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Abstract

We tackle the PAC-Bayesian Domain Adaptation (DA) probldfn [This arrives
when one desires to learn, from a source distribution, a gezighted majority
vote (over a set of classifiers) on a different target diatidm. In this context,
the disagreement between classifiers is known crucial ter@orin non-DA su-
pervised setting, a theoretical bound — the C-bolind [2] elims this disagree-
ment and leads to a majority vote learning algorithm: Min3j [In this work,
we extend MinCq to DA by taking advantage of an elegant dimecg between
distribution called the Perturbed Varation (PV) [4]. Hysjustified by a new for-
mulation of the C-bound, we provide to MinCq a target samaleeled thanks to
a PV-based self-labeling focused on regions where the s@und target marginal
distributions are closer. Secondly, we propose an originatess for tuning the
hyperparameters. Our framework shows very promising t&sula toy problem.

1 Introduction

Nowadays, due to the expansion of Internet a large amourdtafid available. Then, an important
issue in Machine Learning is to develop methods able tofeakaowledge from different informa-
tion sources or tasks, which is known as Transfer Learniag [§] for a survey). In this work, we
tackle the hard [6] problem of unsupervised Domain AdaptatDA), which arises when we want
to learn from a distribution — the source domain — a well peniag model on a different distribution

— the target domain — for which one has an unlabeled samplesiter, for instance, the common
problem of spam filtering, in which one task consists in agpa model from one user to a new
one. One popular solution is to take advantage of a diveggbatween the domains, with the intu-
ition that we want to minimize the divergence while presegvwjood performance on the source data
[, [8,[1]. Some classical divergences involve the disagezeretween classifiers, which appears
crucial to control. Another divergence, the Perturbedafioin (PV) [4], is based on this principle:
Two samples are similar if every target instance is closestmugice instance. In this work, we focus
on the PAC-Bayesian DA setting introducedlin [1] for leagéngood target weighted majority vote
over a set of classifiers (or voters). A key point is that thedjence used, which takes into account
the expectation of the disagreement between pairs of yasgjisstified by a recent tight bound on
the risk of the majority vote: the C-bound [2]. This C-bouedds to an elegant and well perform-
ing algorithm for supervised classification, called Min@§j [Our contribution consists in extending
MinCq to the DA scenario, thanks to a label transfer from th&ree domain to the target one. First,
we propose in sectidd 3 a new version of the C-bound suitaleviery label transfer defined by a
label function. Then, we design in sectldn 4 such a functiamks to the empirical PV. Concretely,
our PV-based label transfer focuses on the regions whesotiree and target marginals are closer,
and labels the (unlabeled) target sample only in these megidfterwards, we provide to MinCq
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this auto-labeled target sample. We also make use of the [Bléfioe an original hyperparameters
validation. Finally, we show empirically in sectibh 5 thatr@pproach implies good and promising
results on a toy problem, better than a nearest neighbodrhased transfer.

2 Notations and Background

Throughout this paper, we consider the PAC-Bayesian DAngettescribed in 1] for classification
tasks whereX € R? is the input space of dimensiarandY ={—1, +1} is the label set. The source
domainPgs and the target domaiR; are two different distributions oveY xY. Dg and D are the
respective marginal distributions ov&r. In the PAC-Bayesian theory, introduced|in [9], given a set
of classifiers (that we called voter&) from X to R and given a prior distributiorr of support#,

the learner aims at finding a posterior distributjpleading to a-weighted majority vote3, over

‘H with good generalization guaranteds, is defined as follows.

Definition 1. Let# be a set of voters fronX to R. Letp be a distribution ovef{. Thep-weighted
majority voteB, (sometimes called the Bayes classifier) is,

Vx € X, B,(x) = sign LE h(x)} .
~p
The true risk ofB, on a domainP is, Rp(B,) =1 (1 — E(x y)~p yB,(x)).

Usual PAC-Bayesian generalization guaranteeg.([10, [11,[12[ 18} 14]) bound the risk of the
stochastic Gibbs classifi€f,, which labels an exampleby first drawing a votef from # accord-
ing to p, then returnsign[h(x)]. The risk ofG,, corresponds to the expectation of the risks:
— _ 1

Rp(G,)= E Rp(h)=3(1= E  E_yh(x)).
It is then easy to relat8, andG, by: Rp(B,) < 2Rp(G)).
In that light, the authors of [1] have done a PAC-Bayesiartyaigof DA. Their main result is stated
in the following theorem.

Theorem 1([1]). Let# be a set of voters. For every distributiprover?#, we have,
Rp(Gy) < Rps(Gy) + disy(Ds, Dr) + Ay,
where),, is a term related to the true labeling on the two dom@jrmsd

disp(DS,DT):‘ E ( E hx)h(x)— E h(xs)h’(xs))‘ is the domain disagreement.
(h,h")~p2 \x;~Dr xs~Ds

This bound reflects the philosophy in DA: It is well knovin [t a good adaptation may be possi-
ble if the divergence between the domains is small whileeadhgy good performance on the source
domain. The point which calls our attention in this resulthis definition of the domain disagree-
ment,dis,(Ds, Dr), directly related to the disagreement between pairs ofrsptnd justified by
the definition of the following theoretical bound called teébound|[[3| 2].

