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ARTICLE INFO ABSTRACT

Article history:

Semi-Supervised Learning

Proximity Data

Dissimilarity Data

Conformal Prediction

Generalized Learning Vector Quantization

Existing semi-supervised learning algorithms focus on vectorial data given

in Euclidean space. But many real life data are non-metric, given as

(dis-)similarities which are not widely addressed. We propose a conformal

prototype-based classifier for dissimilarity data to semi-supervised tasks. A

‘secure region’ of unlabeled data is identified to improve the trained model

based on labeled data and to adapt the model complexity. The new approach

(i) can directly deal with arbitrary symmetric dissimilarity matrices, (ii) offers

intuitive classification by sparse prototypes, (iii) adapts the model complex-

ity. Experiments confirm the effectiveness of our approach in comparison to

state-of-the-art methods.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the sheer amount of data, only few of these data

are completely labeled, and labeling of all data is indeed very

costly and time consuming. Accordingly many data sets, in life

sciences for example, are only partially labeled. Techniques

of data mining, visualization, and machine learning are nec-

essary to help people to analyze those data. Especially semi-

supervised learning (SSL) techniques are widely used for this

setting. The idea of semi-supervised learning is to learn the

model not only from the labeled training data, but to also in-

corporate structural and statistical information in additionally

available unlabeled data. A variety of SSL methods has been

published (Zhu and Goldberg, 2009). Most of them focus on

vectorial data given in Euclidean space or representations by

means of positive semi-definite (psd) kernel matrices.

A lot of real world data, like biological sequences, are non-

vectorial, often non-Euclidean and given in the form of pair-

wise proximities, which are based on pairwise comparisons

of objects providing some score-value of the (dis-)similarity

of the objects. Those data are also referred to as proximity

∗∗Corresponding author

e-mail: xzhu@techfak.uni-bielefeld.de (Xibin Zhu),
schleify@cs.bham.ac.uk (Frank-Michael Schleif),
bhammer@techfak.uni-bielefeld.de (Barbara Hammer)

or relational data. An underlying vector space is not nec-

essarily available and there is no guarantee of metric condi-

tions. Examples of those proximity or (dis-)similarity mea-

sures are edit distance based measures for strings or images

(Haasdonk and Bahlmann, 2004) or popular similarity mea-

sures in bioinformatics such as scores obtained by the Smith-

Waterman, FASTA, or blast algorithm (Gusfield, 1997).

Methods based on partially labeled similarity data, where

the similarities are defined on a metric space, as discussed

in (Pekalska and Duin, 2005), can be effectively handled by

semi-supervised extensions of kernel methods or other recently

proposed, effective strategies (Subramanya and Bilmes, 2011;

Tanha et al., 2014). However, in case of non-metric (dis-

)similarity data without an explicit vector representation and

without requesting a metric space only few methods have been

proposed so far in the literature of SSL (Trosset et al., 2008),

and kernel techniques can be applied using some costly, poten-

tially degenerating, transformations on the proximity data only

(Pekalska and Duin, 2005).

First, we take a glance at SSL methods. One way to catego-

rize SSL methods is to divide the field into generative models,

low-density separation methods, and graph-based techniques

typically used for a classification objective. A recent introduc-

tion to SSL is given in (Zhu and Goldberg, 2009). In genera-

tive models, the most basic technique is given by self-training.

A classifier is first trained on the labeled instances and is then

applied to unlabeled instances. Usually, some subset of those
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newly labeled instances are then used together with the origi-

nal labeled data, to retrain the model. The major advantages of

self-training are its simplicity and the fact that it is a wrapper

method. It can ’wrap’ the learner without changing its inner

workings. In this paper we adopt this approach.

Besides EM-based methods (e.g. (Suzuki et al., 2007)

) and graph-based techniques (e.g. (Zhu and Goldberg,

2009; Zhang et al., 2014)), probably the most popular semi-

supervised learner in low-density separation methods is the

transductive Support Vector Machine (TSVM) or its variants

(Chapelle et al., 2006). The semi-supevised SVM (S3VM)

aims at approaching one optimal low-density separator employ-

ing unlabeled data, whereas Safe S3VM (S4VM) (Li and Zhou,

2011) tries to exploit multiple candidate low-density separators

simultaneously to reduce the risk of identifying a poor sepa-

rator with unlabeled data. Besides, multi-kernel approaches

have been recently analyzed for S3VM to incorporate ad-

ditional meta-knowledge in the semi-supervised optimization

(Tian et al., 2012). While most of these methods are defined for

two-class problems, employing e.g. one-vs-rest wrappers for

the multi-class case, native multi-class semi-supervised learn-

ing are analyzed less intensively. A multi-class S3VM ap-

proach was proposed in (Xu and Schuurmans, 2005), using a

boosting strategy and employing sparse Newton-optimization.

Another recently published multi-class boosting technique in

(Tanha et al., 2014) introduces a cost function based on empir-

ical error of labeled data and similarity between labeled and

unlabeled data. However, to solve the cost function as a convex

problem the employed similarity metric has to be a valid kernel,

i.e. psd.

