
Accepted Manuscript

Geometric 3D point cloud compression

Vicente Morell, Sergio Orts, Miguel Cazorla, Jose Garcia-Rodriguez

PII: S0167-8655(14)00172-X
DOI: http://dx.doi.org/10.1016/j.patrec.2014.05.016
Reference: PATREC 6026

To appear in: Pattern Recognition Letters

Please cite this article as: Morell, V., Orts, S., Cazorla, M., Garcia-Rodriguez, J., Geometric 3D point cloud
compression, Pattern Recognition Letters (2014), doi: http://dx.doi.org/10.1016/j.patrec.2014.05.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.patrec.2014.05.016
http://dx.doi.org/http://dx.doi.org/10.1016/j.patrec.2014.05.016

Geometric 3D point cloud compression

Vicente Morella, Sergio Ortsa, Miguel Cazorlaa,∗, Jose Garcia-Rodrigueza

aInstituto de Investigación en Informática
University of Alicante
PO. Box 99, E-03080 Alicante, Spain

ARTICLE INFO ABSTRACT

Article history: The use of 3D data in mobile robotics applications provides valuable informa-
tion about the robot’s environment but usually the huge amount of 3D informa-
tion is unmanageable by the robot storage and computing capabilities. A data
compression is necessary to store and manage this information but preserving
as much information as possible. In this paper, we propose a 3D lossy com-
pression system based on plane extraction which represent the points of each
scene plane as a Delaunay triangulation and a set of points/area information.
The compression system can be customized to achieve different data compres-
sion or accuracy ratios. It also supports a color segmentation stage to preserve
original scene color information and provides a realistic scene reconstruction.
The design of the method provides a fast scene reconstruction useful for further
visualization or processing tasks.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction1

In recent years, the number of applications concerned with 3D data processing has increased considerably due to the emergence2

of cheap 3D sensors, like Kinect. RGB-D cameras provide useful data, which consist of 3D points with color information. That3

data could be used in different applications, such as medicine, entertainment industry, robotics, and many others. However, the4

huge amount of data provided by those cameras is unmanageable in common 3D methods like the Simultaneous Location And5

Mapping (SLAM) (Durrant-Whyte and Bailey (June. 2006); Bailey and Durrant-Whyte (Sept. 2006)) in mobile robotics field. We6

propose a 3D data compression method to reduce the amount of information but, at the same time, providing a descriptive objects or7

∗Corresponding author: Tel.: +34-965-903400 ext: 2992; fax: +34-965-903902;
e-mail: vmorell@dccia.ua.es (Vicente Morell), sorts@dtic.ua.es (Sergio Orts), miguel.cazorla@ua.es (Miguel Cazorla), jgacia@dtic.ua.es

(Jose Garcia-Rodriguez)
Preprint submitted to Pattern Recognition Letters June 5, 2014

2

scene representations. Detailed 3D object representations have proven to be useful in many different applications. However, a large8

amount of data is required to provide a detailed 3D object model that makes these representations difficult to manage. In this work,9

we propose the compression on the 3D data, so that the amount of data can be effectively reduced, preserving at the same time as10

much information as possible. Currently, most 3D object models are visualized using polygonal meshes, since such visualization11

provides well defined object boundaries and is suitable to visualize the structure of the 3D object. However, many existing 3D data12

acquisition techniques often obtain 3D point cloud data of the object, which needs to be further processed to obtain correct 3D13

polygonal surface meshes.14

Several 3D compression methods exist in the literature. We can differentiate between lossless methods (the result of the decom-15

pression is equal to the original source) and lossy methods. They also can be classified in progressive/non-progressive methods.16

