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Abstract

Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high

dimensional data sets. In this manuscript, we propose a distance order preserving manifold

learning algorithm that extends the basic mean-squared error cost function used mainly in

multidimensional scaling (MDS)-based methods. We develop a constrained optimization problem

by assuming explicit constraints on the order of distances in the low-dimensional space. In this

optimization problem, as a generalization of MDS, instead of forcing a linear relationship between

the distances in the high-dimensional original and low-dimensional projection space, we learn a

non-decreasing relation approximated by radial basis functions. We compare the proposed method

with existing manifold learning algorithms using synthetic datasets based on the commonly used

residual variance and proposed percentage of violated distance orders metrics. We also perform

experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP) diagnosis.
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1. Introduction

Due to the recent advances, acquisition of large volumes of high dimensional data has

become more common in every aspect of daily life: stock market, social media, medical

data, etc. Analysis and interpretation of such data requires finding meaningful low-

dimensional structures in these huge data sets. Manifold learning attempts to accomplish

such data explorations and dimensionality reductions.

Manifold learning can be regarded as identifying a nonlinear mapping from the original

higher dimensional data space to a lower dimensional representation. Existing methods can

be classified into three categories: global methods that tend to preserve global properties in
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the low-dimensional representation, local methods that aim to preserve the local geometry in

the embedded space and techniques based on global alignment of multiple linear models [1].

Multidimensional scaling (MDS) is one of the global methods that finds a projection of the

original data while preserving the pairwise Euclidean distances [2]. In the literature, various

techniques are proposed to minimize MDS cost function [3, 4, 5, 6]. Similarly, in Isomap,

one uses a geodesic distance estimation to use with MDS [7]. Different variations of Isomap

have been proposed in the literature: landmark and conformal Isomap [8]. On the other

hand, local methods [9, 10, 11, 12, 13, 14, 15] constructs the lower dimensional data using

the local linear relations in the original space. Local tangent space alignment (LTSA) [9]

represents the local geometry of the manifold with local tangent spaces that are learned

through the neighborhood of each sample. Similarly, local linear embedding (LLE) [10]

aims to preserve local neighborhood information, while Semidefinite Embedding (SDE) [11]

involves preserving local isometries on a k-nn graph. Coifman et al. [14] presents a method

that constructs local coordinates by learning a family of diffusion maps (DM). Another use

of local geometry is by locally smooth manifold learning (LSML) [12, 13] which is based on

learning a warping function, that takes any sample in the manifold and generates its

neighbors. Stochastic neighborhood embedding (SNE) [15] and its variations [16, 17] are

among probabilistic approaches that construct the neighborhood relations based on Gaussian

kernels. Although local approaches have computational advantages, they might have

limitations in preserving global geometry, especially if the data is sparse. Other methods that

are based on global alignment of linear models aim to combine the local and global

techniques by fitting a number of local linear models and merging them with a global

alignment. Local linear coordination (LLC) [18] and manifold charting [19] methods fall

into this category.

In this manuscript, we propose a nonlinear dimensionality reduction method that extends the

basic idea used by the MDS and its variations. Although the ultimate goal is to preserve the

distance orders, MDS algorithm only focuses on minimizing the mean-squared error

between the input and output distances [2]. There is no explicit constraint on the distance

orders during the solution of this optimization problem. Moreover, this minimization results

in a linear relationship between distance spaces. Linear fit assumption between the distances

in the original and low-dimensional projection spaces is very restricted and embedding is

achieved in this restrictive family. To address these two important issues, we first generalize

the mean squared error cost function to include more general relations between distance

spaces. Instead of assuming a predefined relationship, we propose to also learn the

relationship between distances while we project the data from the original space. Our only

assumption on the relationship is to have a monotonic non-decreasing function in order to

preserve the distance relationships observed in the original space in the projected space.

Then, we develop a constrained optimization problem by incorporating the distance orders

as inequality constraints. As a solution of this problem, we not only learn the data in the

projected space but also learn the non-linear relation between distance spaces. The final

form of the proposed optimization problem is a generalization of the existing global MDS-

based manifold learning algorithms such that the existing methods are approximate solutions

of the simplified version of this problem. In this manuscript, we focus on the formulation

and theoretical aspects of the problem. Possible acceleration of the proposed method by
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convex relaxations and further approximations to analyze real data will be part of our future

research.