In contrast with the black box property of SVM and

its semi-supervised variants, prototype-based methods en-

joy a wide popularity in various application domains

(Grbovic and Vucetic, 2013; Ortiz-Bayliss et al., 2013) due to

their intuitive and simple behavior: they represent their de-

cision in terms of typical representatives (referred to as pro-

totypes) in the input space and classification is based on the

distances of data to prototypes. Prototypes can be directly in-

spected by domain experts in the field in the same way as data

points. Popular supervised techniques include standard learn-

ing vector quantization (LVQ) and extensions to more pow-

erful settings such as variants based on cost functions such

as generalized LVQ (GLVQ) or robust soft LVQ (RSLVQ)

(Sato and Yamada, 1995; Seo and Obermayer, 2003), etc.. A

recently published prototype-based method extends the ability

of GLVQ such that it can directly deal with dissimilarity data

(Hammer et al., 2014), which we will use for semi-supervised

problems.

In this paper we extend the prototype-based classifier pro-

posed in (Hammer et al., 2014) by self-training approach for

semi-supervised tasks employing the conformal prediction

technique (Vovk et al., 2005), which provides a confidence

measure of the classification. Using the confidence values a

so-called secure region of unlabeled data can be identified dur-

ing self-training and used in the retraining. This can potentially

enhance the performance of the training, and at the same time

conformal prediction estimates a so-called insecure region of

labeled data helping to adapt the model complexity. This pa-

per is organized as follows. First we give a short review of the

prototype-based technique for dissimilarity learning which we

will use in the sequel in Section 2. Subsequently, in Section

3, we briefly introduce the concept of conformal prediction.

Thereafter we show how to combine both techniques in self-

training for semi-supervised learning in Section 4. In Section 5

we show the effectiveness of our technique on simulated data,

compare it to state-of-the-art methods on SSL benchmarks, and

show results for biomedical dissimilarity data. Finally we sum-

marize our results and discuss potential extensions.

2. Prototype-based relational learning

The basic idea of LVQ is to model data distribution(s) by

positioning prototypes in the data space as accurately as possi-

ble. Assume data are given as vectors: xi ∈ R
d, i = 1, . . . ,N

with label li ∈ L = {1, . . . , L}. LVQ is characterized by m

prototypes w j ∈ R
d in the same space with priorly defined la-

bels c(w j) ∈ L. Besides classic heuristically motivated meth-

ods, one of the well-known cost function based learning vec-

tor quantization techniques is Generalized LVQ (GLVQ) from

(Sato and Yamada, 1995).

Training of GLVQ aims at finding the positions of the proto-

types while also taking the generalization ability into account,

using the cost function

EGLVQ =

N
∑

i=1

Φ

(

d(xi,w
+(xi)) − d(xi,w

−(xi))

d(xi,w+(xi)) + d(xi,w−(xi))

)

(1)

where w+(xi) is the closest prototype with the same label as xi

and w−(xi) is the closest prototype with a different label than xi.

d(·, ·) is the squared Euclidean distance. Φ is a monotonically

increasing function, e.g. Φ(x) = (1+exp(−x))−1. GLVQ tries to

minimize the cost function (1) by means of a stochastic gradi-

ent descent, leading to Hebbian learning rules of prototypes, i.e.

the closest prototype with the same label is attracted to xi while

the one with different label is pushed away from xi. Classifi-

cation takes place by a so-called “winner takes all” principle:

x 7→ c(w j) where d(x,w j) is minimum, i.e. a new data point is

labeled by the closest prototype.

GLVQ models have excellent generalization ability

(Biehl et al., 2007), however, they severely depend on the

underlying metric, which is usually chosen as Euclidean

metric. Recent research has extended GLVQ to directly deal

with dissimilarity data (Hammer et al., 2014), which we will

discuss in the following.

Let v j ∈ V be a set of objects, defined in some data space,

with |V| = N. We assume, there exists a dissimilarity mea-

sure such that D ∈ R
N×N is a dissimilarity matrix measuring

the pairwise dissimilarities Di j = d(vi, v j) between all pairs

(vi, v j) ∈ V × V. Any reasonable (possibly non-metric) dis-

tance measure is sufficient. Additionally, we assume zero di-

agonal d(vi, vi) = 0 for all i and symmetry d(vi, v j) = d(v j, vi)

for all {i, j}. Thereby, vk is represented implicitly by a vector

of known dissimilarities with respect to all v j ∈ V. A training

set is given where data point v j is labeled by l j ∈ L. As de-

tailed in (Pekalska and Duin, 2005), dissimilarity data can al-

ways be embedded in pseudo-euclidean space in such a way

that d(vi, v j) is induced by a symmetric (but possibly not posi-

tive semi-definite) bilinear form.

