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Abstract

Both the occurrence and intensity of facial expressions are critical to what the face reveals. While 

much progress has been made towards the automatic detection of facial expression occurrence, 

controversy exists about how to estimate expression intensity. The most straight-forward approach 

is to train multiclass or regression models using intensity ground truth. However, collecting 

intensity ground truth is even more time consuming and expensive than collecting binary ground 

truth. As a shortcut, some researchers have proposed using the decision values of binary-trained 

maximum margin classifiers as a proxy for expression intensity. We provide empirical evidence 

that this heuristic is flawed in practice as well as in theory. Unfortunately, there are no shortcuts 

when it comes to estimating smile intensity: researchers must take the time to collect and train on 

intensity ground truth. However, if they do so, high reliability with expert human coders can be 

achieved. Intensity-trained multiclass and regression models outperformed binary-trained 

classifier decision values on smile intensity estimation across multiple databases and methods for 

feature extraction and dimensionality reduction. Multiclass models even outperformed binary–

trained classifiers on smile occurrence detection.
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1. Introduction

The face is an important avenue of communication capable of regulating social interaction 

and providing the careful observer with a wealth of information. Facial expression analysis 

has informed psychological studies of emotion (Darwin, 1872, Ekman et al., 1980, Zeng et 

al., 2009), intention (Fridlund, 1992, Keltner, 1996), physical pain (Littlewort et al., 2009, 

Prkachin and Solomon, 2008), and psychopathology (Cohn et al., 2009, Girard et al., 2013), 
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among other topics. It is also central to computer science research on human-computer 

interaction (Cowie et al., 2001, Pantic and Rothkrantz, 2003) and computer animation 

(Pandzic and Forchheimer, 2002).

There are two general approaches to classifying facial expression (Cohn and Ekman, 2005). 

Message-based approaches seek to identify the meaning of each expression; this often takes 

the form of classifying expressions into one or more basic emotions such as happiness and 

anger (Ekman, 1999, Izard, 1971). This approach involves a great deal of interpretation and 

fails to account for the fact that facial expressions serve a communicative function 

(Fridlund, 1992), can be controlled or dissembled (Ekman, 2003), and often depend on 

context for interpretation (Barrett et al., 2011). Sign-based approaches, on the other hand, 

describe changes in the face during an expression rather than attempting to capture its 

meaning. By separating description from interpretation, sign-based approaches achieve more 

objectivity and comprehensiveness.

The most commonly used sign-based approach for describing facial expression is the Facial 

Action Coding System (FACS) (Ekman et al., 2002), which decomposes facial expressions 

into component parts called action units. Action units (AU) are anatomically-based and 

correspond to the contraction of specific facial muscles. AU may occur alone or in 

combination with others to form complex facial expressions. They may also vary in intensity 

(i.e., magnitude of muscle contraction). The FACS manual provides coders with detailed 

descriptions of the shape and appearance changes necessary to identify each AU and its 

intensity.

Much research using FACS has focused on the occurrence and AU composition of different 

expressions (Ekman and Rosenberg, 2005). For example, smiles that recruit the orbicular is 

oculi muscle (i.e., AU 6) are more likely to occur during pleasant circumstances (Ekman et 

al., 1990, Frank et al., 1993) and smiles that recruit the buccinator muscle (i.e., AU 14) are 

more likely to occur during active depression (Reed et al., 2007, Girard et al., 2013).

A promising subset of research has begun to focus on what can be learned about and from 

the intensity of expressions. This work has shown that expression intensity is linked to both 

the intensity of emotional experience and the sociality of the context (Ekman et al., 1980, 

Fridlund, 1991, Hess et al., 1995). For example, Hess et al. (1995) found that participants 

displayed the most facial expression intensity when experiencing strong emotions in the 

company of friends. Other studies have used the intensity of facial expressions (e.g., in 

yearbook photos) to predict a number of social and health outcomes years later. For 

example, smile intensity in a posed photograph has been linked to later life satisfaction, 

marital status (i.e., likelihood of divorce), and even years lived (Abel and Kruger, 2010, 

Harker and Keltner, 2001, Hertenstein et al., 2009, Oveis et al., 2009, Seder and Oishi, 

2012). It is likely that research has only begun to scratch the surface of what might be 

learned from expressions’ intensities.

