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Abstract

Methods for extracting quantitative information regarding nuclear morphology from

histopathology images have been long used to aid pathologists in determining the degree of

differentiation in numerous malignancies. Most methods currently in use, however, employ the

naïve Bayes approach to classify a set of nuclear measurements extracted from one patient. Hence,

the statistical dependency between the samples (nuclear measurements) is often not directly taken

into account. Here we describe a method that makes use of statistical dependency between

samples in thyroid tissue to improve patient classification accuracies with respect to standard

naïve Bayes approaches. We report results in two sample diagnostic challenges.
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1. Introduction

Given the prominent role of nuclear structure changes in cancer cells [1-3], numerous

researchers have made use of quantitative nuclear structure measurements to describe

automated methods for classifying different lesions. Automated systems aimed at detection

and diagnosis (grading) of cancerous tissues from histopathology images have been

described for diagnosing breast cancer [4-8], thyroid cancer [9-11], prostate cancer [12,13],

liver cancer [14] and colon cancer [15], to name a few. In these methods the following
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general strategy is typically used (see Fig. 1). First, images of tissue specimens, usually

obtained via surgical procedures and stained with a particular stain (e.g. hematoxylin and

eosin), are taken using transmission light microscopy, for example. After appropriate

preprocessing (e.g. color unmixing), the nuclei are segmented and numerical features

describing their morphological characteristics (e.g. size, perimeter, texture features) are

extracted and used to train a classifier which is capable of determining whether a set of

nuclei extracted from a particular individual can be classified as benign or malignant, or

given a differential diagnosis.

One prominent characteristic of many of the methods that use nuclear morphometry to grade

different kinds of cancers is that classification is performed using the naïve Bayes method

whereby each nuclear structure (represented by a set of numerical features) is often

classified independently from one another [16,17,11]. The set of nuclei extracted from a

patient is then usually classified by using the majority voting (MV), or taking the most

common class assignment, or perhaps by using different moments (e.g. mean, variance) of

the distribution of nuclei. Thus any statistical dependency, such as correlation for example,

between nearby structures is discarded. Several attempts to capture the spatial information

between nearby cells from microscopic images have been made by using the graph theory

[18,13]. In these works the x, y position of each nuclear structure in a field of view is used to

generate a neighborhood graph which, together with average nuclear features, is used in an

attempt to differentiate different classes. Information regarding the intricate distribution of

the numerical features describing each structure, as well as co-dependencies between these

in nearby nuclei, however, are often not used explicitly.

Our goal in this methodological note is to demonstrate that any amount of statistical

dependency between the morphological characteristics of nearby nuclei can be utilized to

improve the classification accuracy of methods usually employed for cancer diagnosis and

differentiation. It is well known that cells in living tissues utilize several mechanisms (e.g.

autocrine or paracrine) to ‘communicate’ with one another. Given that well established cell

communication mechanisms exist, it could then be possible that the morphological

information of a given nucleus could depend (statistically speaking) on the morphology of

nearby nuclei. Here we present evidence that indeed numerical features of nuclei are more

correlated to features extracted from nearby nuclei rather than those of distant nuclei, and

that this difference is statistically significant. We then describe a method that utilizes any

dependency present to augment the accuracy of classification (e.g. benign vs. malignant) in

comparison with the naïve Bayes strategy (e.g. majority voting).

We note that the idea of classifying sets of samples (nuclei), rather than individual samples,

is not new and has been studied in pattern recognition domains recently. In multiple instance

learning (MIL) algorithms, for example, [19,20], the learner receives a set of bags (each

containing more than one sample) that are labeled positive or negative. Here each bag is

labeled, and not each sample. In MIL algorithms, however, a bag is labeled negative if all

the instances in it are negative, but a bag is labeled positive if there is at least one instance in

it which is positive. Other than MIL algorithms, [21], for example, investigated different

instance learning methods, focusing on the classifier model construction. Under the same

context, [17] proposed a K-nearest neighbor method for group-based classification by
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combining a MV scheme and a pooling scheme. They indicate that knowing a set of test

samples that belong to the same, but unknown, class can be used to effectively reduce the

individual Bayes error rate. Similar approaches that combine individual classification

methods with the MV strategy were also investigated in the high-throughput applications

[22,23] and revealed an improved classification performance compared to those not using

MV strategy. In a similar manner, the method we describe below makes use of the spatial x,

y position of nuclei in a field of view to exploit their dependency for augmented

classification accuracies. We demonstrate the performance of our approach by classifying

three types of thyroid lesions from 78 patients.