Progressive methods try to represent the 3D data information incrementally, giving an initial form and increasing the level of detail17

of the incremental reconstructed 3D data. This is a good approach for systems that have time constraints or interruption on the18

communication channel.19

Most of these approaches work with 3D mesh information primitives (usually triangles and quads) to reduce the amount of20

information, using different techniques to encode vertex, edges and neighbors primitives. One of the first approaches to encode the21

connectivity of triangle meshes was the Edgebreaker (Rossignac (1999)). The Edgebreaker uses a finite state machine that moves22

from one triangle onto an adjacent one in a spiral. At each step it encodes whether the tip vertex and the left and right neighbors23

of the current triangle have already been visited. It encodes the complete connectivity of the triangle mesh in the clers string, a24

sequence of symbols, one per triangle, from the set {C,L,E,R,S}, where each letter indicates the way to compress and decompress25

the mesh. A trivial, fixed, code guarantees 2 bits per triangle encoding for the connectivity of any manifold triangle mesh without26

holes or handle. Several variations of this first algorithm were presented (Szymczak et al. (2000); Gumhold (2000); Isenburg and27

Snoeyink (2001)) in order to reduce the amount of bits per vertex or bits per edge. Other works, like Touma and Gotsman (1998),28

try to reduce the amount of connectivity information coding the valences (edges) of the points.29

The algorithms based on 3D point clouds usually use the spatial organization of the points to encode them in a structure like an30

3

Octree in order to reduce the amount of information. An Octree is a tree data structure in which their internal nodes have exactly31

eight children. Octrees make a partition of the three dimensional space by recursively subdividing it into eight octants. Another32

structure similar to the Octree approach is the Voxel Grid (VG). The VG sub-sampling technique is based on a grid of 3D voxels.33

This technique has been traditionally used in the area of computer graphics to subdivide the input space and reduce the number34

of points (Connolly (1984); Kobbelt and Botsch (2004)). VG algorithm defines a Voxel grid in the 3D space and for each voxel a35

centroid is chosen as the representative of all the points that lie on that voxel.36

The use of structure like Octrees enables the system to perform some operations like fast searching of the neighbors, reduce the37

amount of points visualized or get a more or less precise representation of the point cloud. Most of these Octree based methods38

achieve a lossless compression giving the Octree enough levels to encode the source points as the cell centers of their leaves. This39

Octree based representation of the 3D data usually allows a progressive compression/decompression of the data because it easily40

generates a first approximation of the data using the first levels of the Octree.41

In Botsch et al. (2002), an Octree based method is presented in order to improve the visualization and operations of 3D trans-42

formation and pixel shading. In Schnabel and Klein (2006), a lossless progressive compression method is presented which uses a43

novel method of position and color prediction of the children nodes points of each Octree cell based on a local surface estimation.44

Smith et al. (2012) propose another Octree based compression method that uses a marching cube polygonal estimation on each cell45

of the Octree and a given error tolerance parameter. The method prunes the cell nodes whose plane estimation error is lower than46

the tolerance parameter. This step allows to reduce the amount of data by coding this information into the compressed data which47

contains the planes of each cell.48

In Peng and Kuo (2005), a 3D mesh compression method is presented that uses an Octree to represent the vertices of the mesh49

and the connections between them. With this representation, given an Octree depth level, a mesh can be obtained with different50

resolution and precision. Kammerl et al. (May 2012) propose a spatially and temporal compression of a point cloud stream. It also51

uses Octrees to encode the occupancy of the space and it allows to control the encoding rate and the encoding precision. It also52

presents a method to compute the difference between consecutive point clouds by comparing the Octrees of their representation.53

4

Once compared, only the changes of the data are coded and sent. This approach is interesting on controlled scenarios where there54

are only a few changes between different frames and it provides compression ratios of 40x with a coordinate precision of 9mm.55

Following this idea of temporal redundancy; some papers, like Fu et al. (July 2012), use a modification of the traditional video56

encoding methods to compress the depth images of kinect-like devices. They use a reference frames and use a depth prediction to57

generate consecutive frames. The results of this lossy method report a compression of 55-85%.58

Our method tries to reduce the amount of data of a 3D point set but trying to preserve as much information as possible. Though59

it can be applied to any scenario, it is designed to work with man-made ones. The proposed method detects planes and represents60

them with its plane equation, extracting the points belonging to that plane. A color segmentation method is applied to those points61

in order to keep color information. At this point, we have groups of points belonging to a plane and with similar color information.62