Another commonly used manifold learning algorithm which has a nonlinear mapping

between distance spaces is Sammons mapping [20]. Sammon’s map, a nonlinear extension

of MDS, first maps the input data to a nonlinear predefined feature space and tries to

preserve the distances in this feature space. Different than Sammon’s mapping, we assume

an unknown nonlinear relationship between the input and output distances while preserving

the distance orders from the original space.

The rest of the paper is organized as follows: We first define the notation used throughout

the paper in section 2.1. Next, problem formulation is presented in section 2.2. The solution

of the optimization problem and performance evaluation metrics are explained in section 2.3

and section 2.4 respectively. In section 3, we report the experiments and results and the

paper is concluded in section 4.

2. Learning Algorithm

In this section, we describe the proposed method for manifold learning. We first define the

data model and notations to be used throughout the manuscript. Then using this model we

formulate the desired manifold learning problem and develop our algorithm. We derive an

optimization problem that solves the manifold learning algorithm, starting with the

commonly used cost function, mean-squared error minimization, and demonstrate that this

cost function can be extended to include different distance relations between the original and

projection space data points, and explicit constraints that preserve distance orders in the

projected space.

2.1. Data Model and Notation

We represent the original and the projected data spaces as  and , respectively. Then, xi ∈

 and yi ∈  with i = 1, …, N are the data points. In this representation, x and y are vectors

and N is the number of the data points. We assume that dim( ) = d ≥ dim( ) = d̃.

Moreover, we have  and  as the distances between the ith and jth data points in the

original and the low-dimensional data spaces, ‖ · ‖ represents the L2-norm of a vector.

2.2. Problem Formulation

We formulate the manifold learning algorithm as a constrained optimization problem. Our

approach restricts the minimum mean-squared error solutions used by some existing

manifold learning algorithms [2, 7]. Specifically, these aim to minimize the difference

between the distances of any two points in the original and projected spaces. That is, the

difference between  and  for ∀i, j = 1, …, N is minimized, which on average results in

a linear relationship between each  and  pair (as a result of the least-square solution).

(1)
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where  is the Euclidean distance and  is the distance between the ith and jth

points. Note here that the minimization is performed over the data points yi in the projected

space.

In the proposed algorithm, we compute  as the estimated geodesic distance between the

ith and jth data points. We follow the method described in [7] to compute the geodesic

distances in the original space. First, the Euclidean distance between every pair of data

points in the original space (data pairwise distance matrix) is computed. Then, a k-nearest

neighbor (knn) graph or ε-ball graph is generated. That is, k-nearest neighbors of a data

point or neighbors within ε distance for each datum is taken, and the edge lengths from

points outside these areas to the reference datum are set to be infinite, and the pairwise

distance matrix is updated accordingly. Finally, Floyd algorithm is applied over this matrix

to find approximate geodesic distances between the data pairs [7]. Floyd’s algorithm, an

example of dynamic programming, finds the shortest path between each pair of vertices in a

weighted graph [21].

In our algorithm, we propose to generalize the minimum mean-squared error approach in (1)

to include a broader relationship between the distances in the original and the low-

dimensional projection space. For that purpose we rewrite (1) as

(2)

where h(·) is a monotonic nondecreasing function. We represent the derivative of h(·) as

(3)

where k(η) is a translation-invariant kernel function and wkl ’s are the multiplicative

coefficients. We force wkl ≥ 0 to have h(·) as a nondecreasing function. That is, we represent

the derivative of h(·) as a nonnegative weighted sum of kernel functions. Monotonic

nondecreasing functions h(·) will guarantee that we preserve the order of original distances

in the projected space.

Then, we have

(4)

where

(5)

Kernel functions are positive semidefinite and hence are appropriate to represent the

derivative of a monotonic nondecreasing function h(·) [22]. A translation-invariant kernel
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k(η) is chosen such that 0 ≤ k(η) < ∞, , and limη→0 k(η) = δ(η). We

specifically use Gaussian radial basis functions (rbf), since they were shown to universally

approximate any function with any desired accuracy [23]. Then, we rewrite (5) as

(6)

where Φ(·) is the Gaussian cumulative distribution function, and σ is the kernel width

(standard deviation), which is estimated using Silverman’s rule [24].

From (3), we have  different non-negative wkl coefficients. We form the M ×

1 size vector w as

(7)

We also define  as the N d̃ × 1 size data vector in the projected space.

Using the definitions for w and yd, and the specifications provided for the function h(·), we

then formulate the manifold learning algorithm as the following optimization problem.

