elevations362

feature. Finally, we collect all the curvature features f cb,s within feature vector363

Fc with B × S entries, ordered by increasing values of indexes s = 1, 2, ...S364

and b = 1, 2, ..., N . By resizing Fc into a matrix with S rows and N columns,365

and by considering each f cb,s as the value of the pixel with coordinates (b, s) in366

a grayscale image, it is possible to graphically visualize the overall curvature367

descriptor Fc as exemplified in Fig. 6.368
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Gesture Rep. 1 Rep. 2 Rep. 3

Figure 6: Examples of curvature descriptors for 3 sample frames from different gestures.
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4.4. Palm area features369

The last set of features describes the displacement of the samples in the370

palm region P . Note that P corresponds to the palm area, but it may also371

include finger samples if some fingers are folded over the palm. The idea is to372

subdivide the palm region into six different areas, defined over the plane π, as373

shown in Fig. 7. The circle or ellipse defining the palm area is firstly divided374

into two parts: the lower half is used as a reference for the palm position,375

and a 3D plane πp is firstly fitted to this region. The upper half is divided376

into 5 regions Aj, j = 1, .., 5 roughly corresponding to the regions close to377

the different fingers as shown in Fig. 7, i.e., each region corresponds to the378

area that is affected by the position of a finger. The various area features379

account for the deformation the palm shape undergoes in the corresponding380

area when the related finger is folded or is moved. In particular notice how381

the samples corresponding to the fingers folded over the palm are associated382

to P and are not captured by distance or elevation features, but they are used383

for the computation of palm area features. The areas positions on the plane384

strictly depend on the parameters defining the palm area (i.e., the center385

Cf and the radius rf of the circle or the two axes of the ellipse), the fingers386

widths (a standard subdivision of the upper half of the circle has been used387

but it can also be optimized on the basis of the specific user’s hand) and on388

the direction iπx corresponding to θ = 0. Since the center Cf and radius rf or389

axes have already been computed in Section 3, the only missing element is the390

alignment of the θ directions. Again, the alignment information computed in391

Section 4.1 is used to align the regions template (scaled by rf , or scaled and392

stretched according to the two axes of the ellipse) with the hand direction iπx.393
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We perform an alignment for each gesture template, with the same approach394

used for the distance features, in order to extract an area feature set for395

each alignment. The areas aligned with the template of each gesture will be396

denoted with Agj , where g denotes the corresponding gesture. In this way397

the set of points Xi in P associated to each of the regions Agj is computed.398

Then, each area Agj is considered and the distance between each sample Xi399

in Agj and πp is computed. The average of the distances of the samples of400

the area Agj :401

fag,j =

∑
Xi∈Ag

j
‖Xi −Xπ

i ‖
|Agj |

(14)

is taken as the feature corresponding to the area Agj . All the area features402

are collected within vector Fa, made by G × 5 area features, one for each403

finger in each possible gesture, following the same rationale of Fl and Fe.404

The entries of Fa are finally scaled in order to assume values within range405

[0, 1], as the other feature vectors.

Figure 7: Regions corresponding to the various area features shown over a sample gesture.

406
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5. Gesture classification with Support Vector Machines407

The feature extraction approach of Section 4 provides four feature vectors408

describing relevant properties of the hand samples. In order to recognize the409

gestures from the feature vectors built in Section 4, we employed a multi-410

class Support Vector Machine classifier. Each acquired gesture is described411

by a feature vector F = [Fl,Fe,Fc,Fa] obtained by concatenating the four412

different feature vectors Fl, Fe, Fc and Fa. Note that Fl, Fe and Fa rep-413

resent features corresponding to the various possible hypotheses about the414

current gesture, while Fc basically contains the histograms of the curvature415

distribution for all the scale levels.416

The gesture recognition problem consists in classifying the vectors F into417

G classes corresponding to the various gestures of the considered database.418

The employed classification algorithm is based on the one-against-one ap-419

proach, i.e., a set of G(G − 1)/2 binary SVM classifiers is used to test each420

class against each other and each output is chosen as a vote for a certain421

gesture. The gesture with the maximum number of votes is the result of422

the recognition process. In particular we used the SVM implementation in423

the LIBSVM package (Chang and Lin, 2011). We set a non-linear Gaussian424

Radial Basis Function (RBF) as the kernel and we tuned the classifier pa-425

rameters by a grid search approach and cross-validation on the training set.426

Assume a training set containing data from N users : to perform the grid427

search we divided the space of parameters (C, γ) of the RBF kernel with a428

regular grid and for each couple of parameters the training set is divided into429