We extract the border of the group, obtaining a set of points defining a (concave) hull. A Delaunay triangulation of the hull points63

is applied to decompose the surface of the plane using triangles. That is the information we keep: triangles with their vertex,64

distribution of the points and color information. The method can be controlled with an initial compression ratio: when the number65

of processed points is over the ratio, we stop the method. The rest of points in the initial point set is stored with initial coordinates66

and color information.67

For decompressing, we use the information of the triangles and the number of points of the original surface of these planes to68

generate the reconstruction points inside of their surface, assigning them the stored color information. Then, an uniform point set69

is generated inside of each triangle getting a similar distribution than the original point set. Finally, the uncompressed point sets are70

added to complete the 3D point set reconstruction. Figure 1 shows an overview of the compression/decompression system.71

The rest of the paper is organized as follows: Section 2 describes the compression step. Section 3 explains how the compression72

is reverted. In Section 4 we present some experiments and discuss results obtained using our approach and compare it with previous73

work. Finally, Section 5 draws the conclusions and directions for future work.74

5

Plane extraction

ConcaveHull
computation and

reduction

Read compression
info

Read triangles of
each plane

Upsampling point
inside triangles

All planes
done?

Add Rest of points

Yes

No

Enough points
classified?

No

Save Rest of points

Yes

Compression Reconstruction

Delaunay
triangulation and
triangle checking

Compressed file

Source
point cloud

Reconstructed
point cloud

Compressed file

Color segmentation

Fig. 1. Scheme of the compression/reconstruction proposed system.

2. Compression phase75

In the compression phase we process the source point cloud and extract the biggest plane of the current point cloud. Plane76

extraction is an important part of the compression method because the whole method is based on it. we use a RANdom SAmple77

Consensus (RANSAC) (Fischler and Bolles (1981)) method to extract the planes from the point cloud. RANSAC is an iterative78

method to estimate parameters of a mathematical model which, in this case, is a plane model. We introduce a parameter that defines79

the maximum distance between the points and the plane model. When a plane is detected, the inliers (points that belongs to that80

plane) are extracted from the source point set. This method uses a distance parameter to determine when a point must be included81

as a inlier in the plane. Once we obtain a new point cloud representing the inliers points in that plane, we filter the isolated points82

in order to discard these points in the compression. These discarded points are added to a non compressed point cloud. This filter83

removes the points which have less than k neighbors in the sphere with radius r. These parameters are fixed empirically based on84

previous experimentation.85

Once a set of points belonging to a plane are extracted, we apply a color segmentation method. If the point set has no color86

6

information (for example, data coming from a 3D laser without color information), no further segmentation can be done. So the87

plane is stored as is. If color information is available, any image segmentation algorithm could be applied, as the points lay in a88

plane. Using a projection, 3D points can be easily transformed into 2D and then, any segmentation algorithm will work with that89

points. In our case, we have used the K-means algorithm (Coleman and Andrews (1979)), as it is easy to implement with 3D points,90

without projecting them to 2D. The K-means clustering method divide the points into K clusters in which each point belongs to the91

cluster with the nearest mean.92

Once the different colored planes are detected, we need to compute the boundaries of each plane segment. These contours may93

be concave and may have holes. To get these concave hulls we perform an Alpha shapes (Akkiraju et al. (1995)) method that uses94

an alpha parameter to set the detail level of the resultant hull (the smaller the parameter is the more detailed is the hull). After95

the edges extraction, we apply an edge reduction step in order to reduce the amount of points needed to represent the plane. This96

method is proposed in Lowe (1987). Basically, it detects if consecutive points are in the same line and removes them taking only97

first and last points of that line.98

Once we have a polygon of the surface represented by a plane, we triangulate the surface using a Delaunay triangulation.99

The Delaunay triangulation proposed by Delaunay (1934) results in a set of triangles which satisfy the Delaunay criterion for n-100

dimensional simplexes (in this case n=2 and the simplexes are triangles). This criterion states that a circumsphere of each simplex101

in a triangulation contains only the n + 1 defining points of the simplex. This triangulation gives triangles whose angles tend to be102

as bigger as possible or in other words, the triangles tend to be as regular as possible.103