For dissimilarity data classification, the key assumption is to

restrict prototype positions to linear combinations of data points
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of the form

w j =
∑

i

γ jivi with
∑

i

γ ji = 1 (2)

in the pseudo-Euclidean space. Then dissimilarities between

data points and prototypes can be computed implicitly by

means of

d(vi,w j) = [D · γ j]i −
1

2
· γt

jDγ j (3)

where γ j = (γ j1, . . . , γ jn) refers to the vector of coefficients de-

scribing prototype w j.

Thus, the cost function of GLVQ (1) can be transferred to

the relational setting by substituting distances by (3). This way

the cost function of Relational Generalized Learning Vector

Quantization (RGLVQ) results. In the same way, by means of

stochastic gradient descent, the update rules of prototypes can

be obtained. The prototypes are initialized as random vectors

corresponding to random values γi j which sum to one. It is pos-

sible to take class information into account by setting all γi j to

zero which do not correspond to the class of the prototype. Out-

of-sample extension of the classification to new data is possible

as follows: For a novel data point v characterized by its pairwise

dissimilarities D(v) to the data used for training, the dissimilar-

ity of v to a prototype γ j is d(v,w j) = D(v)t · γ j − 1/2 · γt
j
Dγ j,

i.e. the data point is assigned to the label of the closest proto-

type. More details and the generalization ability can be found

in (Hammer et al., 2014).

2.1. Limitations

RGLVQ models work very effectively as shown in

(Hammer et al., 2014), but they have two major limitations.

They are crisp classifiers, where the classification function pre-

dicts only the class label but without any additional information

about the confidence of the prediction. Especially in the life sci-

ence some kind of reliability measure, similar to statistical p-

or q-values would be beneficial. Only few attempts exist to give

reliability estimates for these methods (see e.g. (Cordella et al.,

1999; de Stefano et al., 2000)). The second drawback is that

the complexity of the model in terms of the number of pro-

totypes needs to be specified a priori. There are some exten-

sions investigated to automatically adjust the number of pro-

totypes by adding new prototypes or deleting redundant ones

(e.g. (Grbovic and Vucetic, 2009)), but most of them are re-

stricted to vector space and based on heuristics, but not in a

statistical sense. Especially, they can not be directly transferred

to dissimilarity data.

In this contribution, we propose to use conformal prediction

to enhance classification results with a level of confidence, and

to automatically grow a model with suitable model complexity.

Reliability, sometimes also referred to as confidence, has been

the subject of a theory called conformal prediction as intro-

duced in (Vovk et al., 2005). In the next section we will briefly

introduce the concept of conformal prediction.

3. Conformal prediction

Conformal prediction is a statistical method assessing each

classification decision by providing two measures: credibility

and confidence. Thereby, this technique can be accompanied

by a formal stability analysis as provided in (Vovk et al., 2005).

Denote the labeled training data zi = (vi, li) ∈ Z = V × L.

Furthermore let vN+1 be a new data point with unknown label

lN+1, i.e. zN+1 := (vN+1, lN+1). For given training data (zi)i=1,...,N ,

an observed data point vN+1, and a chosen significance level ε,

the conformal prediction computes an (1− ε)-prediction region

Γε(z1, . . . , zl, vN+1) ⊆ L consisting of a number of possible label

assignments. The applied method ensures that if the data zi are

exchangeable1 then P(lN+1 < Γ
ε(z1, . . . , zN , vN+1)) ≤ ε holds for

each distribution of Z. One says that the predictor is valid. It is

important to mention that the probability is unconditional, such

that if we repeat the process of drawing data (z1, ..., zN , vN+1)

and generating Γε a number of n times we will find that in at

most ε · n cases the real label lN+1 is not among the predicted

labels of Γε , if statistical fluctuations are ignored.

Prediction region and non-conformity measure

To compute the conformal prediction region Γε , a non-

conformity measure is fixed A(D, z). It is used to calculate a

non-conformity value α that estimates how an observation z fits

to given data D={z1, . . . , zN}. In theory, any measure could be

used, providing a nontrivial result for suitable choices only. It is

the part of the method that can incorporate detailed knowledge

about the data distribution. As we focus on prototype-based

methods, for a given z = (x, l) and a trained relational GLVQ

model, we choose as non-conformity measure

αl
x =

d+(x)

d−(x)
(4)

with d+(x) being the distance between x and the closest proto-

type labeled l, and d−(x) being the distance between x and the

closest prototype labeled differently than l where distances are

computed according to Eq. (3). We expect that values αl
x are

small for data z for which the prediction has high confidence,

but it is large if the label does not comply with data. Alterna-

tively, the term in the cost function of GLVQ (1) can also be

considered as non-conformity measure.