two parts, one containing N − 1 users for training and the other the remain-430

ing user for validation and the performances are evaluated. We repeat the431
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procedure changing each time the user used for the validation and we select432

the couple of parameters that give the best accuracy on average. Finally433

we train the SVM on all the N users of the training set with the optimal434

parameters.435

6. Experimental results436

The performances of the proposed approach have been evaluated using437

two different datasets containing data acquired by Microsoft’s Kinect (how-438

ever the approach is independent of the employed depth camera). The first is439

the database provided by Ren et al. (2011b), containing 10 different gestures440

performed by 10 different people. Each gesture is repeated 10 times for a441

total of 1000 different depth maps with related color images. The second442

dataset is a sub-set of the American Sign Language gestures acquired in our443

laboratory (shown in Fig. 8 and available on our website). It contains 12444

different gestures performed by 14 different people and repeated 10 times.445

Since our approach requires a learning stage, we considered two different446

operational possibilities. In the first simpler approach (it will be denoted as447

user training) we randomly split the database into 2 parts, one is used to448

train the SVM classifier and the other made by the remaining depth maps was449

used as test set. More precisely the training set contains 8 randomly selected450

repetitions of each gesture by each person while the remaining 2 have been451

put in the test set. For each gesture, one of the repetitions in the training452

set was used for the computation of the reference histogram of Eq. (5). The453

complete training set was then used to train the different SVM classifiers.454

This subdivision of the database corresponds to having gestures from all the455
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G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12

Figure 8: Gestures from the American Sign Language (ASL) contained in the database

that has been acquired for the experimental results.

subjects in both the train and test sets, i.e., the people using the system456

had to “train” it before by performing the different gestures. Since in this457

approach data samples from the same person are present in both the train458

and test set it can be viewed as something similar to the concept of validation459

in classification literature. In many practical situations is necessary to have a460

system that is able to recognize the gestures performed by a new user without461

re-training the system with this user. Hence the training must be performed462

on a set of people different from the end users. For this reason, we performed463

a second more challenging set of tests by splitting the database in a training464

set made by N − 2 people (i.e., 8 people for the first dataset and 12 for the465

second), and a test set with the remaining two people. The training (it will466

be called generic training) has been hence performed with different people467

than the ones used for the testing. Since in this approach the test set contains468

27



data from a person that has not trained the system there is less correlation469

between the test and train sets and the problem is more challenging (if the470

previous test can be considered as the validation, this correspond to the use471

of a test set unrelated to the training one).472

The first column of Table 1 shows the results obtained on the first database473

with the user training approach. Distance features Fl alone provide an accu-474

racy of about 96%. Note that distance descriptors are very good in capturing475

the fact that the various fingers are folded over the palm or raised, an im-476

portant element in the recognition of many gestures. The curvature-based477

classifier allows to obtain even better performances (97.5%) by using the Fc
478

feature vectors. In particular the distance only classifier is able to recognize479

some of the gestures that curvature only one can not handle, and vice-versa.480

Elevation features have lower performances on the first dataset (85, 5%). This481

is due to the fact that in most gestures in the dataset the fingers lay very482

close to the palm plane. They, however, play an important role in recogniz-483

ing more complex gestures not included in this dataset, where some fingers484

point out of the palm plane. Finally, area based features allows to obtain an485

accuracy of 84, 5%.486

Better performances can be obtained by combining different classifiers487

together. For example, by combining distance and curvature features it is488

possible to obtain an almost optimal accuracy of 99.5%. This is because the489

two classifiers have complementary characteristics, since the two descriptors490

are based on totally different clues. By further adding the elevation and area491

features, it is possible to recognize all the performed gestures and obtain a492

100% accuracy.493
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We repeated the same tests for the generic training case. The results are494

shown in the second column of Table 1. Distance based features Fl alone495

already allow to obtain very good performances with an accuracy of about496

92, 5%, even if, as expected, in this more challenging situation the accuracy497

is slightly lower than in the previous case. The curvature features have very498

similar performances (92%). Also in this case, elevation features are the least499

performing descriptor, since most gestures have the fingers very close to the500

hand plane; their accuracy is 43.5%. Better results can be obtained by using501

area based features, that allows to obtain an accuracy of 60%, lower than502

distance or curvature but able to distinguish the majority of the gestures.503

By combining distance and curvature features, it is possible to reach504

an accuracy of 98.5%. These two descriptors are, again, very informative505

and also rather complementary, so their combination gets quite close to the506

optimum in this simple database. Although the performances of distance507

and curvature are better than the other two descriptors, note that each of508

the different descriptors captures different aspects of the hand pose that are509