Theorem 2 (The C-bound as expressed lin [3for all distribution p over #, for all domain Pg

overX x Y of marginal (overX) Dg, if E E ysh(xs) > 0, then,
he~p (xs5,y5)~Ps

E E ysh(xs))2

RPS (Bp) S 1— (hNP (xs,ys)~Ps

E E h(x,)l(x,)
R U OLACY)

Since we can remark the C-bound’s denominator is also cetatéhe disagreement between pairs
of voters, we propose, in the next section, a new formulasigited for DA. Before, we recall
the supervised classification algorithm MinCq [3] which #es from the C-bound (and described
in Algo.[d). Concretely, MinCq learns a performing majoritgte by optimizing the empirical
counterpart of the C-bound: It minimizes the denominaterthe disagreement (Ed.1(1)), given a
fixed numeratot.e. a fixed margin for the majority vote (Ed.1(2)), under a patcuegularization
(Eq. 3))A Note that its consistency is justified by a PAC-Bayesian gaization bound.

Since the C-bound, and thus MinCq, focus on the disagreebatween voters, which is crucial to
control in DA [7,[8/1], we propose to make use of the C-bourdilimCq in a DA perspective.

1Since one usually omits this term in algorithms, we do noetigyit. More details could be found inl[1].
2For more technical details on MinCq, please refersto [3].



Algorithm 1 MinCq(S, #, 1) Algorithm 2 PV (S, T, ¢, d)

input A sampleS = {(xi,4:)},%, a set of voterst, input § — {x: 32 andT = {x,}"! are unla-

a desired margip >m0‘ beled samples, > 0, a distancel
output B,(-)=sign { 20 — h()} output PV (S,T)
’ J;( ! ‘H‘) ! 1.G + (V=(A,B),E),whereA = {x,€ S}
) - T andB = {x: €T}, est € Eif d(xs,%x¢) <€
Solve argmin p" Mp — A" p, (1) 2. Msr + Maximum matching or
L " [H] 15 3. S < number of unmatched vertices fh
st m’p= SRS > wihi(xi), (2) T, + number of unmatched verticesn
| = 4. RewmPV(8,T) = § (& + &)
Vied{l,...,[H]}, 0<p; <5 (3)
wherep=(p1, ... mm‘)T is a vector of weights,

1515 (x;) ka0 (x;)  Algorithm 3 PV-MinCq(S, T, H, u, €, d
M is the|H|x |H| matrix formed byzhj( ‘);f S i \s?( fod)
i=1

o, , input S = {(xs,ys)}.2; a source samplel’ =
for (4, j )GE, S THIP and.‘s‘ . {Xt}%l (a)target samplei, 1n > 0,¢ > 0,d
m = L yih Xi)yeons 1 yih Xi) OUtpUt P\ —
(‘S‘; 1) s it (%) Mgy« Step 1. and 2PV(S, T ¢, d)
A:<§:‘§h1<xz->hj<xi>wg ! *hmmx»hj(xo) T {(x0, ) (51, %) € Mor, (., ) €5}
j=1li=1 [H]|S| j=li=1 [#H]]S] return MinCq(', H, p)

0

Mz

3 A C-bound suitable to Domain Adaptation with Label Transfer

First, we propose to rewrite the C-bound with a labeling fiorc : X — Y, which associates a
labely € Y to an unlabeled example ~ Dr. Given such a function, the C-bound becomes:

Corollary 3. For all distribution p over#, for all domainPr over X x Y of marginal (overX)
Dr, for all labeling functiond : X — Y such thathE ED l(x¢)h(x¢) > 0, we have,
~p X~

1
h(Xt)hl(Xt) 2

h~p x¢~Drp

( E E l(Xt)h(Xt))
RPT (BP) <1- E E
(h,h")~p? xt~D1
The first two terms correspond simply to the usual C-boundsomeal with the labeling functioh
The term} |E(x, ,,)~p, (y: — I(x:))| can be seen as a divergence between the true labeling and
the one provided b¥. The more similat and the true labeling are, the tigher the bound is.
With a DA point of view, an important remark is that only onentltin appears in this bound. Then,
we guess that this domain is the target one, and that the datiguof a relevant labeling function
has to make use of the information carried by the source éabshmpleS. Concretely, given a
labeled source instan¢g,, y; ), we want to transfer its labgl, to an unlabeled target poigt close
to x,. This will give rise to an auto-labeled target sample, onalihwe can apply MinCq. To tackle
the issue of defining the label transfer, we propose, in theviing, to investigate a recent measure
of divergence between distributions: the Perturbed \Vandt!].