(8)

where ⪰ represents an element-wise inequality, such that we require each element of w is

greater than or equal to zero. Note that in (8), we aim to avoid the global minimum solution

where all yi, i = 1, …, N are the same and w = 0, which is not a valid projection solution.

Therefore, we update the problem as

(9)

The existing manifold learning algorithms do not explicitly enforce constraints to preserve

the distance relationships observed in the original space. In our method, we propose to

consider the following constraint: If T distance pairs in the original space are ordered as

, we require to have . This is an approximation to preserving the

order relation-ship between every distance pair in the original space. Selecting T achieves a

reduction in complexity, but also may reflect preference about which distance orders are

more important to preserve for the user. Then, we have the following optimization problem

(10)
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Depending on the data under consideration, feasibility in (10) could be difficult to achieve, it

might not even be possible to satisfy all the inequality constraints; therefore, to obtain a

solution to the proposed constrained optimization problem, we further update it by

perturbing (relaxing) the distance inequality constraints to

(11)

where ξ = [ξ1 ⋯ ξT]T is the vector of the perturbation slack variables which store the

deviation from the nonlinear inequality constraints representing the order relationship

between the distance pairs in the projection space, γ is the penalty factor forcing the problem

to satisfy as many order relationships as possible, and α’s demonstrate the importance of

different ξ’s such that preserving some inequalities could be more important than others.

In order to use in 2.3, we follow the above discussions, and define

• θ = [yd
T, wT, ξT]T is an (N d̃ + M + T) × 1 vector,

•
,

• A = [0 I] as (M + T) × (M + T + N d̃) size matrix,

•
,

•

.

Note that we improve the problem in (11) with the condition , and note also

that due to the quadratic dependency of the cost function to w, we can always find a scaled w

to obtain the minimum of the cost function at , and hence we define

. Then, we rewrite the problem as

(12)

In our implementation, we always used a chain of T = M − 1 inequalities

 but one can choose arbitrary pairs of inequalities. In the

following we also refer  as , then .

2.3. Solution of the Optimization Problem

In this section, we explain the solution method that we employ to solve the constrained

optimization problem proposed in (12). We first redefine the problem using extra slack

variables as
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(13)

Then the Lagrangian of the problem is computed as

(14)

where q and z = [z1, …, z3M−2]T are the Lagrange multipliers.

Using the proposed problem in (13), and the Lagrangian in (14), we compute the Karush-

Kuhn-Tucker (KKT) conditions for this problem [25]

(15a)

(15b)

(15c)

(15d)

(15e)

where

•

 is the gradient of the cost function f (θ) with

respect to θ,

• ∇θceq = 1, a vector of ones,

• D(θ) is the Jacobian of the vector of functions c(θ), such that DT (θ) = [∇θc1(θ) ⋯

∇θc3M−2(θ)],

• S is a diagonal matrix with the s vector in the diagonal, such that S = diag(s).

Interior-point methods were shown to outperform active set [26] and augmented Lagrangian

methods [27] in large scale problems [28, 29]. We therefore solve the problem in (13) using

interior-point methods such that we define pθ, ps, pq, and pz as the step lengths in the

variables θ, s, q, and z, respectively, and apply the Newton’s method to compute the primal-

dual update matrix as

(16)
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where

•
 is the Hessian of the Lagrangian,

and

• Z = diag(z).

We solve the system in (16) using the algorithm described in [30, 31, 32]. We approximate

the Hessian of the Lagrangian using limited-memory Broyden-Fletcher-Goldfarb-Shanno

(lBFGS) method [33]. lBFGS is a limited memory approximation of the BFGS method to be

used in large scale optimization problems [25]. We provide the derivations of gradient

∇θf(θ), Jacobian D(θ), and Hessian  in the appendix. The dimension of

unknowns, n, in our problem is O(N2) and, we know that lBFGS takes O(n2) time per

iteration, hence the run time for the optimization algorithm per iteration is O(N4). The

optimization method converges to a local minima due to the non-convexity of the proposed

problem. Convex relaxations to this problem and convergence analysis is a topic of our

future work.