relevant in different gestures. In order to obtain even better accuracy, it is510

hence necessary to combine multiple descriptors together. By further adding511

the area features, a small improvement in the accuracy can be obtained, rising512

it to 99%. Finally, by using all the 4 feature types the accuracy remains at513

99%. The improvement obtained by adding the last two set of features on514

this database is rather limited, but consider that performances with distance515

and curvature data are already very close to the optimum.516

The last three rows of Table 1 compare the results with the ones from Ren517

et al. (2011b). It is evident that the proposed recognition scheme outperforms518
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the compared approach: even the best performing version of the work of Ren519

et al. (2011b) has an accuracy of 94%, that corresponds to having 6 times520

more errors than the proposed approach. Furthermore, note that Ren et al.521

(2011b) exploits a black bracelet that all the people wear in order to locate522

and align the hand shapes, while our approach does not exploit this aid and523

does not require to wear any glove, bracelet or other sort of marker.524

Table 1: Performance of our approach. The proposed approach is compared with (Ren

et al., 2011b). The work of (Ren et al., 2011b) presents the results of two different ver-

sions, one using near-convex decompisition (FEMD-a) and one exploiting a thresholding

decomposition (FEMD-b). Results for the compared method are available only for the

first database since the software of (Ren et al., 2011b) is not publicy available.

Database of Our

(Ren et al., 2011b) Database

Type of features Accuracy Accuracy Accuracy Accuracy

users generic users generic

training training training training

Distance features 96,0 % 92,5 % 83,0 % 70,4 %

Elevation features 85,5 % 43,5 % 70,8 47,5 %

Curvature features 97,5 % 92 % 92,9 % 88,3 %

Area features 84,5 % 60 % 71,7 % 54,2 %

Dist.+curv. 99,5 % 98,5 % 95,0 % 89,6 %

Dist.+curv.+area 100 % 99 % 96,1 % 92,9 %

Dist.+curv.+elev.+area 100 % 99 % 97,6 % 93,8 %

FEMD-a(Ren et al., 2011b) 90.6% N.A.

FEMD-b(Ren et al., 2011b) 93.9% N.A.
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The second database is more challenging, since it includes a larger number525

of gestures, which are also more complex and more difficult to distinguish.526

Recall that distance descriptors are able to distinguish most of the gestures on527

the first database, while on the second one they reach an accuracy of 83, 0%528

with the users training and 70, 4% with the generic training. The lower529

performances are due to the presence of different gestures with the same530

number of raised fingers. Also consider that, while in the other database531

the hands were all acquired in very ideal conditions (e.g., same distance,532

hand almost perpendicular to the camera, people with similar hands), here533

a more realistic setting has been used with a more limited control on the534

position and orientation of the hand, and the people have hands with very535

different characteristics. Curvature descriptors are the best descriptor on this536

database, with an accuracy of 92.2% and 88, 3% for the two types of training537

respectively. Note that curvatures do not rely on the computation of the538

hand orientation or on the positions of the centroid and palm plane. For this539

reason, is more performing in complex configurations where the estimation540

of these parameters is not always highly accurate. Elevation features allow541

to obtain an accuracy of 70, 8% if the users are involved in the training, while542

in the other case accuracy drops to 47, 5%. Finally, area features have an543

accuracy of 71, 7% (users training) and 54, 2% (generic training), slightly544

better than the elevation features.545

With the users training, by combining distance and curvature features546

the accuracy is 95, 0%. Note how distance features have lower performances547

but they are able to give an improvement to the results of curvature features548

alone. A further improvement can be obtained by adding also area features,549
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raising up the accuracy to 96, 0%. Finally, by including all the 4 types of550

feature, an accuracy of 97, 6% can be obtained, better than the ones of the551

various subset of features.552

When the users are not involved in the training the performances are lower553

but by combining multiple descriptors they dramatically improve. With dis-554

tance and curvature features together the accuracy is 89, 6%, by adding also555

area features it raises up to 92, 9% ,and finally by including all the 4 types556