Given a non-conformity measure A, significance level ε, ex-

amples z1, . . . , zN , object vN+1 and a possible label l, it is de-

cided whether l is contained in Γε(z1, . . . , zN , vN+1) according

to algorithm 1. However, this method would entail high com-

putational costs, especially for large data sets, because this pro-

cedure has to be done for all leave-one-out multi-sets for each

of the test objects with all possible labels (vN+1, l). To over-

come this problem, some extensions of conformal prediction

have been published, i.e. Inductive Conformal Prediction (ICP)

(Vovk et al., 2005; Vovk, 2012a) and Cross Conformal Predic-

tion (CCP) (Vovk, 2012b). Inductive conformal prediction di-

vides the training data into two subsets: proper training set and

calibration set. The model is trained on the proper training set

and then used to calculate the non-conformity values of the cal-

ibration set. For new data points, classification takes place only

based on the non-conformity of the calibration set. As pointed

out by (Vovk, 2012a) the size of the calibration set should be

reasonably large to cover the data statistic. Although ICP is

computationally more efficient, since the training process only

1exchangeability is a weaker condition than data being i.i.d. which is readily

applicable to the online setting as well, for example (Vovk et al., 2005)
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Algorithm 1 Conformal Prediction (CP)

1: function cp(D, vN+1, ε)
2: for all l ∈ L do
3: zN+1 := (vN+1, l)
4: for i = 1, . . . ,N + 1 do
5: Di := {z1, . . . , zN+1}\{zi}

6: αl
i

:= A(Di, zi) . non-conformity of zi againstDi

7: end for

8: pl
N+1

:=
|{i=1,...,N+1 | αl

i
≥αl

N+1
}|

N+1
9: end for

10: return Γε := {l : pl
N+1
> ε}

11: end function

has to be done once, it is predictively less efficient in compar-

ison to the original conformal prediction, in which the training

set serves as proper training set and also as calibration set. To

avoid this problem another approach, cross-conformal predic-

tion has been proposed, which combines cross-validation with

inductive conformal prediction. During the cross-validation

process (by taking one fold as calibration set and the remaining

folds as proper training set) the data statistic of the whole train-

ing set is accumulatively considered, finally the non-conformity

of each calibration is merged to classify new data, see (Vovk,

2012b) for more details.

In this work we focus on semi-supervised problems, hence

the size of the training set (i.e. labeled data) is usually not large

such that we can not use ICP or CCP for our purpose. We de-

cided to modify the original conformal prediction in a different

way: we do not match the model exactly against each data set

Di but instead use the whole training data ( i.e. D, excluding

zN+1). In this way learning must be performed only once onD.

This procedure is motivated by two facts: (1) since we intend

to use prototype-based method to train the model, the positions

of prototypes depend on the whole data distribution and are in

general not widely affected by a single data point, (2) the in-

formation loss will be small if the number of training data is

reasonably large, so that adding zi but leaving out zN+1 will not

affect the learning results.

Confidence and credibility

The prediction region Γε(z1, . . . , zN, vN+1) stands in the cen-

ter of conformal prediction. For a given significance level ε it

contains the possible labels of L. But how can we use it for

prediction?

Suppose we use a meaningful non-conformity measure A,

e.g. (4). If the value ε is approaching 0, a conformal prediction

with almost no errors is required, which can only be satisfied

if the prediction region contains all possible labels. If we raise

ε we allow errors to occur and as a benefit the conformal pre-

diction algorithm excludes unlikely labels from our prediction

region, increasing its information content. In detail those l are

discarded for which the pl-value is less or equal ε. Hence only a

few zi are as non conformal as zN+1 = (vN+1, l). This is a strong

indicator that zN+1 does not belong to the data distribution Z

and so l does not seem to be the right label. If one further raises

ε only those l remain in the conformal region that can produce

a high pl-value meaning that the corresponding zN+1 is rated as

very typical by A.

So one can trade significance level against information con-

tent. The most useful prediction is that containing exactly one

label. Therefore, given an input vi two error rates are of par-

ticular interest, ε i
1

being the smallest ε and ε i
2

being the largest

ε so that |Γε(D, vi)| = 1. ε i
2

is the p-value of the best and ε i
1

is

the p-value of the second best label. Thus, typically, a confor-

mal predictor outputs the label l which describes the prediction

region for such choices ε, i.e. Γε = {l}, and the classification is

accompanied by the two measures

confidence : c fi := 1 − ε i1 = 1 − pl2nd (5)

credibility : cri := ε i2 = pl1st (6)

Confidence says something about being sure that the second

best label and all worse ones are wrong. Credibility says some-

thing about to be sure that the best label is right respectively

that the data point is typical and not an outlier.

The non-conformity measure has a direct impact on the ef-

ficiency of the prediction region. A good, informative mea-

sure will exclude wrong labels for small error rates and will re-

ject typical data only for high significance levels, meaning that

ε i
2
− ε i

1
is large for typical data vi. That means, that a good mea-

sure can give useful information already for low significance

level ε i
1

and on the other hand one would have to face up a high

average significance level ε i
2

to exclude the right label from the

prediction region.

We would like to point out that the concept of conformal pre-

diction permits pointwise measures of confidence which change

if the training data is adapted, also if the decision boundaries re-

main the same. This means, that similar as in classical statistics,

more densely populated training regions permit a better confi-

dence in a decision. Due to the definition of conformal predic-

tion, this is automatically achieved also in online scenarios.

4. Semi-supervised conformal relational GLVQ

RGLVQ opens a way to directly deal with dissimilarity data.