Intensity estimation is also critical to the modeling of an expression’s temporal dynamics 

(i.e., changes in intensity over time). Temporal dynamics is a relatively new area of study, 

but has already been linked to expression interpretation, person perception, and 
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psychopathology. For example, the speed with which a smile onsets and offsets has been 

linked to interpretations of the expression’s meaning and authenticity (Ambadar et al., 

2009), as well as to ratings of the smiling person’s attractiveness and personality 

(Krumhuber et al., 2007). Expression dynamics have also been found to be behavioral 

markers of depression, schizophrenia, and obsessive-compulsive disorder (Mergl et al., 

2003, 2005, Juckel et al., 2008).

Efforts in automatic facial expression analysis have focused primarily on the detection of 

AU occurrence (Zeng et al., 2009), rather than the estimation of AU intensity. In shape-

based approaches to automatic facial expression analysis, intensity dynamics can be 

measured directly from the displacement of facial landmarks (Valstar and Pantic, 2006, 

2012). Shape-based approaches, however, are especially vulnerable to registration error 

(Chew et al., 2012), which is common in naturalistic settings. Appearance-based approaches 

are more robust to registration error, but require additional steps to estimate intensity. We 

address the question of how to estimate intensity from appearance features.

In an early and influential work on this topic, Bartlett et al. (2003) applied standard binary 

expression detection techniques to estimate expressions’ peak intensity. This and subsequent 

work (Bartlett et al., 2006a,b) encouraged the use of the margins of binary-trained maximum 

margin classifiers as proxies for facial expression intensity. The assumption underlying this 

practice is that the classifier’s decision value will be positively correlated with the 

expression’s intensity. However, this assumption is theoretically problematic because 

nothing in the formulation of a maximum margin classifier guarantees such a correlation 

(Yang et al., 2009). Indeed, many factors other than intensity may affect a data point’s 

decision value, such as its typicality in the training set, the presence of other facial actions, 

and the recording conditions (e.g., illumination, pose, noise). The decision-value-as-intensity 

heuristic is purely an assumption about the data. The current study tests this assumption 

empirically, and compares it with the more labor-intensive but theoretically-informed 

approaches of training multiclass and regression models using intensity ground truth.

1.1. Previous Work

Since Bartlett et al. (2003), many studies have used classifier decision values to estimate 

expression intensity (Bartlett et al., 2006a,b, Littlewort et al., 2006, Reilly et al., 2006, 

Koelstra and Pantic, 2008, Whitehill et al., 2009, Yang et al., 2009, Savran et al., 2011, 

Shimada et al., 2011, 2013). However, only a few of them have quantitatively evaluated 

their performance by comparing their estimations to manual (i.e., “ground truth”) coding. 

Several studies (Bartlett et al., 2006b, Whitehill et al., 2009, Savran et al., 2011) found that 

decision value and expression intensity were positively correlated during posed expressions. 

However, such correlations have typically been lower during spontaneous expressions. In a 

highly relevant study, Whitehill et al. (2009) focused on the estimation of spontaneous smile 

intensity and found a high correlation between decision value and smile intensity. However, 

this was in five short video clips and it is unclear how the ground truth intensity coding was 

obtained.

Recent studies have also used methods other than the decision-value-as-intensity heuristic 

for intensity estimation, such as regression (Ka Keung and Yangsheng, 2003, Savran et al., 
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2011, Dhall and Goecke, 2012, Kaltwang et al., 2012, Jeni et al., 2013b) and multiclass 

classifiers (Mahoor et al., 2009, Messinger et al., 2009, Mavadati et al., 2013). These studies 

have found that the predictions of support vector regression models and multiclass 

classifiers were highly correlated with expression intensity during both posed and 

spontaneous expressions. Finally, several studies (Cohn and Schmidt, 2004, Deniz et al., 

2008, Messinger et al., 2008) used extracted features to estimate expression intensity 

directly. For example, Messinger et al. (2008) found that mouth radius was highly correlated 

with spontaneous smile intensity in five video clips.

Very few studies have compared different estimation methods using the same data and 

performance evaluation methods. Savran et al. (2011) found that support vector regression 

outperformed the decision values of binary support vector machine classifiers on the 

intensity estimation of posed expressions. Ka Keung and Yangsheng (2003) found that 

support vector regression outperformed cascading neural networks on the intensity 

estimation of posed expressions, and Dhall and Goecke (2012) found that Gaussian process 

regression outperformed both kernel partial least squares and support vector regression on 

the intensity estimation of posed expressions. Yang et al. (2009) also compared decision 

values with an intensity-trained model, but used their outputs to rank images by intensity 

rather than to estimate intensity.