(ye — U(xt))| -

(x¢,y¢)~Pr

4 A Domain Adaptation MinCq with the Perturbed Variation

We first recall the definition of the Perturbed Variation (Rdposed in[[4].

Definition 2 ([4]). Let Ds and Dy two marginal distributions oveX, let M (Dg, Dr) be the set
of all joint distributions overX x X with marginalsDg and Dr. The perturbed variation w.r.t. a
distanced : X x X — R ande > 0 is defined by,

PV(DS, l)T7 €, d) = infueM(D&Dﬂ :P#I' [d(X, X’) > E] )

over all pairs(Dg, Dr) ~ p, such that the marginal ot’ (resp.X”) is Dg (resp. D).

In other words, two samples are similar if every target insaaii\close to a source instance. Note
that this measure is consistent and that its empirical @pattPV (S, T) can be efficiently com-
puted by a maximum graph matching procedure described in.Bd4].

In our label transfer objective, we then propose to make @ifeeanaximum graph matching com-
putedMsr by the PV at steg of Algo. [2 (with d the euclidian distance arda hyperparameter).



| Targetrotationangld] 20° [ 30° | 40° [ 50° [ 60° [ 70° [ 80° |

MinCq 921 [ 782 | 6938 61 50.1 [ 407 | 327

SVM 89.6 | 76 | 683 60 | 47.18 | 26.12 | 19.22

TSVM 100 | 789 [ 746 [ 709 [ 6472 [ 21.28 | 18.92
DASVM 100 | 784 | 716 | 66.6 | 6157 | 25.34 | 21.07
PBDA 90.6 | 89.7 | 775 | 588 | 424 | 374 | 396

DASF 98 92 83 70 54 13 38
NN-MinCq 977 | 837 | 777 | 69.2 | 581 | 479 | 421
[ PVMinCq || 999 [ 997 | 99 | 916 | 753 | 66.2 | 58.9 |

Table 1: Average accuracy results thruns for7 rotation angles.

Concretely, we label the examples from the unlabeled taayaplel” with Mg, with the intuition
that if x, € T belongs to a paifx;,xs) € Mgr, thenx; is affected by the true label of;. Else,

we removex; from T'. The auto-labeled sample obtained is denote@bﬂ'hen we provid@ to
MinCq. Our global procedure, called PV-MinCq, is summadizeAlgo.[3.

Obviously, a last question concerns the hyperparametectien. Usually in DA, one can make use
of a reverse/circular validation as donel(inl[15, 1, 16]. Hegvesince in our specific situation with
PV-MinCq, we have not directly make use of the value of thew&/propose to select parameters
with a k-fold validation process optimizing the trade-oR:s(B,) + PV (S,T'), whereRgs(B,) is
the empirical risk on the source sample. This heuristicssiffed by the philosophy of DA: Mini-
mize the divergence (measured with the PV) between the damdiile keeping good performances
on the source labels transferred on the target points.

5 Experimental Results

We tackle the toy problem called “inter-twinning moon”, Banoon corresponds to one class. We
consider seven target domains rotating anticlockwise dhiece domain according angles. Our
PV-MinCq is compared with MinCq and SVM with no adaptationdavith DA approaches: The
semi-supervised Transductive-SVM (TSVM) [17], the iter@DA algorithms DASVM [15] (based
on an auto-labeling) and DASE [16] (based on the usual baubai[7])), and the PAC-Bayesian DA
method PBDAI[1]. We also report a version of MinCq that makssaf ak-NN based auto-labeling
(NN-MinCq): We label a target point with/aNN classifier of which the prototypes comes from the
source sample. We used a Gaussian kernel for all the methbdgreliminary results — illustrated
on Tab[1 — are very promising. Firstly, PV-MinCq outperfoision average the others, and appears
more robust to change of density (NN-MinCq and MinCqg appeakss more robust). This confirms
the importance to take into account the disagreement betwaers in DA. Secondly, the PV-based
labeling implies better results than the NN one. Unlike a bi$ed labeling, using the matching
implied by the computation of the PV appears to be a colldguéy to control the divergence
between domains since it clearly focuses on high densitpmnelgy removing the target example
without matched source instance, in other words on regidres@the domains are close. These two
points confirm that the PV is a relevant measure to controbtbeess for a DA task.

6 Conclusion and Future Work

In this work, we have proposed a first procedure to tackle Dfnlaking use of the recent algorithm
called MinCq. Indeed, MinCq allows us to take into accouetdisagreement between classifiers,
which is known to be crucial in DA. Our approach has the oadjty to directly minimize a risk
on the target domain thanks to a labeling defined with theuR®etl Variation distance between
distributions. The preliminary results obtained are ping, and we would like to apply the method
to real-life applications. Another exciting perspectigdo define new label transfer functions, for
example by computing the PV with a more adapted distarmech as the domain disagreement.

3Note that preliminary experiments using PV with a SVM havelied poor results. This also probably
confirms the importance of the disagreement.
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