As mentioned in section 2.1 it has two major limitations: (i) It

is a crisp classifier without any additional information about

the confidence of the prediction and (ii) the number of pro-

totypes has to be defined in advance. In the supervised case,

these problems have been already addressed by (Schleif et al.,

2014, 2009). In (Schleif et al., 2014) the concept of inductive

conformal prediction is integrated into a sparse prototype-based

classifier for dissimilarity learning problems resulting a sparse

prototypical representation of data. In this work we focus

on semi-supervised case and by extending our previous work

(Zhu et al., 2013b,a) we propose a prototype-based conformal

classifier with self-adaptation of model complexity based on the

data with high confidence and high credibility values provided

by conformal prediction.

First, we denote Tlab as labeled data and Tunlab as unlabeled

data. Generally, in semi-supervised learning unlabeled data

are used to improve the trained model based on labeled data

in some way. Self-training is a very simple approach, which

takes iteratively a part of the unlabeled data with predicted la-

bels as new training data into the retraining process to opti-

mize the model, as shown in Algorithm 2. As pointed out by

(Zhu and Goldberg, 2009), the key assumption of self-training

is that the predictions, at least the high confidence ones, tend to

be correct. S should consist of the unlabeled data with the most

confident predictions.
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Algorithm 2 Self training

1: Tlab:= labeled data, Tunlab:= unlabeled data
2: repeat
3: Train model f based on Tlab using supervised learning
4: Apply f to Tunlab

5: remove a subset S from Tunlab and add {(x, f (x))|x ∈ S } to Tlab

In this work we combine conformal prediction with self-

training to find the most confident unlabeled data (see Algo-

rithm 3). After random initialization of the model, we train the

model on labeled data (Tlab) using RGLVQ, based on the model

we proceed with the conformal prediction step (line 12-17): For

Tlab and Tunlab, we compute non-conformity values (α) accord-

ing to (4) (line 12, 13). Based on these non-conformity values a

p-value is estimated for each possible label and each unlabeled

point from Tunlab (line 14, 15). For classification using the con-

formal classifier, the label of a unlabeled item will be finally

predicted as the label with the largest p-value. This refers to

the label set provided by the conformal predictor which con-

tains only one label. More complex schemes, by analyzing for

example label sets with more than one label would be possible

as well, but are not further considered here. The confidence

value (c fi) is given as one minus the second largest p-value (eq.

(5)) and the credibility (cri) is the largest p-value of this item

(eq. (6)) (line 16, 17).

Data used for self-training

In order to identify unlabeled items with high confidence pre-

dictions we define a measure cc as the product of confidence

and credibility values: For a given data point vi ∈ Tunlab,

cci := c fi · cri (7)

Actually, any other reasonable indicator can be used here which

can detect the high confidence and high credibility values at the

same time. In this case the sum of both values is not appropri-

ate, since one of them can dominate the sum. A high cc-value

of a unlabeled item indicates that with high probability its pre-

dicted label (that with the highest p-value) is the true underlying

label.

For self-training the unlabeled data with predicted labels of

high probability can be taken into the next retraining. The re-

gion which consists of these unlabeled items is referred to as

’secure region’ (denoted as SR). To identify SR we take a frac-

tion (prc) of the top cc-values of the unlabeled data2.

Adaptation of model complexity

On the other hand we also collect a set of points of the “la-

beled” data (i.e. original labeled items and the items with high

cc-values labeled by previous iterations) with low credibility

and confidence values, which builds a so-called ’insecure re-

gion’ (ISR) of the training data,

ISR := {vi ∈ Tlab : c fi ≤ ζ1 ∨ cri ≤ ζ2} . (8)

A low confidence value is given if the confidence value c fi
or the credibility cri below a user defined threshold ζi or ζ2,

2 prc is customizable and in our experiments we set prc = 5% which is a

good compromise between learning performance and efficiency.

respectively. Defined values for ζ1 or ζ2 can be derived from

the quantiles of confidence/credibilty values as observed in the

data. The ISR will be represented by a new prototype as the

“median” of ISR. Here the notion “median” refers to the val-

ues c fi and cri in this context. For both, we determine the (one

dimensional) median c fm and crm′ , respectively, and represent

the set ISR by one (if m = m′) or two (if m , m′) exemplars

which cause these values. This step automatically adapts the

complexity of the model, i.e. the number of prototypes. In the

retraining this new prototype will be also trained on the new

training data.

During the self-training process the training set Tlab is it-

eratively augmented by adding the secure region of the unla-

beled data SR to itself while the unlabeled data Tunlab is shrunk

by discarding the secure region. The performance of the re-

training is evaluated based on the original labeled data only

(EvalSet = Tlab). The method terminates if the improvement of

the performance is not significant (less than 1%) after a certain

number of iterations (winmax itr) or the maximal number of iter-

ations are reached (maxitr) or the insecure region (ISR) is too

small or the unlabeled set Tunlab is empty, i.e. all unlabeled data

have been considered in the retraining. The proposed method is

referred to as Secure Semi-Supervised Conformal RGLVQ (S3-

C-RGLVQ).