Much of the previous work has been limited in three ways. First, many studies (Deniz et al., 

2008, Dhall and Goecke, 2012, Ka Keung and Yangsheng, 2003, Yang et al., 2009) adopted 

a message-based approach, which is problematic for the reasons described earlier. Second, 

the majority of this work (Deniz et al., 2008, Dhall and Goecke, 2012, Ka Keung and 

Yangsheng, 2003, Savran et al., 2011, Yang et al., 2009) focused on posed expressions, 

which limits the external validity and generalizability of their findings. Third, most of these 

studies were limited in terms of the ground truth they compared their estimations to. Some 

studies (Bartlett et al., 2003, 2006a,b) only coded expressions’ peak intensities, while others 

(Mahoor et al., 2009, Messinger et al., 2008, 2009, Whitehill et al., 2009) obtained frame-

level ground truth, but only for a handful of subjects. Without a large amount of expert-

coded, frame-level ground truth, it is impossible to truly gauge the success of an automatic 

intensity estimation system.

1.2. The Current Study

The current study challenges the use of binary classifier decision values for the estimation of 

expression intensity. Primarily, we hypothesize that intensity-trained (i.e., multiclass and 

regression) models will outperform binary-trained (i.e., two-class) models for expression 

intensity estimation. Secondarily, we hypothesize that intensity-trained models will offer a 

smaller but significant boon to binary expression detection over binary-trained models.

We compared these approaches using multiple methods for feature extraction and 

dimensionality reduction, using the same data and the same performance evaluation 

methods. We also improve upon previous work by using a sign-based approach, two large 

datasets of spontaneous expressions, and expert-coded ground truth. Smiles were chosen for 

this in-depth analysis because they are the most commonly occurring facial expression 

(Bavelas and Chovil, 1997), are implicated in affective displays and social signaling (Hess et 
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al., 2000, 2005), and appear in much of the previous work on both automatic intensity 

estimation and the psychological exploration of facial expression intensity.

2. Methods

2.1. Participants and Data

In order to increase the sample size and explore the generalizability of the findings, data was 

drawn from two separate datasets. Both datasets recorded and FACS coded participant facial 

behavior during a non-scripted, spontaneous dyadic interaction. They differ in terms of the 

context of the interaction, the demographic makeup of the sample, constraints placed upon 

data collection (e.g., illumination, frontality, and head motion), base rates of smiling, 

tracking, and inter-observer reliability of manual FACS coding. Because of how its 

segments were selected, the BP4D database also had more frequent and intense smiles.

2.1.1. BP4D Database—FACS coded video was available for 30 adults (50% female, 

50% white, mean age 20.7 years) from the Binghamton-Pittsburgh 4D (BP4D) spontaneous 

facial expression database (Zhang et al., 2014). Participants were filmed with both a 3D 

dynamic face capturing system and a 2D frontal camera (520×720 pixel resolution) while 

engaging in eight tasks designed to elicit emotions such as anxiety, surprise, happiness, 

embarrassment, fear, pain, anger, and disgust. Facial behavior from the 20-second segment 

with the most frequent and intense facial expressions from each task was coded from the 2D 

video. The BP4D database is publicly available.

2.1.2. Spectrum Database—FACS coded video was available for 33 adults (67.6% 

female, 88.2% white, mean age 41.6 years) from the Spectrum database (Cohn et al., 2009). 

The participants suffered from major depressive disorder (American Psychiatric 

Association, 1994) and were recorded during clinical interviews to assess symptom severity 

over the course of treatment (Hamilton, 1967). A total of 69 interviews were recorded using 

four hardware-synchronized analogue cameras. Video from a camera roughly 15 degrees to 

the participant’s right was digitized into 640×480 pixel arrays for analysis. Facial behavior 

during the first three interview questions (about depressed mood, feelings of guilt, and 

suicidal ideation) was coded; these segments were an average of 100 seconds long. The 

Spectrum database is not publicly available due to confidentiality restrictions.