After the Delaunay triangulation, we compute the number of points that belongs to each triangle and if this number is lower104

than a given threshold, the triangle is excluded. While we are detecting the correct triangles of the surface, we compute the area105

of each triangle for further calculation of the number of points that should be generated inside each triangle. Then, for each plane106

extracted, we have a set of triangles. The information of the triangles that belong to each plane is stored in a file. For each triangle,107

we have got the following information: its vertex, the distribution of the points inside the triangle and its color information. In our108

implementation, we have used a simple segmentation approach, so each triangle has only a color RGB value which is stored with109

7

Algorithm 1 Pseudo algorithm for compression.
Require: P3D: 3D point cloud.

Require: percProcess: minimum percentage of points to process.

Require: minNumPointsPlane: minimum number of points in a plane.

Require: relArea: threshold which allows to reject triangles with few points.

Ensure: File containing the remaining points and the planes obtained.

1: initialNPoints = nPoints(P3D) where nPoints is the number of points.

2: while nPoints(P3D)/initialNPoints > percProcess do

3: Extract the largest plane P from P3D using Ransac.

4: if nPoints(P) < minNumPointsPlane then

5: Go to 28.

6: end if

7: Extract the points Ppoints belonging to P and delete them from P3D.

8: Apply the radius outlier removal to Ppoints.

9: Perform the color segmentation of Ppoints and get ColoredPlanes.

10: for Each color plane cp in ColoredPlanes do

11: Calculate the concave hull of cp. The result is a contour C.

12: Reduce the contour C into Cr.

13: Find a Delaunay triangulation Dt from Cr.

14: numPointsPlane = 0

15: areaPlane = 0

16: listTriangles = void

17: for Each triangle t in Dt do

18: Find the number of points m inside the triangle t and its area A.

19: if m/A > relArea then

20: Add the triangle to listTriangles

21: areaPlane = areaPlane + A

22: numPointsPlane = numPointsPlane + m.

23: end if

24: end for

25: end for

26: Store the plane, formed by numPointsPlane, areaPlane and listTriangles.

27: end while

28: Store the remaining points from P3D in a file.

the triangle. There is not need to use further compression. But if other segmentation method is used, another color coding might be110

used in order to compress color information. For example, the color entropy method used for JPEG images (Wallace (1991)).111

8

Once all the triangles in a plane are processed, the next plane is processed. The algorithm stops when the compression ratio is112

reached. This ratio is given by the user and indicates a percentage of processed points with respect to the number of initial points.113

When that ratio is reached, the remaining points (not processed) are also stored, together with the triangles.114

Thus, in the compressed file we save the triangles detected (with its vertex, point distribution and color information). We also115

save the uncompressed points to accumulate them with the generated point cloud. The complete pseudo algorithm for compression116

is shown in Algorithm 1.117

3. Decompression phase118

The reconstruction or decompression part (Algorithm 2) of the proposed compression system is simpler than the compression119

part. Mainly it takes each triangle saved and generates a proportional number of points to its area assigning the same color to each120

point in the triangle. Once we have the reconstruction of all the triangles we add the uncompressed points.121

Algorithm 2 Pseudo algorithm for decompression.
Require: 3DFile: File containing the 3D points and triangles.

Ensure: 3D point cloud P3D.

1: P3D void point cloud.

2: Add to P3D the 3D points in 3DFile.

3: for Each plane P in 3DFile do

4: A is the area of P.

5: nPoints is the number of points in P.

6: for Each triangle t in P do

7: At is the area of the t.

8: nPointsToGenerate = (At/A) ∗ nPoints.

9: Randomly generate nPointsToGenerate inside the triangle t and add them to P3D.