2.4. Performance Analysis

In this section, we describe a metric that we define to demonstrate the performance of the

proposed method. The metric we consider is the percentage of the pairwise inequalities

violated in the low-dimensional space:

(17)

where Tt = M (M − 1)/2 is the total number of distance inequalities since we always choose

to employ a chain of M − 1 inequalities and Tυ is the number of distance relationships

violated in the projected space. In the proposed method, we compute Tt considering the

estimated geodesic distance relationships observed in the original space. Recall that in our

algorithm, for example if the geodesic distance  is larger than , we propose to preserve

such relationships approximately for every data points indexed with i, j, k, l ∈ [1, …, N] in

the projected space. We then accordingly compute Tυ by counting violated order

relationships. According to the definition in (17), the lower the τ is, the more accurate the

subspace projection is. We refer to this metric as constraint violation percentage (CVP).

Another commonly used performance metric is the residual variance between the estimated

geodesic distances in the original space and the Euclidean distances in the projected space

[7]. Defining  and  as two M × 1 vectors, the

residual variance is computed using

(18)

where
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•
, with d̅

y as the mean,

•
, with d̅

x as the mean,

•
.

3. Numerical Examples

We demonstrate the performance of the proposed method on synthetic datasets and compare

with the following existing methods: Isomap [7], LTSA [9], LLE [10], SDE [11], LSML

[12, 13], DM [14]. Penalty factor γ in (11) is taken as 1 and the scalar ec that bounds the sum

of w’s in (12) is selected as 10 in our experiments. α coefficient that indicate the importance

of preserving an order constraints is taken as 1 for all order constraints. The variables that

are being optimized are initialized randomly. The geodesic distance estimation is done with

a knn-graph where k = 5. Similarly, neighborhood information is represented through knn-

graphs with k = 5 in Isomap, LTSA, SDE and LSML methods. The number of neighbors for

LLE is set as k = 5. We use the default values for all other parameters in the methods, that

we compare against the proposed technique.

In the first set of experiments, we perform noise analysis on the synthetically generated

growing band (GB) dataset with N = 50 samples, which contains a single dimensional

manifold (see Figure 2(a)). For a given noise variance σ2, the two dimensional dataset is

generated by the following model

(19)

where ρ is selected as 10 and β(t) =  (0, σ2t) is a Gaussian random variable with mean 0

and variance σ2t. For this data set we use different noise levels, σ2 changing from 0.001 to

0.1. In this experiment, our goal is to explore possible non-linear relationship between the

distances in the original and the projection spaces. The performance metrics we use are

constraint violation percentage (CVP) and residual variance as described in Section 2.4. In

Figure 2, and Table 1, we report noise analysis results. Figure 2 displays the CVP and

residual variance for different values of the noise variance using the proposed technique and

all other techniques. Figure 2(b) is a zommed in version of Figure 2(a) displaying the results

for LSML, DM, Isomap and the proposed methods. The residual variance for LLE is omitted

in Figure 2(c) for better visualization, since it produces very high values compared to the

other methods. As can be seen the proposed method shows a better performance than the

other methods with respect to both evaluation criteria. The method that perfoms similar to

the proposed method is Isomap. All the other methods are local and they perform poorly due

to the sparsity of the data. The performance difference between Isomap and the proposed

method increases as the noise variance increases, because for low noise variances, the data

resembles to a line more and the distance relations are close to being linear. Notice that the

residual variance shows the same trend with CVP, since both metrics aim to quantify the

consistency between distances, see also Table 1 for the summary of performance analysis

results. Figure 1(b) shows the h(·) function as a result of the proposed optimization scheme
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for σ2 = 0.1. The resulting fit does not show a linear relation, instead it maps the small

distances to even smaller distances and the large distances to even larger ones. Our analysis

shows that this kind of relationship outperforms the linear fit assumed by MDS.

Secondly, we carry out experiments on a noisy spiral data with N = 50 samples (see Figure

3(a)). Resulting h(·) function is shown in Figure 3(b). The comparative results can be seen in

Table 1. We outperform all other methods, but the performance of the proposed method is

close to Isomap, and this can also be seen in h(·) function in Figure 3(b) which demonstrates

an almost linear relationship. Even though we achieve an almost linear fitting, in the

proposed method, we do not assume any predefined model in the algorithm, instead we learn

this linear relationship as part of the solution. Other methods that give a comparable

performance with the proposed method on this dataset are SDE and LSML.

Thirdly, we perform experiments on the Swiss roll dataset with N = 85 samples (Figure

4(a)). 3D samples from the original space is projected to a 2D space in this experiment. Our

goal is to demonstrate the performance of our method on a dataset having different curvature

levels. Table 1 and Figure 5 report the comparative results. Also, resulting h(·) function that

represents the relationship between dx and dys is reported in Figure 4(b). Since data is

synthetically generated, original 2D coordinates are known and are displayed in Figure 5(a).