The remainder of this paper is structured as follows. In Section 2, we describe the

mathematical model for the set classification problem, and show the relationship between

the MV strategy and the likelihood ratio test (LRT) strategy. We then describe a method that

is able to utilize ‘sets of nuclei’ extracted from image neighborhoods instead of individual

nuclei. We note the new method does not require a specific ordering within each sub-group.

Section 3 describes the computational procedures we utilized to demonstrate the application

of our approach. Section 4 presents experimental results comparing the several

computational strategies involved. Finally, summary and conclusions are offered in the last

section of this document.

2. Bayesian framework

Let  be a d-dimensional numerical feature vector describing the jth nucleus of the ith

patient, and let  describe the set of feature vectors pertaining to all

nuclei belonging to the ith patient. Given a set of nuclear measurements Xi, the objective in

pathology problems is to determine the class label y ∈ {y1, y2, …, yk} (for a problem with k

gradings or classes) for this set of measurements. The maximum a posterior (MAP) criterion

can be used to estimate the label of the set Xi via:

(1)

For a two-class problem, the label could be simply determined by comparing the posterior

probabilities, given by

(2)

and testing whether this ratio is smaller or greater than one. By assuming the prior

probability of each class is equal, i.e. p(y1) = p(y2) (when no a priori information regarding

incidence is available), the likelihood ration test (LRT) [24] can be further simplified as
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(3)

(4)

Computing the joint conditional probability  is often difficult

given the low number of samples in comparison with the number of dimensions (d × ni) that

this would involve. The naïve Bayes assumption is then often used to overcome this

problem. In this approach, it is assumed that the samples (nuclei) are independent from one

another, i.e. . Under this assumption, the log-likelihood

ratio in Eq. (3) can be computed as

(5)

Another approach that is often used in these situations is the MV strategy [25]. The main

idea is to classify each sample in the case individually by using a chosen classifier, label

each sample accordingly, and then assign the label with the majority of votes as the final

label for the case (patient). In order to analyze the connection between MV and LRT, let the

output of an individual classifier be , and define an indicator function as

(6)

where 1 denotes class y1, and 0 refers to class y2. Then the class label for the case Xi is

determined by calculating the numbers of samples belonging to each class

(7)

Note that if  is defined as the log-ratio of the posterior probabilities, then we could

obtain similar functions as in Eqs. (3) and (4),
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(8)

(9)

We can thus make a connection between the MV and the LRT under the naïve Bayes

assumption. The MV strategy uses an indicator function to truncate the ‘soft’ assignments in

the LRT.

2.1. Illustrating shortcomings of the naïve Bayes method

Although naïve Bayes approaches seem to work well in many applications, it is easy to see

why it may not be optimal at times, especially when strong dependencies between samples

(nuclei) may be present. Here we describe an illustrative example for this situation. Suppose

our problem consists of determining whether nuclei from a given patient can be classified as

benign (class 1) or malignant (class 2), and suppose we were using only one feature (e.g.

nuclear area) to characterize each nucleus. Now, for the sake of argument, allow nuclei

which are nearby each other in class 1 to have strong correlation with each other. That is,

every time a nucleus with a large area is encountered, the chance that the nucleus closest to

it also has a large area is high. Now suppose the situation is reversed for class 2. That is,

every time a nucleus with large area is encountered, the chances are high that its neighboring

nucleus would have a small area. This situation is depicted in Fig. 2(a). Now suppose we

were attempting to classify this dataset utilizing the naïve Bayes method. With this method,

we would assume independence between samples and utilize a one dimensional distribution

for each class, see Fig. 2(b). In this situation one can see the classes are indistinguishable

from one another irrespective of whether we would try to classify the data using the LRT or

MV methods described in the previous section, or whether we would try to classify the data

using moments (e.g. mean, variance) of these one dimensional distributions. On the other

hand, if we consider pairs of nearby nuclei instead the data could be classified at a rate better

than random assignment (e.g. using a K-nearest neighbor method), given that only a portion

of the nuclear pairs overlap (near the center of plot Fig. 2(a)).