10: end for

11: end for

Figure 2 shows an example of compression and decompression of a 3D point cloud.122

4. Experimentation123

We have implemented our method in C++ using some operations of the Point Cloud Library (PCL) (Rusu and Cousins (2011)).124

Experimentation results are computed on a Intel i5-2320 3GHz. In this section we have developed several experiments in order125

9

Fig. 2. Reconstruction results with a compression rate of 0.50 with a RMS distance error of 0.0074 and color error of 59.7. Left: reconstructed point cloud;

right: original point cloud.

to test the validity of the method. In Section 4.1 we have measured the effectiveness of the method. Section 4.2 presents some126

experiments with color information.127

4.1. Parameter settings128

Due to the different algorithms used to obtain the compression of the point cloud, we should establish some parameters in129

order to achieve good results in terms of compression and quality rates. Some of these parameters are set empirically to obtain130

good results with man-made environments and point clouds obtained with sensor devices like the Kinect. In this first experiment,131

we tested our method with different values of the percentage ratio called percProcess in Algorithm 1. This parameter allows to132

determine the desired compression level.133

For this experiment, we have selected several synthetic RGB-D data, shown in Figure 3. Kinect has a depth error which134

might affects the comparison with our method. In some cases, our method provides error reduction in the planes extraction135

from acquire data. In the situation that the camera is in front of a plane wall, the camera provides a point cloud which136

forms a plane but with some depth error. Our method is able to provide a plane for that situation (depending of the camera137

error and the point to plane distance parameter of RANSAC). So, our method will reconstruct a perfect plane point cloud,138

eliminating the error introduced by the camera.139

In order to measure the quality of the results we show the compression rate (the lower value is the most compressed) and140

the Root Mean Square (RMS) error which represents the average of the distances of the closest points between the source and141

10

Fig. 3. Point clouds used in the parameter settings experiment.

the reconstructed data file and vice versa. The RMS error measures the quality of the reconstruction which is lower when the142

reconstruction points are close to the original ones. We compare the results of our algorithm with two state of the art compression143

methods: Voxel grid and Octree. The Octree implementation uses the center of the occupied nodes as a compression method. The144

Voxel Grid implementation uses the centroid of the occupied Voxels. Both Octree and Voxel Grid implementations are available in145

the Point Cloud Library.146

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90%80%70%60%50%40%30%20%10%

C
o

m
p

re
ss

io
n

 r
at

e

Min % of points to compress

Compression

Ourcmethod

VoxelGrid/Octree

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90%80%70%60%50%40%30%20%10%

C
o

m
p

re
ss

io
n

 r
at

e

Min % of points to compress

Compression

Ourcmethod

VoxelGrid/Octree

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90%80%70%60%50%40%30%20%10%

C
o

m
p

re
ss

io
n

 r
at

e

Min % of points to compress

Compression

Ourcmethod

VoxelGrid/Octree

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

10a 20a 30a 40a 50a 60a 70a 80a 90a

R
M

SN
er

ro
rN

Vm
x

MinNaNofNpointsNtoNcompress

ClosestNNeighborNdistanceNerror

OurNmethod

Octree

Voxel

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

10a 20a 30a 40a 50a 60a 70a 80a 90a

R
M

SN
er

ro
rN

Vm
x

MinNaNofNpointsNtoNcompress

ClosestNNeighborNdistanceNerror

OurNmethod

Octree

Voxel

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

10a 20a 30a 40a 50a 60a 70a 80a 90a

R
M

SN
er

ro
rN

Vm
x

MinNaNofNpointsNtoNcompress

ClosestNNeighborNdistanceNerror

OurNmethod

Octree

Voxel

Fig. 4. Results of the compression/reconstruction with different minimum percentages of points to process. Top: compression rate (Octree and Voxelgrid

provide the same values). Bottom: RMS error.

Figure 4 shows the comparison of our method with respect to VoxelGrid and Octree methods. We have selected three147

different scenes, from left with the highest number of planes to right with the lowest number of planes. On the top row,148

11

we present the compression rate relate with the minimum percentage of points to compress. It can be appreciate that as149

the percentage of points to compress increases (percProcess) the compression rate decreases. Voxelgrid and Octree present150

a linear relationship. This is the expected behavior for these methods. For our method, the behavior is similar to the one151

obtained with previous methods., but depending of the kind of scene (more or less planes) the obtained compression is152

different. However, the compression level is lower. In scenes with no planes, the compression rate could be even higher than153

in scenes with big planes.154

Regarding the distance error, in the bottom row of Figure 4, we appreciate how when the percProcess increases, the error155

also increases which is also expected because the fewer points to be compressed, the fewer rate of compression obtained156