Figures 5(b) and 5(c) show the 2D projection results with Isomap and the proposed methods,

respectively. Each sample is identified with an index number and the numbers are displayed

on the nodes overlayed with Delaunay triangulation edges for better visualization. In the

figure, we only display the projection result for Isomap, since it has the closest performance

to our method on this dataset. Although the 2D projection with the proposed method seems

rotated with respect to the original data, it preserves the distance relations better than the

Isomap method, and the results in Table 1 supports this observation. Note that, knn-graph

does not contain any shortcuts between different sides of the Swiss roll due to the small k

value. However, the motivation of the method is not to overcome the limitations of the

geodesic distance estimation. Instead, we would like to solve the general optimization

problem given an estimated distance matrix. With this purpose, same parameters are used

for local neighborhood definitions in all of the methods.

Lastly, we carry out experiments on a retinal image dataset. Retinal images are widely used

by doctors to follow, treat and diagnose various diseases. Retinopathy of prematurity (ROP)

is among the diseases that can be diagnosed through the use of retinal images. It is a disease

affecting low-birth weight infants, in which blood vessels in the retina of the eye develop

abnormally and cause potential blindness. ROP is diagnosed from dilated retinal

examination by an ophthalmologist, and may be successfully treated if diagnosed

appropriately [34]. According to the international classification system, clinical ROP

diagnosis has three classes, plus disease, pre-plus and neither [35]. Plus disease is a critical

parameter which identifies severe ROP and is characterized by tortuosity of the arteries and

dilation of the veins in the retina. Pre-plus represents vascular abnormalities insufficient for

plus disease but with more arterial tortuosity and venous dilation than normal. Infants with

plus disease require treatment to prevent blindness, whereas those without plus disease may

be monitored by serial ophthalmic examination without treatment. Studies have found that

clinical plus disease diagnosis is often subjective and qualitative, and that there is significant
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inconsistency even among experts [36, 37]. Hence, diagnosis of ROP is a vital and

challenging task. In this experiment, we use a retinal image dataset, that consists of 34

images that are diagnosed by 22 experts [38]. Vessels are manually segmented in the

images. Based on manual segmentation, we compute cumulative tortuosity for each center

line point of vessels and employ mean and second central moment (CM2) of these values as

features [39]. For a curve, cumulative tortuosity is defined as the ratio of the curve length to

the distance between the two endpoints. As can be seen in the scatter plot in Figure 6(a), the

features represent a one dimensional manifold with varying noise levels as in GB dataset.

Figure 6(b) shows result of our manifold learning algorithm on the dataset along with some

example images. Expert diagnostic decisions are also displayed on top of each image where

the numbers represent the number of experts decided plus disease (+), pre-plus (±) and

neither (−) respectively. The most important observation that we make from this figure is

that the amount of tortuos vessels increases as we go through the manifold. Tortuosity plays

an important role for ROP diagnosis. We also observe this role by analyzing the expert

diagnostic decisions on the manifold such that the number of plus-disease decisions

increases, while the number of neither decisions decreases as we trace the projected points

from left to right. Moreover, the number of pre-plus decisions is high in the images in the

middle of the projected curve compared to the images at the left and rightmost ends. In this

example, preserving distance orders during dimensionality reduction is crucial, since

tortuosity is a critical factor for ROP diagnosis.

4. Conclusion

We developed a nonlinear dimensionality reduction method that is a generalization of

multidimensional scaling technique. Rather than using the common mean-squared error as

an unconstrained cost function, we formulated a constrained optimization problem. In this

problem, we assumed an unknown monotonic nondecreasing relationship modeled by radial

basis function interpolation between the distances in the original and the projected spaces to

be learned as a part of the manifold learning problem. Moreover, we incorporated explicit

constraints on the distance orders in the projected space. Using interior-point methods, we

solved this optimization problem, and in addition to obtaining the low-dimensional

representation, we also learned the nonlinear relationship between the distances. We also

proposed a new performance evaluation metric based on the number of the violated distance

orders. Using this metric and residual variance as the performance measures, we compared

our algorithm with other popular methods on synthetic datasets. The experiments

demonstrated that the proposed method outperforms the other algorithms. The local

algorithms performed poorly due to the sparsity of the data. The algorithm that performed

close to the proposed method was Isomap, which is global and is a special case of our

method. We applied the proposed algorithm on a real dataset where preserving distance

orders is crucial for correct disease diagnosis. Future work includes extending the

formulation of the optimization problem with convex relaxation to obtain faster solutions for

larger datasets.
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Appendix

In this appendix, we compute the gradient of the cost function, the Jacobian of the inequality

constraints, and the Hessian of the Lagrangian that we define in (15) and (16). We first start

with the derivation of the gradient ∇θ f (θ). Following the definition of θ

(20)