2.2. New method for classification using spatial dependency

Here we describe a method to classify sets of nuclei extracted from each patient that can

take advantage of any local dependencies. The method assumes there may be dependency

between nuclei that are nearby each other in the tissue, while it assumes that nuclei far away

from each other have no shared dependency. Let Z = {Z1, Z2, …, ZM} represent the set of

nuclei pertaining to one patient, but now let each Zk correspond to sets of nuclei extracted

from local image fields of view. That is, each set Zk contains n nuclei (with n − 1 a

parameter to be chosen, a nucleus together with its n − 1 closest neighbors form a set). See

Fig. 4 for an example where the group size is set to n = 5. Given the assumption of local
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dependency we have then that p(Z∣yj) = p(Z1∣yj)p(Z2∣yj) ⋯ p(ZM∣yj). We can compute

p(Zk∣yk) using training data which in our case consist of similar neighborhoods chosen from

the available patient database. An approximate value for p(Zk∣yk) can be computed using a

kernel density-based approximation, or a K-nearest neighbor method. Below we provide

computational examples using both approaches. To that end, all that is necessary is a way to

estimate the distance measure D(Zk, Zm) between sets of nuclei (rather than individual

nuclei). Having such a distance would allow us to compute p(Zk∣yk) as

(10)

where  refer to the set of neighborhoods extracted from patients of class yj, and σ2 refers

to the width of the kernel, and Nyj represents the number of groups (sets) of nuclei for class

yj available in the training dataset.

We note that it is not possible to define a precise order in the nuclei that compose each

neighborhood set Zk. This is due to arbitrary (or unknown) rotation that the set of nuclei may

find themselves once imaged within a field of view. We therefore seek to minimize these

effects by utilizing the earth mover’s distance (EMD) [26,27] to measure how close or far

two sets of samples Zk and Zm are from one another. We note that in our case, the size

(number of nuclei) in each group is kept constant, and therefore the EMD minimization can

be written as

(11)

subject to the following constraints fuν ≥ 0, , , as well as:

(12)

Here the symbol du,ν denotes the feature space distance (described in more detail below)

between two individual nuclei u (from group Zk) and ν (from group Zm), while fu,ν denotes

how much ‘mass’ must be ‘transported’ between the two samples. See Fig. 3 for a schematic

illustration. Eq. (11) represents a linear program which we minimize using the approach

described in [27].

Note that the transportation plan matrix fu,ν, u, ν = 1, …, n is a square matrix representing

how much is being ‘transported’ (or moved) from index u to ν. The set of admissible

matrices have the property that their entries must be between zero and one, and their sum

along each column or row is one (bistochastic). They form a convex set [28] and the

following theorem can be useful in interpreting this phenomenon:

Theorem 2.1—The set of extreme points of the set of bistochastic matrices coincides with

the set of permutation matrices. In particular, the set of bistochastic measures is a
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polyhedron with n! vertices and every bistochastic matrix is a convex combination of

permutation matrices.

A proof can be found in [28]. As a consequence, for any group size n, the solution for the

optimal transport problem stated in (11) is a permutation matrix defining the correspondence

between each nucleus in the sets Zk and Zm. This ‘registration’ in feature space allows for

meaningful comparisons between sets of nuclei without needing to know which nucleus

corresponds to which, thus avoiding issues with arbitrary rotation (for example).

To summarize, we seek to classify sets of nuclei pertaining to a single patient without using

the naïve Bayes methodology and instead seek to exploit statistical dependency between

nearby samples. To that end we first extract sub-groups of nuclei chosen from

neighborhoods within a field of view. We then assume that there may be statistical

dependencies between nuclei within each group. In addition, we assume that statistical

dependencies between nuclei from different groups (far away from each other) are

approximately zero. To estimate the probability of observing a specific set of nuclei we

utilize the EMD distance (11). With a distance between sets in hand, we are now able to

apply the standard kernel density estimation (KDE) as well as the popular K- nearest

neighbor (K-NN) between sets of nuclei, rather than individual nuclei for estimating

p(Zk∣yk). The class of an unknown set of nuclei is then estimated using Eq. (3). Below we

demonstrate the application of the method using both the KDE and K-NN approaches, and

compare them to the standard naïve Bayes approach.