Computational complexity of S3-C-RGLVQ

The runtime complexity of original RGLVQ is quadratic with

respect to the size of the training data, i.e. O(N2), since the

whole dissimilarity matrix has to be deal with. For S3-C-

RGLVQ, assuming that N = |Tlab| + |Tunlab|, the complexity of

RGLVQ is decreased to O(|Tlab|
2). Due to the model adaptation

S3-C-RGLVQ has to retrain the model k times and the size of

labeled data is increased (but at most |Tlab| = N ), so the re-

training process of S3-C-RGLVQ can not get rid of O(N2 · k),

normally k � N, thus the complexity remainsO(N2). Addition-

ally, the runtime complexity of conformal perdition step can be

considered as linearO(N), since for each retraining the α-values

for unlabeled data with respect to all possible labels have to be

calculated, i.e. O(k · |Tunlab| · |L|), usually for semi-supervised

problems Tunlab ≈ N , and normally |L| � N, so this step stays

linear. Overall, we get O(N2) for retraining step and O(N) for

conformal prediction step.

5. Experiments

We evaluate S3-C-RGLVQ on a large range of tasks. First,

we demonstrate its performance for two artificial data sets:

checkerboard data and banana-shaped data, with known vector

representation to show the ability of dealing with partially la-

beled data, especially non i.i.d labeled data. Then we compare

S3-C-RGLVQ with state-of-the-art semi-supervised SVMs on

SSL binary-class benchmarks. For vectorial data the dissimi-

larity matrices D are obtained using the squared-Euclidean dis-

tance. Additionally, five real life non-vectorial multi-class data

sets from the bioinformatics domain are used to compare with

original RGLVQ (trained only on labeled data).

Artificial data sets: The checkerboard data set consists of

two classes with 1200 data points, in two dimensions and 2 · 2

clusters. The clusters with different classes distribute along
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Algorithm 3 secure semi-supervised conformal RGLVQ

1: init: W : randomly initialized, Wnew := ∅, Wbest := W, ISR := ∅;
SR := ∅; EvalSet = Tlab; ctnbest = 0; maxitr = 100; winmax itr = 10;
accbest = 0

2: repeat . self-training process
3: W := W

⋃

Wnew

4: Tlab := Tlab ∪ SR, Tunlab := Tunlab\SR
5: W := train Tlab by RGLVQ given W
6: acc := evaluation of W on EvalS et;
7: if acc − accbest ≥ 1% then
8: Wbest = W, accbest = acc, ctnbest = 0
9: else

10: ctnbest = ctnbest + 1
11: end if
12: ATlab

:= {αi | i ∈ Tlab} . conformal prediction step

13: AL

Tunlab
:= {αl

i
| i ∈ Tunlab, l ∈ L}

14: PTlab
:= {pi | i ∈ Tlab}

15: PL

Tunlab
:= {pl

i
| i ∈ Tunlab, l ∈ L}

16: CFTlab
:= {c fi | i ∈ Tlab}; CRTlab

:= {cri | i ∈ Tlab};
17: CFTunlab

:= {c fi | i ∈ Tunlab}; CRTunlab
:= {cri | i ∈ Tunlab};

18: generate SR of Tunlab based on CFTunlab
and CRTunlab

19: generate ISR of Tlab based on CFTlab
and CRTlab

20: generate Wnew from ISR . new prototype(s)
21: itr = itr + 1
22: until |ISR| < 1% · |Tlab| or itr = maxitr or ctnbest = winmax itr or

Tunlab = ∅
23: return Wbest;

each axis. We randomly select about 3% as labeled data and the

remaining data as unlabeled data. The prototypes are randomly

initialized based on labeled data and one prototype per class.

RGLVQ can learn these data only if the prototypes are initial-

ized near the centers of the multi-modal distributions, provided

a sufficient number of prototypes. The S 3-C-RGLVQ on the

other hand automatically adapts its model complexity accord-

ing to the introduced scheme, leading to an effective model with

minimum initialization of one prototype per class only. As an

example, Figure 1 shows some intermediate results up to con-

vergence. We randomly initialized two prototypes only on la-

beled data. Figure 1(a) shows that after the initial training two

prototypes (marked by squares) are located in the center of the

labeled data. Obviously, in this case one prototype per each

class is not sufficient to model the whole data space. In Figure

1(b) after the conformal prediction process, the secure region of

unlabeled data (marked by stars) and the insecure region of la-

beled data (marked by red circles) can be identified. To ’cover’

the insecure region a new prototype (marked by red cross) is

added right there.