2.2. Manual Expression Annotation

2.2.1. AU Occurrence—For both the BP4D and Spectrum databases, participant facial 

behavior was manually FACS coded from video by certified coders. Inter-observer 

agreement - the degree to which coders saw the same AUs in each frame - was quantified 

using F1 score (van Rijsbergen, 1979). For the BP4D database, 34 commonly occurring AU 

were coded from onset to offset; inter-observer agreement for AU 12 occurrence was 

F1=0.96. For the Spectrum database, 17 commonly occurring AU were coded from onset to 

offset, with expression peaks also coded; inter-observer agreement for AU 12 occurrence 

was F1=0.71. For both datasets, onsets and offsets were converted to framelevel occurrence 

(i.e., present or absent) codes for AU 12.
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2.2.2. AU Intensity—The manual FACS coding procedures described earlier were used to 

identify the temporal location of AU 12 events. Separate video clips of each event were 

generated and coded for intensity by certified coders using custom continuous measurement 

software. This coding involved assigning each video frame a label of “no smile” or “A” 

through “E” representing trace through maximum intensity (Fig. 1) as defined by the FACS 

manual (Ekman et al., 2002). Inter-observer agreement was quantified using intraclass 

correlation (ICC) (Shrout and Fleiss, 1979). Ten percent of clips were independently coded 

by a second certified FACS coder; inter-observer agreement was ICC=0.92.

2.3. Automatic Expression Annotation

Smiles were automatically coded for both occurrence and intensity using each combination 

of the techniques listed in Fig. 2 for tracking, extraction, reduction, and prediction.

2.3.1. Tracking—Facial landmark points indicate the location of important facial 

components (e.g., eye and lip corners). For the BP4D database, sixty-four facial landmarks 

were tracked in each video frame using Live Driver™ from Image Metrics (Image Metrics, 

2013). Overall, 4% of video frames were untrackable, mostly due to occlusion or extreme 

out-of-plane rotation. A global normalizing (i.e., similarity) transformation was applied to 

the data for each video frame to remove variation due to rigid head motion. Finally, each 

image was cropped to the area surrounding the detected face and scaled to 128×128 pixels.

For the Spectrum database, sixty-six facial landmarks were tracked using active appearance 

models (AAM) (Cootes et al., 2001). AAM is a powerful approach that combines the shape 

and texture variation of an image into a single statistical model. Approximately 3% of video 

frames were manually annotated for each subject and then used to build the AAMs. The 

frames then were automatically aligned using a gradient-descent AAM fitting algorithm 

(Matthews and Baker, 2004). Overall, 9% of frames were untrackable, again mostly due to 

occlusion and rotation. The same normalization procedures used on the Live Driver 

landmarks were also used on the AAM landmarks. Additionally, because AAM includes 

landmark points along the jawline, we were able to remove non-face information from the 

images using a convex hull algorithm.

2.3.2. Extraction—Two types of appearance features were extracted from the tracked and 

normalized faces. Following previous work on expression detection (Chew et al., 2012) and 

intensity estimation (Bartlett et al., 2003, Savran et al., 2011), Gabor wavelets (Daugman, 

1988, Fellenz et al., 1999) were extracted in localized regions surrounding each facial 

landmark point. Gabor wavelets are biologically-inspired filters, operating in a similar 

fashion to simple receptive fields in mammalian visual systems (Jones and Palmer, 1987). 

They have been found to be robust to misalignment and changes in illumination (Liu et al., 

2001). By applying a filter bank of eight orientations and five scales (i.e., 17, 23, 33, 46, 65 

pixels) at each localized region, specific changes in facial texture and orientation (which 

map onto facial wrinkles, folds, and bulges) were quantified. Scale-invariant feature 

transform (SIFT) descriptors (Lowe, 1999, Vedali and Fulkerson, 2008) were also extracted 

in localized regions surrounding each facial landmark point. SIFT descriptors are partially 
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invariant to illumination changes. By applying a geometric descriptor to each facial 

landmark, changes in facial texture and orientation were quantified.

2.3.3. Reduction—Both types of features exhibited high dimensionality, which makes 

classification/regression difficult and resource-intensive problems. Two approaches for 

dimensionality reduction were compared on their ability to yield discriminant features for 

classification. For each model, only one of these approaches was used. The sample and 

feature sizes were motivated by the computational limitations imposed by each method.

Laplacian Eigenmap (Belkin and Niyogi, 2003) is a nonlinear technique used to find the low 

dimensional manifold that the original (i.e., high dimensional) feature data lies upon. 

Following recent work by Mahoor et al. (2009), supervised Laplacian Eigenmaps were 

trained on a randomly selected sample of 2500 frames and used in conjunction with spectral 

regression (Cai et al., 2007). Two manifolds were trained for the data: one using two classes 

(corresponding to FACS occurrence codes) and another using six classes (corresponding to 

the FACS intensity codes). The two-class manifolds were combined with the two-class 

models and the six-class manifolds were combined with the multiclass and regression 

models (described below). The Gabor and SIFT features were each reduced to 30 

dimensions per video frame using this technique.