3. Experimental setup

3.1. Dataset

In order to test the effectiveness of our approach, we tested the proposed methodology for

classification of different thyroid lesions. The follicular lesions of the thyroid are selected in

this study, since they remain significant diagnostic challenges in surgical pathology. Our

dataset consists of three different types of thyroid lesions, namely follicular adenoma of the

thyroid (FA), follicular variant of papillary thyroid carcinoma (FVPC), and nodular goiter

(NG). While FVPC has familiar nuclear morphological features that are helpful

diagnostically; these features (e.g. nuclear contour abnormalities) are not specific and are

not always present. In addition, concerning other follicular lesions of the thyroid, nuclear

features are not particularly helpful and not utilized for diagnostic determination. In the end,

distinguishing between these entities is difficult even for experts in thyroid pathology.

Cases were reviewed by more than one pathologist who either specializes in thyroid

pathology or head and neck pathology (at time of diagnosis). Lesions were reviewed for the

study (J.A.O) and appropriate representative blocks, which contain lesions FA, FVPC or

NG, selected for staining and image acquisition. Tissue blocks for each type were obtained

from the archives of the University of Pittsburgh Medical Center (Institutional Review

Board approval #PRO09020278). In this dataset, there are 28 patients for each FA and NG

type of lesions, which have 609 and 584 fields of view, respectively and 22 patients for

FVPC containing 572 fields of view. All images used for analysis in this study were

acquired using an Olympus BX51 microscope equipped with a 100X UIS2 objective
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(Olympus America, Central Valley, PA) and 2 mega pixel SPOT Insight camera (Diagnostic

Instruments, Sterling Heights, MI). Image specifications were 24bit RGB channels and

0.074 microns/pixel, 118 × 89 μm field of view.

3.2. Nuclear segmentation

The segmentation method described in [29,30] was employed to segment nuclei from each

field of view. This method is based on supervised statistical modeling, which utilizes

example input structures to learn a statistical model of the shape and texture of the structures

to be segmented. From a new field of view, each nucleus is then segmented by maximizing

the normalized cross correlation between the model and neighborhoods in the slide image

and is adjusted through non-rigid registration. With the segmented nuclei images from the

field of views, we computed the geometric center of the nuclei and obtained the relative

coordinates of the centroids in the field of view as the center of each nucleus. After

segmentation, the nuclear dataset consisted of 10958,10182, and 6997 segmented nuclei for

classes FA, NG, and FVPC, respectively.

3.3. Feature extraction

Morphological and texture features were extracted for each segmented nucleus. In total, 256

numerical features were extracted per nucleus as follows:

a. MorphologicalFeatures: Nuclear morphological features are widely used in

discriminating cancer cells from normal ones in image analysis in digital pathology

[31]. We extracted six of the most popular features in our experiment: area,

convexity, circularity, perimeter, eccentricity and equivalent diameter.

b. TextureFeatures: We computed three intensity-derived features (average intensity,

standard deviation, and entropy), Haralick features and Gabor features as described

in [32,33,11]. Using these techniques we computed 220 texture features in total for

each nuclear image.

c. WaveletFeatures: Wavelet decomposition features can capture multi resolution

information from images. We computed wavelet features as described in [11],

which resulted in 30 features for each nuclear image.

Following the feature extraction procedure, the individual features were normalized by

subtracting their mean and dividing by the standard deviation. As a result, each normalized

feature set has mean 0 and standard deviation 1. The mean and standard deviation of each

feature were computed from the training set of data during cross validation step, which is

detailed in the following section.

3.4. Blind cross validation

In the results reported below we tested the ability of several methods to recover the correct

label of each patient data sample. To that end, we applied a standard ‘leave one out’ cross

validation (LOOCV) strategy. In our framework, we applied a ‘double cross validation’

methodology whereby a patient (case) is left out, and a classifier is trained using the

remaining patients. In training the classifier, the training set is again split into a training and

testing procedure to select the optimal relevant parameters (K in K-NN, σ in KDE, as well as
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the group size n). The selected optimal parameter combination is then used to determine the

class of the patient in the test set according to Section 2.2. The stepwise discriminant

analysis (SDA) [34] technique is first applied to the remaining training data and the

parameters of the classifiers estimated using an exhaustive search procedure [24]. We notice

that the number of groups in each class can be different in each ‘fold’. In order to avoid

biases, we restrict the number of patients, as well as the number of groups, belonging to each

class to be the same in the training set by randomly drawing from the entire set.