(which means that more points of the original source are saved). Note that although more compression is demanded, the157

error is almost constant. This is due to the fact that although we ask for more compression, no more planes are founded158

and then no more compression is done. Therefore, we can conclude that the compression rate and the error are related and159

we should choose the parameters according to the desired results. Comparing with Octree and Voxelgrid, our method has160

lower error for compression percentages higher than 50%. This error also depends of the kind of scene to compress (more161

or less planes). In general, with a maximum error of 5mm in our method, this error is low enough for a real RGB-D camera162

(more than 5cm at 5 meters).163

Both methods, VoxelGrid and Octree, do not have reconstruction phase. Once the point cloud is reduced, they are not164

able to generate the erased points. They reduce a set of points inside a voxel by a representative point. This point might be165

the voxel center or the geometric mean of the points inside the voxel. With respect to color, the color of the representative166

point is the mean of the color of the points inside the voxel. Furthermore, both methods do not store the density of points in167

the voxel, which is a disadvantage against our method. For example, for those methods, two voxels, one with just one point168

and other voxel with 100 points, will have only one representative point. Our method stores the density of points inside a169

plane, so the points generated in the reconstruction phase will have a distribution closest to the original point cloud. Of170

course, the original point cloud will never be reconstructed, but the reconstructed one will be closer to the original than the171

12

ones in the VoxelGrid and Octree methods.172

Figure 5 shows the compression time of our method which is the most time demanding. We observe in Figure 5 (right) that the173

reconstruction time is small (between 8 and 30 milliseconds) and the main part of the compression time is spent in the file reading174

part. For the reconstruction phase, Voxelgrid and Octree have a computing time between 10 and 200 milliseconds.175

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,95 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

RM
S

er
ro

r

Min % of points classified

Error

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,95 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

co
m

pr
es

sio
n

ra
te

Min % of points classified

Compression

4000

9000

14000

19000

24000

29000

34000

39000

44000

49000

0,95 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

tim
e

(m
s)

Min % of points classified

Compression time
only compression with File Read

5

50

500

5000

0,95 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

tim
e

(m
s)

Min % of points classified

Reconstruction time
only reconstruction with File Read

Fig. 5. Compression/reconstruction time. Left: compression time. Right: reconstruction time.

Figure 6 shows different reconstruction results with different ratio of compression. In this case, we have set K = 1 for the176

segmentation step, in order to hide the effects of color segmentation, as we want to check only the effects of ratio compression.177

When a high compression is demanded (part a), ratio=0.2) the method tries to extract as much planes as possible, resulting in small178

triangles, since the points supporting the plane are not exactly a plane. For small compression (part c), ratio=0.8) the scene is very179

similar to the original one.180

4.2. Color compression181

In this experiment we show the results of color compression using different parameters and how it affects to the compression182

rate. To measure the color error we compute the average of the euclidean distances of the colors (rgb) of the closest points between183

the source and generated point clouds similar than the RMS distance error used in experiment 4.1.184

Figure 7 shows the color reconstruction using different values for the segmentation process. In the reconstruction process, the185

polygons are well defined because all the points of the same polygon have the same color. This is expected because the use of the186

K-means color segmentation discretizes the color into K different colors. The color information reconstructed is enough to easily187

differentiate the objects in the scene. In applications which need a more accurate color representation (low color error) it should be188

13

Fig. 6. Different compression of the same scene using a K value of 1 and level compression of 0.2 a), 0.5 b), 0.8 c) and original d).

necessary to apply a more sophisticated and efficient color segmentation and reconstruction methods.189

Figure 8 shows and experiment that includes color information. As expected, when increasing the K value of the K-means190

algorithm, the color error decreases. Besides, the compression is higher when using a lower K, due to with a higher K, a more191

detailed segmentation is obtained.192

4.3. Non frontal point clouds reconstruction193

In this last experiment we show how the system works not only on 3D sets generated from a depth image. Due to the design of194

the system it can be used to compress more complex 3D data sets. In this case, we used a 360 degrees data set. In Figure 9 (left), it195

can be observed which points are generated inside the polygons and the points that are not compressed. In Figure 9 (right), It can196

be appreciated the points distributed in line forms while in the reconstructed point cloud, the point are more randomly generated197

14

Fig. 7. Reconstruction with several examples using different K values in the segmentation step: a) k=1 b) k= 5 c) k=20 d) original point cloud.