Moreover, there are some unlabeled data misclassified by CP,

which will be taken into the current retraining process. The rea-

son thereof is that due to the smaller number of prototypes at the

early stage which are not well distributed into the multi-modal

clusters, a reasonable number of points with relatively lower

confidence/credibility values (i.e. lower cc-value) exists, which

is a natural consequence, because by chance 50% got the cor-

rect label. By a larger value of the parameter ’prc’ some of

these points can be considered in the next training. In this case

those points can also be considered as outliers. Due to the fact

that the prototype-based method is very stable against outliers,

i.e. the positions of prototypes depend on the whole data distri-

bution and are not widely affected by a single point, the move-

ment of the prototypes is mainly dominated by the correctly

classified points and the labeled data. As shown in Figure 1(c),

once the algorithm converges, those points can be correctly as-

(a) Initial training (b) 3. iteration (c) Final model

Fig. 1: Checkerboard data set

(a) Initial training (b) 10. iteration (c) Final model

Fig. 2: Banana-shaped data

signed to their closest prototypes.

Another simulated data set consists of two banana-shaped

data clouds indicating two classes. Each banana consists of

300 two dimensional data points in Figure 2. We randomly

select non i.i.d. a small fraction (ca. 5%) of each banana as

labeled data, the remaining as unlabeled data. With the same

setting for checkerboard data we start with one prototype per

class and train the initial model on the labeled data as shown in

Fig. 2(a). The number of prototypes increased step-wise during

the retraining process by adding new prototype in the insecure

region, while by means of secure region the unlabeled data are

iteratively considered. Thereby at the end the data manifold can

be well studied.

UCI two-class data sets: Furthermore, we evaluate the pro-

posed method on different widely used benchmarks for semi-

supervised learning from the UCI repository3 and compare it

with the best semi-supervised SVM with RBF-kernel taken

from (Li and Zhou, 2011)4. To keep the same experimental set-

ting, we randomly select 100 examples of the data to be used

as labeled examples, and use the remaining data as unlabeled

data. For initial prototypes, we use the same setting as previous

experiments: one randomly initialized prototype for each class.

The experiments are repeated for 12 times and the average test-

set accuracy (on the unlabeled data) and standard deviation are

reported in Table 1. Except voting data, the proposed method

provides comparable results for all remaining data sets.

Real life multi-class data sets: Moreover, we also evaluate

the methods on five real-life relational data sets from the bioin-

formatics domain, where no direct vector embedding exists and

the data are given as (dis-)similarities. These data sets con-

stitute typical examples of non-Euclidean data which occur in

complex systems, such as medical image analysis, mass spec-

3http://archive.ics.uci.edu/ml/datasets.html
4In this paper the authors made a comprehensive comparison between dif-

ferent semi-supervised SVMs, e.g. TSVM, S3VM, S4VM, etc. with linear

and rbf kernels. For our experiments we pick the best result of rbf-kernel as

reference for each data set.
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Table 1: Classification accuracy (% ± std) of UCI Benchmarks for two classes

problems for SSL

two-class UCI data S3-C-RGLVQ Semi-SVMbest(rbf)

diabetes 70.17 ± 2.32 70.3 ± 2.1

german 71.61 ± 1.14 71.0 ± 1.1

haberman 73.30 ± 5.02 68.3 ± 2.8

voting 89.20 ± 0.89 92.6 ± 1.6

wdbc 92.34 ± 1.19 93.6 ± 1.7

austrailian 83.22 ± 1.51 81.8 ± 1.9

breast-cancer 96.20 ± 0.51 95.5 ± 1.0

trometry, and symbolic domains. In all cases, dedicated pre-

processing steps and dissimilarity measures for structures are

used. The dissimilarity measures are inherently non-Euclidean

and cannot be embedded isometrically in a Euclidean vector

space.

- The SwissProt data consists of 5, 791 samples in 10

classes, a subset of the SwissProt database (Boeckmann B,

2003) (release 37). Sequence scores are obtained by the

Smith-Waterman algorithm (Gusfield, 1997).

- The Copenhagen Chromosomes data consists of 4,200

samples in 20 classes of string representations compared

by an edit distance measure (Neuhaus and Bunke, 2006).

- The Sonatas data are compression distance scores of 1068

midi files in 5 classes, for details see Hammer et al. (2014).

- The Zongker digit dissimilarity data (2000 samples in 10

classes) is taken from (Duin, 2012).

- The Vibrio data set consists of 1,100 samples in 49

classes of bacteria measurements. Details are given in

Schleif et al. (2014).

In general, we use the same experimental setting as for

the UCI data, but besides random initialization of prototypes

other initialization strategies can also be adopted, e.g. affin-

ity propagation (Frey and Dueck, 2007) or relational neural gas

(Hammer and Hasenfuss, 2010) which can deal with dissimilar-

ity data. We use relational neural gas (RNG) (class-wise as well

as global) to initialize prototypes. For comparison, we report

the results of RGLVQ trained only on labeled data to tackle an-

other problem for SSL, i.e. the degeneration issue as discussed

by (Singh et al., 2008; Zhu and Goldberg, 2009). In order to

keep the comparisons fair the number of prototypes for each

class for RGLVQ is set to the number of prototypes for each

class of the final S3-C-RGLVQ model. The results are reported

in Tables 2 and 3.