Principal Component Analysis (PCA) (Jolliffe, 2005) is a linear technique used to project a 

feature vector from a high dimensional space into a low dimensional space. Unsupervised 

PCA was used to find the smallest number of dimensions that accounted for 95% of the 

variance in a randomly selected sample of 100,000 frames. This technique reduced the 

Gabor features to 162 dimensions per video frame and reduced the SIFT features to 362 

dimensions per video frame.

2.3.4. Prediction—Three techniques for supervised learning were used to predict the 

occurrence and intensity of smiles using the reduced features. Two-class models were 

trained on the binary FACS occurrence codes, while multiclass and regression models were 

trained on the FACS intensity codes. Data from the two databases were not mixed and 

contributed to separate models.

Following previous work on binary expression detection (Fasel and Luettin, 2003, Whitehill 

et al., 2009), two-class support vector machines (SVM) (Vapnik, 1995) were used for binary 

classification. We used a kernel SVM with a radial basis function kernel in all our 

approaches. SVMs were trained using two classes corresponding to the FACS occurrence 

codes described earlier. Training sets were created by randomly sampling 10,000 frames 

with roughly equal representation for each class. The choice of sample size was motivated 

by the computational limitations imposed by model training during cross-validation. 

Classifier and kernel parameters (i.e., C and γ, respectively) were optimized using a “grid-

search” procedure (Hsu et al., 2003) on a separate validation set. The decision values of the 

SVM models were fractions corresponding to the distance of each frame’s high dimensional 

feature point from the class-separating hyperplane. These values were used for smile 

intensity estimation and also discretized using the standard SVM threshold of zero to 

provide predictions for binary smile detection (i.e., negative values were labeled absence of 
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AU 12 and positive values were labeled presence of AU 12). Some researchers have 

proposed converting the SVM decision value to a pseudo-probability using a sigmoid 

function (Platt, 1999), but because the SVM training procedure is not intended to encourage 

this, it can result in a poor approximation of the posterior probability (Tipping, 2001).

Following previous work on expression intensity estimation using multiclass classifiers 

(Messinger et al., 2009, Mahoor et al., 2009, Mavadati et al., 2013), the SVM framework 

was extended for multiclass classification using the “one-against-one” technique (Hsu and 

Lin, 2002). In this technique, if k is the number of classes, then k(k − 1)/2 subclassifiers are 

constructed and each one trains data from two classes; classification is then resolved using a 

subclassifier voting strategy. Multiclass SVMs were trained using six classes corresponding 

to the FACS intensity codes described earlier. Training sets were created by randomly 

sampling 10,000 frames with roughly equal representation for each class. Classifier and 

kernel parameters (i.e., C and γ, respectively) were optimized using a “grid-search” 

procedure (Hsu et al., 2003) on a separate validation set. The output values of the multiclass 

classifiers were integers corresponding to each frame’s estimated smile intensity level. 

These values were used for smile intensity estimation and also discretized to provide 

predictions for binary smile detection (i.e., values of 0 were labeled absence of AU 12 and 

values of 1 through 5 were labeled presence of AU 12).

Following previous work on expression intensity estimation using regression (Jeni et al., 

2013b, Kaltwang et al., 2012, Savran et al., 2011, Dhall and Goecke, 2012, Ka Keung and 

Yangsheng, 2003), epsilon support vector regression (ε-SVR) (Vapnik, 1995) was used. As 

others have noted (Savran et al., 2011), ε-SVR is appropriate to expression intensity 

estimation because its ε-insensitive loss function is robust and generates a smooth mapping. 

ε-SVRs were trained using a metric derived from the FACS intensity codes described 

earlier. The intensity scores of “A” through “E” were assigned a discrete numerical value 

from 1 to 5, with “no smile” assigned the value of 0. Although this mapping deviates from 

the non-metric definition of AU intensity in the FACS manual, wherein the range of some 

intensity scores is larger than others, it enables us to provide a more efficient computational 

model that works well in practice. Training sets were created by randomly sampling 10,000 

frames with roughly equal representation for each class. Model and kernel parameters (i.e., 

C and γ, respectively) were optimized using a “grid-search” procedure (Hsu et al., 2003); the 

epsilon parameter was left at the default value (ε=0.1). The output values of the regression 

models were fractions corresponding to each frame’s estimated smile intensity level. This 

output was used for smile intensity estimation and also discretized using a threshold of 0.5 

(so that low numbers rounded down) to provide predictions for binary smile detection.