K colors color error compression RMS distance error
color.exe frame_0_sift.pcd 0.05 0.15 0.2 0.05 1 1 -- color 74.9496 0.266891 -712 0.0112325 1 75 0,266891 -712 0,0112325
color.exe frame_0_sift.pcd 0.05 0.15 0.2 0.05 1 3 --- color 57.7407 0.289977 -1401 0.00991003 3 58 0,289977 -1401 0,00991003
color.exe frame_0_sift.pcd 0.05 0.15 0.2 0.05 1 5-- color 52.7969 0.316257 -1967 0.00940399 5 53 0,316257 -1967 0,00940399
color.exe frame_0_sift.pcd 0.05 0.15 0.2 0.05 1 10 -- color 50.2401 0.365378 292 0.00849476 10 50 0,365378 292 0,00849476
color.exe frame_0_sift.pcd 0.05 0.15 0.2 0.05 1 20 -- color 50.4644 0.389495 13201 0.00856271 20 50 0,389495 13201 0,00856271

40

45

50

55

60

65

70

75

80

1 3 5 10 20

RM
S

Co
lo

r e
rr

or

K-means K colors

color error

0,24

0,26

0,28

0,3

0,32

0,34

0,36

0,38

0,4

1 3 5 10 20

co
m

pr
es

sio
n

ra
te

K-means K colors

compression

Imagen nubes color label:
Reconstruction results of color compression with different K-Means K values. a) k=1 b) k= 5 c) k=20 d) original point cloud.
Texto : algo asi

label de la grafica:
Results of the compression with \emph{perprocess} 0.2 with different K values of K-means. On the left, is it shown the RMS color errors. On the right, the
compression rate is showed.
Texto : algo asi
In figure XX left, we can see as the K from K-means increases, the RMS color error decreases. At figure XX right we can see as expected that when the K increases,
the compression rate also increases. The reason is when the K is higher we have to detect and code a higher number of planes, so we have to store a greater
amount of points.

0,008

0,0085

0,009

0,0095

0,01

0,0105

0,011

0,0115

1 3 5 10 20

co
m

pr
es

sio
n

ra
te

K-means K colors

RMS distance error

Fig. 8. Experiment using different levels of K in the K-means algorithm.

over its surface.198

5. Conclusions199

In this paper we have proposed a method of 3D point cloud data compression based on the geometric structure of man-made200

scenarios which allow the compression of the 3D and color data. The method is able to compress 3D data and reconstruct it keeping201

the color information provided.202

15

Fig. 9. Reconstruction results of a 360 degrees captured point cloud data. 0.0119886 RMS distance error, 30.1 color error and 0.24 compression ratio

(original point set file: 70MB; compressed file: 16,7MB). On the left, the reconstructed point cloud is shown and on the right side the original point cloud.

Experimentation results show that the compression system proposed achieves high compression ratios customized in an inter-203

active way by the users. Due to the plane based compression of the system, the compression rate is better when most of the points204

of the source data set belong to planes. It is easy to include a color segmentation algorithm to preserve color information. The205

compressed data composed of a set of planes and other points can be directly used by other applications like 3D registration or 3D206

data visualization. Our method has a similar behavior compared with Voxelgrid and Octree, with lower error in the reconstruction207

phase. In fact, the reconstruction phase is the main contribution of this paper and it is and advantage respect to other lossy208

methods, cause they are not able to reconstruct an approximated point cloud, like VoxelGrid and Octree.209

As future work, we would like to include another geometric primitives to extract them from the data and not only planes210

(cylinders, curves, etc.). Another feature to be improved is the plane color segmentation in order to set a globally coherence of211

colors and/or texture compression information. We also plan to improve the color compression using a color coding similar to the212

one used by JPEG standard. As our method is time consuming, the implementation of some of the operations on General Purpose213