In Table 2, for random initialization, in all cases but one, a

better classification accuracy can be obtained using conformal

prediction compared to original RGLVQ only based on labeled

data without consideration of additional information about un-

labeled data. The chromosome is a perfectly balanced data set,

it leads to the fact that the initial model based only on the la-

beled data is almost perfectly trained by RGLVQ, so that the

potential to improve the model by considering unlabeled infor-

mation in this case is very limited. Interestingly, a global clus-

tering does significantly increase the classification error, which

can be attributed to the fact that the (unsupervised) cluster struc-

ture and the interesting classes do not correlate perfectly. A

class-wise clustering can improve the accuracy in some cases

(swissprot, chromosomes) since the cluster structure of each

class can be better studied and this can benefit the training. In

Table 3: Classification accuracy (% ± std ) for real life data with two prototypes

per class initialized randomly

Initialization
two prototypes per class

random

Data S3-C-RGLVQ RGLVQ

swissprot 87.55 ± 2.74 86.74 ± 2.26

chromosome 85.07 ± 1.67 84.90 ± 1.45

sonatas 72.59 ± 3.83 71.95 ± 2.39

zongker 89.39 ± 1.01 89.59 ± 0.86

vibrio 98.80 ± 0.96 98.79 ± 0.82

Table 3, we start with two randomly initialized prototypes for

each class. Comparing to the case with one prototype per class,

for some data sets (Sanatas, Vibrio) one prototype per class is

sufficient to cover the data space, twice this number did not re-

ally improve the learning ability. For the remaining data sets

although the accuracies have been significantly improved, the

price thereof is paid by a doubled model complexity, indicating

that a random initialization with one prototype per class seems

a reasonable choice if no further information is available.

In all cases, the incorporation of information about unlabeled

data into the classifier leads to an increased, at least equal,

classification accuracy of the resulting model, since the addi-

tionally available information can better be taken into account

to optimize the class boundaries. Thus, S3-C-RGLVQ consti-

tutes a very promising method to infer a high quality semi-

supervised prototype-based classifier for general dissimilarity

data sets which offers point-wise measures for confidence and

credibility about the classification.

6. Conclusions

In this contribution, we have developed an efficient semi-

supervised classification technique for general dissimilarity

data based on the conformal prediction concept and relational

prototype-based classifier. It naturally inherits the merits from

both techniques. Due to a prototypical representation, unlike

many alternative black-box techniques, it offers the possibility

of a direct inspection of the classifier by humans. This tech-

nique does not require that data are embeddable into Euclidean

space, rather, a general symmetric dissimilarity matrix is suf-

ficient. Due to the properties of conformal prediction, instead

of providing only a predicted label, it also permits to identify

the safety of the prediction by means of point-wise measures

for confidence and credibility. Thereby the ’secure’ unlabeled

data can be exploited and used to optimize the trained model, at

the same time the ’insecure’ training data can be identified and

accordingly the complexity of the model is adapted.

We demonstrated the quality of the technique on different

SSL data sets. As a result, a powerful semi-supervised learn-

ing algorithm can be derived, which in most cases achieves

comparable results to semi-supervised SVM and with direct in-

terpretability of the classification in term of the prototypes. It

works especially well for non i.i.d labeled data. Duo to the

multi-class capability of prototype-based methods, it can di-

rectly deal with multi-class data sets. Furthermore, it does

not degenerate the learning performance by incorporating ad-

ditional information of unlabeled data which is still a cru-

cial issue in the semi-supervised learning (Singh et al., 2008;

Zhu and Goldberg, 2009).
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Table 2: Classification accuracy (% ± std ) for real life data with one initial prototype per class which are initialized by different strategies: randomly, RNG, and

classwise RNG

Initialization
one prototype per class

random RNG class-wise RNG

Data S3-C-RGLVQ RGLVQ S3-C-RGLVQ S3-C-RGLVQ

swissprot 81.06 ± 5.53 79.37 ± 4.78 57.84 ± 6.79 90.66 ± 2.73

chromosome 78.88 ± 3.28 78.78 ± 3.70 63.12 ± 5.38 84.43 ± 1.86

sonatas 77.98 ± 3.94 71.99 ± 2.92 69.37 ± 2.24 67.04 ± 2.07

zongker 87.93 ± 0.84 86.48 ± 1.50 89.25 ± 1.09 78.11 ± 8.13

vibrio 98.76 ± 0.47 97.40 ± 0.84 37.76 ± 4.54 90.16 ± 1.15

One central problem of this technique as introduced above

has not yet been considered in this letter: we used a global

value prc to identify the secure region of the training data in

every iteration. It may cause some uncertainty issues at the ear-

lier stages of retraining as we have seen in the checkerboard

data, if the number of prototypes is not sufficiently high and the

prototypes are not well distributed in the data space. In spite

of the fact that this potential issue can be partially solved by

the nature of prototype-based method, i.e. its stability against

outliers, it should be more seriously studied, e.g. using a lo-

cal value prc for each iteration to more precisely identify the

high confidence items. Future work will also address the model

sparsity for large scale problem and linear approximation tech-

niques as introduced in (Zhu et al., 2012).
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