4. Results

4.1. Is there evidence for local spatial dependency between nuclear features?

We have sought to determine whether there is any evidence to believe that the nuclear

features describing each extracted nucleus are dependent on nearby features, relative to any

dependency between nuclei far away from each other. To that end, we utilized the entire set

of extracted nuclear features and computed the feature corresponding to the first direction of

the principal component analysis (PCA) technique applied to the entire feature space. Thus

each nucleus was reduced to one numerical feature using the PCA technique. We then

extracted pairs of nuclei (one nucleus and its nearest neighbor in that field of view) and

computed Pearson’s correlation coefficient between their PCA-derived features. For

comparison purposes, we also computed the correlation coefficient between pairs of nuclei

chosen to be far apart from each other (different fields of view). The experiment (correlation

coefficient computation) was repeated 20 times using random draws with replacement (each

draw consisted of number of pairs equal to the number of nuclei per image) and the mean

correlation coefficient is reported in Table 1 for both nearest and far away nuclei. Although

the average correlation is low, the difference in means for the correlation coefficient

computed using neighbor and non-neighbor cells is statistically significant (according to the

standard Student’s t-test), indicating the nearby samples may be statistically dependent.

We clarify that our purpose here is simply to uncover evidence for statistical dependency

between nearby nuclei. We do so by examining correlations between nearby nuclei (more

precisely in their corresponding PCA-derived features) in comparison to correlations

between nuclei which are far away from each other. Keeping in mind that it is possible for

two random variables to be perfectly uncorrelated while still being statistically dependent,

the actual correlation value is not the most important feature of the analysis, but rather the

fact that this correlation value is statistically significantly higher for nearby cells in

comparison to far away cells.

4.2. Comparison of classification results

Table 2 shows the average classification accuracy in differentiating FVPC and NG patients.

The table shows average classification results utilizing both naïve Bayes and the new group-

based approach discussed earlier. The averages were computed on 30 individual executions.

For each individual execution, random nuclei are selected for training. Note that, we select

random nuclei from each class to restrict the number of patients, as well as the number of

groups, belonging to each class to be the same in the training procedure.
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For comparison purposes the comparisons using both KDE as well as the KNN methods are

shown. In these tables, Naïve Bayes KDE stands for the standard method (assuming

independence) while ‘Group KDE’ show results using our method described in Section 2.2.

Similarly, Naïve Bayes KNN refers to the usual method and ‘Group KNN’ represents the

method we described earlier. For brevity, only the diagonal of the confusion matrices are

shown. That is, in this table, 71.82 percent of the actual FVPC patients were classified as so

using the KDE approach. The average classification accuracy (average of diagonal of

classification table) is reported in column 3. Finally, Cohen’s Kappa statistic [35] (another

measure often using in quantifying the agreement with the gold standard) is reported on

column 4. Table 3 contains the same data for the FA vs. NG diagnostic challenge. One can

see that for both diagnostic challenges, and whether one is using the KNN or KDE

techniques for estimating the related probabilities, on average, the naïve Bayes

underperforms the method that takes into account local dependencies.

Having 30 individual results of both approaches for both challenges, we were able to

analyze the significance between proposed method and naïve Bayes methods. According to

the standard Student’s t-test the improvement gained by our approach is statistically

significant with α = 0.01 (p < 0.01). Based on the average and standard deviation of 30

individual executions, one can also say that proposed approach is robust with a low

variation.

5. Summary and conclusions

Our goal in this methodological note was to demonstrate the potential for existence of

statistical dependency of nuclear features in nearby nuclei, and describe a method that is

able to utilize this for improved classification accuracy. We first derived a relationship

between the popular MV and LRT strategies for classifying sets of nuclei in relation to the

naïve Bayes approach. We then described a method for classifying sets of nuclei that first

groups nuclei which are within a certain neighborhood within a given field of view. Groups

(sets) of nuclei extracted from a given patient are classified utilizing the LRT that compares

the extracted groups to groups already present in the training data. Our method utilizes EMD

between sets of numerical features to make this comparison meaningful. We note that the

EMD has already been used in image analysis problems in the past [26,27], and here we

have adapted the technique to exploit local dependency in pathology datasets. Results

utilizing real patient data of thyroid lesions show that, on average, a few percentage points in

classification accuracy can be obtained. Comparisons were performed utilizing both KDE

and K-NN techniques for estimating the related probabilities and similar improvements were

found in both cases. We also note that these improvements, however, are likely to manifest

themselves differently in different malignancies, as well as datasets.