Then rewriting  and , where w is defined in (7),

, and α = [α1, …, αM−1], we compute

(21a)

(21b)

Note here that , then

(22)

Recall that DT (θ) = [∇θc1(θ) ⋯ ∇θc3M−2(θ)], then using the definition of c(θ), we have DT

(θ) = [AT ∇θ g1(θ) ⋯ ∇θ gM−1 (θ)]. Here . If

 and , from Section 2.2, gn (θ) = ‖ yl − yk ‖ − ‖ yi − yj ‖ + ξn, then ∇wgn (θ)

= 0, ∇ξ gn (θ) = [0, …, 0, 1, 0, …, 0], a vector of zeros with 1 at the nth location, and

. From the definition of gn (θ), we have ∇ym gn(θ)

= 0 for m = 1, …, N, and m ≠ i, j, k, l, and

(23)

Recall the definition of Hessian , using this

definition, we first demonstrate the computation of the Hessian of the cost function
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(24)

Then using (21), it is easy to show that . Again from

(21), we compute

(25)

Noticing that , we have

(26)

We can write , then

(27)

To complete the derivation of the Hessian of the Lagrangian, we continue with the

computation of  for m = 1, …, 3M − 2. Recalling the formula for the Jacobian of

the inequality constraints we derive above, it is straightforward to show that 

for m = 1, …, 2M − 1, and  for m = 2M, …, 3M − 2 such that

(28)

Then using (23) and the computation of the Jacobian matrix, we can show that

, and

(29)
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From (23) and the definition of gn (θ) recall that ∇ym gn (θ) = 0 for m = 1, …, N, and m ≠ i,

j, k, l, then , for m′ = 1, …, N, also

. We compute

(30)
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highlights

- A novel manifold learning method which preserves pairwise distance order

relations in the projected space

- Theoretical formulation of the constrained optimization problem extending

classical MDS-based mean-squared error minimization

- A new performance metric that involves number of preserved distance orders

- Proposed method also provides the relation between distances in original and

lower dimensional spaces
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Figure 1.
(a) Growing band dataset for noise variance σ2 = 0.045. The 2D data samples are indicated

with blue squares. X coordinates of red dots illustrate the original 1D manifold. (b)

Resulting h(·) function on GB dataset with σ2 = 0.1.
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Figure 2.
Noise analysis on GB dataset: (a) CVP on datasets with different noise variances using

LTSA [9], LLE [10], SDE [11], LSML [12, 13], DM [14], Isomap [7] and the proposed

methods, (b) Zoomed in version of (a) with LSML [12, 13], DM [14], Isomap [7] and the

proposed methods for better visualization, (c) Comparative residual variance results.

Residual variance for LLE is omitted since it gives very high values.
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Figure 3.
Spiral dataset: (a) Noisy data samples are shown with blue squares, red dots indicate the

original samples before adding noise, (b) resulting h(·) function.
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Figure 4.
Swiss roll dataset: (a) Data samples are shown with black dots overlayed with the knn-graph

edges (red) where k = 5, (b) resulting h(·) function.
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Figure 5.
2D representation of the Swiss roll dataset: (a) Original data in 2D, (b) Result with Isomap,

and (c) Result with the proposed method.
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Figure 6.
Experiment on retinal images. (a) scatter plot of the features: mean tortuosity and second

central moment (CM2) of tortuosity, (b) result of the proposed method along with some

example images indicated with green dots. Horizontal axis represents the projected points.

The numbers above each image show the number of expert decisions plus disease (+), pre-

plus (±) and neither (−) respectively. Notice that, amount of curvy vessels in images

increases as we go from left to right. This correlates with the expert diagnostic decisions

such that the number of plus disease decisions increases from left to right, while the number
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of neither decisions decreases. Moreover, the number of pre-plus decisions is high in the

images in the middle of the manifold and lower for images at the left and rightmost ends.
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