of feature an accuracy of 93, 8% can be obtained.557

In order to allow for a more accurate analysis, the confusion matrix for the558

recognition with all the 4 types of features on the second dataset is shown559

in Fig. 9 while a larger set of confusion matrices is available at http://560

lttm.dei.unipd.it/paper_data/gesture. Note that the proposed scheme561

can also be used to reliably analyze the pose and trajectory of the hand in562

dynamic environments, some sample videos are available at http://lttm.563

dei.unipd.it/paper_data/gesture.564

The proposed approach does not require complex computations and is565

able to run in real-time. In particular the current implementation (that has566

not been fully optimized) is able to achieve about 10fps. From a compu-567

tational point of view the most demanding steps are in the initial detection568

phase (i.e., the hand detection takes about 46ms and the extraction of palm569

and fingers regions about 25ms). The computation of the palm plane takes570

about 4ms. Feature extraction takes about 38ms, mostly spent on the curva-571

ture descriptors (28ms). The other demanding computation is area descrip-572

tors that require about 10ms while distance and elevation features require a573

negligible computation time. Finally SVM classification uses 1ms for a total574
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running time of 114ms for each frame.575

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

G1 20/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20

(26/28) (1/28) (1/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28)

G2 0 20/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20

(0/28) (28/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28)

G3 0/20 0/20 18/20 0/20 0/20 0/20 0/20 0/20 2/20 0/20 0/20 0/20

(0/28) (0/28) (1) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28)

G4 0/20 0/20 0/20 20/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20

(0/28) (0/28) (0/28) (1) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28)

G5 0/20 0/20 0/20 0/20 20/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20

(0/28) (0/28) (0/28) (0/28) (1) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28)

G6 0/20 0/20 0/20 0/20 0/20 20/20 0/20 0/20 0/20 0/20 0/20 0/20

(0/28) (0/28) (0/28) (0/28) (1/28) (27/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28)

G7 0/20 0/20 0/20 1/20 0/20 0/20 16/20 3/20 0/20 0/20 0/20 0/20

(0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (1) (0/28) (0/28) (0/28) (0/28) (0/28)

G8 0/20 0/20 0/20 0/20 0/20 0/20 0/20 20/20 0/20 0/20 0/20 0/20

(0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (1/28) (27/28) (0/28) (0/28) (0/28) (0/28)

G9 0/20 0/20 3/20 0/20 0/20 0/20 0/20 0/20 17/20 0/20 0/20 0/20

(0/28) (0/28) (2/28) (0/28) (0/28) (2/28) (0/28) (0/28) (24/28) (0/28) (0/28) (0/28)

G10 0/20 0/20 0/20 0/20 0/20 2/20 0/20 0/20 0/20 18/20 0/20 0/20

(0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (1) (0/28) (0/28)

G11 0/20 0/20 0/20 2/20 0/20 0/20 2/20 0/20 0/20 0/20 16/20 0/20

(0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (1) (0/28)

G12 0/20 0/20 0 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20 1

(0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (0/28) (1)

Figure 9: Confusion matrix for the proposed approach on our database with joint usage

of all the 4 proposed feature types. Each entry contains both the output of the classifier

for the generic training case (validation) and the output of the classifier for the training

with users case (testing, between parenthesis).

7. Conclusions576

This paper shows an effective way of exploiting depth information for577

hand gesture recognition, with a limited and not always required color in-578
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formation aid for hand identification only. It is worth noting how the palm579

and finger regions can be reliably extracted from depth data. Our approach580

remarkably does not require any manual segmentation or aid by bracelets,581

gloves, markers or other invasive tools.582

The main idea of this paper is the usage of different features extracted583

from depth data capturing relevant and complementary properties of the584

hand gestures. The proposed features are the distances of the fingers from585

the hand centroid, the elevation of the fingers from the palm, the curvature586

of the hand shape and the planarity of the palm area. Each of the employed587

features is able to supply for the lack of information suffered by the remain-588

ing features for certain gestures. Although some kind of features alone allow589

for reasonable hand gesture recognition performances, the experimental re-590

sults reported in Table 1 show that their combined usage lead to an higher591

accuracy.592

Further research will be devoted to the introduction of new features into593

the proposed approach in order to better represent the fingers when they594

are folded. Also the introduction of color-based features will be considered.595

Since many gestures are characterized by a dynamic time evolution and the596

proposed approach is already able to follow the trajectory and orientation of597

the hand over time, we are planning to extend the proposed approach from598

the analysis of single frames to the analysis of video sequences considering599

also time-dependent features.600
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Herrera, D., Kannala, J., Heikkilä, J., 2012. Joint depth and color camera620

calibration with distortion correction. IEEE Trans. Pattern Anal. Mach.621

Intell. 34, 2058–2064.622

35



Keskin, C., Kirac, F., Kara, Y., Akarun, L., 2011. Real time hand pose623

estimation using depth sensors, in: ICCV Workshops, pp. 1228 –1234.624
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