In addition, though we have used the EMD concept for comparing sets of nuclei, in this

context, the strategy is equivalent to comparing all possible parings of nuclei between two

groups, and choosing the pairing for which the sum of distances between each pair is

smallest (see Theorem 2.1). This provides a way to ‘register’ the sets of nuclei in feature

space. However, since the overall complexity of computing the EMD between two sets of

nuclei is roughly n3, the associated cost of the computation can be high for large databases.
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We also note an important limitation of the approach we presented here. Although the

method we described was successful in augmenting classification accuracy in cancer

detection in a statistically significant manner, by itself, it sheds no light into the form (e.g.

shape, texture, etc.) that this dependency is reflected in nuclear phenotypes. The ‘toy’

example provided in Section 2.1 (Fig. 2) serves only to illustrate the idea, and by no means

reflect actual dependencies which may be encountered. We also postulate that the form that

these dependencies take place could also vary case by case, as well as in different tissues

and cancer types. Future work will focus on utilizing modern transport-based image analysis

approaches [36] to decode the spatial and statistical dependency of the shape and texture

information in nuclear structures in several cancers.

Finally, we note that although we have applied the technique to nuclear structure-based

pathology based on histological imaging, the technique could be applied to any (sub)

cellular phenotype that can be segmented and measured. This includes vesicular protein

patterns imaged utilizing bright light microscopy as well as fluorescence microscopy, for

example.
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Fig. 1.
A typical flowchart of histopathology image-based computer-aided diagnosis.
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Fig. 2.
Illustration of group of nuclei distribution and individual nucleus distribution. (a) Each point

represents one single group with two nuclei, and the two axes refer to the single feature for

the two nuclei, respectively. Nuclei in each group are highly correlated and the distribution

of groups are identical and independent from each class; (b) Distribution of individual nuclei

based on the same feature.
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Fig. 3.
Schematic illustration of earth mover’s distance computation. Samples (nuclei) from the left

side (with indices u = 1, 2, 3) are transported to the configuration on the right side so as to

minimize the total amount of work (mass times distance).
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Fig. 4.
Illustration of cell grouping procedure where the number of nuclei per group is five.
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Table 1

The average correlation coefficient between two sets of cells over all patients of cancer type FVPC, NG and

FA.

FVPC NG FA

Between the nearest cells 0.149 0.133 0.119

Between the non-neighborhood cells −0.010 −0.050 −0.020

p-Value 4.29 × 10−7 7.96 × 10−5 5.17 × 10−6
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Table 2

Classification accuracy comparison on FVPC vs. NG (%).

FVPC NG Average Cohen’s Kappa

Naïve Bayes KDE 71.82 ± 6.8 66.67 ± 5.7 68.93 ± 4.3 0.38 ± 0.09

Group KDE 81.97 ± 4.8 68.45 ± 3.0 74.40 ± 2.9 0.49 ± 0.06

Naïve Bayes KNN 84.70 ± 4.0 57.98 ± 4.4 69.73 ± 3.6 0.41 ± 0.07

Group KNN 89.39 ± 4.2 64.64 ± 2.5 75.53 ± 1.9 0.52 ± 0.04
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Table 3

Classification accuracy comparison on FA vs. NG (%).

FA NG Average Cohen’s Kappa

Naïve Bayes KDE 75.48 ± 4.9 63.33 ± 5.1 69.41 ± 3.2 0.39 ± 0.07

Group KDE 78.93 ± 4.2 69.76 ± 3.5 74.35 ± 2.5 0.49 ± 0.05

Naïve Bayes KNN 73.21 ± 4.0 75.60 ± 2.8 74.40 ± 2.8 0.49 ± 0.05

Group KNN 82.26 ± 2.4 71.07 ± 2.7 76.67 ± 2.0 0.53 ± 0.04
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