Graphic Process Units (GP-GPUs) using technologies as CUDA or openCl should increase the efficiency of the proposed method.214

Acknowledgments215

This work has been supported by the Spanish Government DPI2013-40534-R grant.216

16

References217

Akkiraju, N., Edelsbrunner, H., Facello, M., Fu, P., Mücke, E.P., Varela, C., 1995. Alpha shapes: Definition and software, in: Proceedings of the 1st International218

Computational Geometry Software Workshop, pp. 63–66.219

Bailey, T., Durrant-Whyte, H., Sept. 2006. Simultaneous localization and mapping (slam): part ii. Robotics & Automation Magazine, IEEE 13, 108–117.220

Botsch, M., Wiratanaya, A., Kobbelt, L., 2002. Efficient high quality rendering of point sampled geometry, in: EGRW 02: proceedings of the 13th eurographics221

workshop on rendering, pp. 53–64.222

Coleman, G., Andrews, H.C., 1979. Image segmentation by clustering. Proceedings of the IEEE 67, 773–785.223

Connolly, C.I., 1984. Cumulative generation of octree models from range data, in: Proceedings of the First International Conference on Robotics and Automation,224

IEEE. p. 25.225

Delaunay, B., 1934. Sur la sphre vide, Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskikh i Estestvennykh Nauk.226

Durrant-Whyte, H., Bailey, T., June. 2006. Simultaneous localization and mapping (slam): part i. Robotics & Automation Magazine, IEEE .227

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography.228

Commun. ACM 24, 381–395.229

Fu, J., Miao, D., Yu, W., Wang, S., Lu, Y., Li, S., July 2012. Kinect-like depth compression with 2d+t prediction, in: Multimedia and Expo Workshops (ICMEW),230

2012 IEEE International Conference on, pp. 599–604.231

Gumhold, S., 2000. New bounds on the encoding of planar triangulations.232

Isenburg, M., Snoeyink, J., 2001. Spirale reversi: Reverse decoding of the edgebreaker encoding.233

Kammerl, J., Blodow, N., Rusu, R., Gedikli, S., Beetz, M., Steinbach, E., May 2012. Real-time compression of point cloud streams, in: Robotics and Automation234

(ICRA), 2012 IEEE International Conference on, pp. 778–785.235

Kobbelt, L., Botsch, M., 2004. A survey of point-based techniques in computer graphics. Computers & Graphics 28, 801–814.236

Lowe, D.G., 1987. Three-dimensional object recognition from single two-dimensional images. Artif. Intell. 31, 355–395.237

Peng, J., Kuo, C.C.J., 2005. Geometry-guided progressive lossless 3d mesh coding with octree (ot) decomposition. ACM Trans. Graph. 24, 609–616.238

Rossignac, J., 1999. Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 47–61.239

Rusu, R.B., Cousins, S., 2011. 3D is here: Point Cloud Library (PCL), in: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),240

Shanghai, China.241

Schnabel, R., Klein, R., 2006. Octree-based point-cloud compression, in: Botsch, M., Chen, B. (Eds.), Symposium on Point-Based Graphics 2006, Eurographics.242

Smith, J., Petrova, G., Schaefer, S., 2012. Smi 2012: Full progressive encoding and compression of surfaces generated from point cloud data. Comput. Graph. 36,243

341–348.244

Szymczak, A., King, D., Rossignac, J., 2000. An edgebreaker-based efficient compression scheme for regular meshes.245

Touma, C., Gotsman, C., 1998. Triangle mesh compression, in: Graphics Interface 98 Conference Proceeding.246

Wallace, G.K., 1991. The jpeg still picture compression standard. Commun. ACM 34, 30–44.247

• Our main goal is to compress and decompress 3D data using geometric methods.
• The proposed method extracts planes and makes color segmentation.
• The result from segmentation is triangulated and triangles stored.
• Thus, we can reach great ratio compression with low color and point loss.
• It's designed to work with man-made scenarios,but can be applied to any general one