It is important to note the differences between the three approaches that were tested. In the 

two-class approach, the five intensity levels of a given AU were collapsed into a single 

positive class. In the multiclass approach, each of the intensity levels was treated as a 

mutually-exclusive but unrelated class. Finally, in the regression approach, each intensity 

level was assigned a discrete numerical value and modeled on a continuous dimension. 

These differences are clarified by examination of the respective loss functions. The penalty 

of incorrect estimation in the regression approach is based on the distance between the 

prediction value y and the ground truth label t, given a buffer area of size ε (Equation 1). In 
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contrast, the penalty of misclassification in the two-class approach is based on the 

classifier’s decision value y (Equation 2). In this case, the ground truth label is collapsed into 

present at any intensity level (t = 1) or absent (t = −1). As an extension of the two-class 

approach, similar phenomena occur for the multiclass approach.

(1)

(2)

2.3.5. Cross-validation—To prevent model over-fitting, stratified k-fold cross-validation 

(Geisser, 1993) was used. Cross-validation procedures typically involve partitioning the data 

and iterating through the partitions such that all the data is used but no iteration is trained 

and tested on the same data. Stratified cross-validation procedures ensure that the resultant 

partitions have roughly equal distributions of the target class (in this case AU 12). This 

property is desirable because many performance metrics are highly sensitive to class skew 

(Jeni et al., 2013a). By using the same partitions across methods, the randomness introduced 

by repeated repartitioning can also be avoided.

Each video segment was assigned to one of five partitions. Segments, rather than 

participants, were assigned to partitions to allow greater flexibility for stratification. 

However, this choice allowed independent segments from the same participant to end up in 

multiple partitions. As such, this procedure was a less conservative control for 

generalizability. For each iteration of the cross-validation procedure, three partitions were 

used for training, one partition was used for validation (i.e., optimization), and one partition 

was used for testing.

2.4. Performance Evaluation

The majority of previous work on expression intensity estimation has utilized the Pearson 

product-moment correlation coefficient (PCC) to measure the correlation between intensity 

estimations and ground truth coding. PCC is invariant to linear transformations, which is 

useful when using estimations that differ in scale and location from the ground truth coding 

(e.g., decision values). However, this same property is problematic when the estimations are 

similar to the ground truth (e.g., multiclass classifier predictions), as it introduces an 

undesired handicap. For instance, a classifier that always estimates an expression to be two 

intensity levels stronger than it is will have the same PCC as a classifier that always 

estimates the expression’s intensity level correctly.

For this reason, we performed our analyses using another performance metric that grants 

more control over its relation to linear transformations: the intraclass correlation coefficient 

(ICC) (Shrout and Fleiss, 1979). Equation 3 was used to compare the multiclass SVM and ε-

SVR approaches to the manual intensity annotations as their outputs were consistently 

scaled; it was calculated using Between-Target Mean Squares (BMS) and Within-Target 
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Mean Squares (WMS). Equation 4 was used for the decision value estimations because it 

takes into account differences in scale and location; it was calculated using Between-Target 

Mean Squares (BMS) and Residual Sum of Squares (EMS). For both formulas, k is equal to 

the number of coding sources being compared; in the current study, there are two: the 

automatic and manual codes. ICC ranges from −1 to +1, with more positive values 

representing higher agreement.

(3)

(4)

The majority of previous work on binary expression detection has utilized receiver operating 

characteristic (ROC) analysis. When certain assumptions are met, the area under the curve 

(AUC) is equal to the probability that the classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance (Fawcett, 2006). The fact that 

AUC captures information about the entire distribution of decision points is a benefit of the 

measure, as it removes the subjectivity of threshold selection. However, in the case of 

automatic expression annotation, a threshold must be chosen in order to create predictions 

that can be compared with ground truth coding. In light of this issue, we performed our 

analyses using a threshold-specific performance metric: the F1 score, which is the harmonic 

mean of precision and recall (Equation 5) (van Rijsbergen, 1979). F1 score is computed 

using true positives (TP), false positives (FP), and false negatives (FN); it ranges from 0 to 

1, with higher values representing higher agreement between coders.

(5)

2.5. Data Analysis

Main effects and interaction effects among the different methods were analyzed using two 

univariate general linear models (IBM Corp, 2012) (one for binary smile detection and one 

for smile intensity estimation). F1 and ICC were entered as the sole dependent variable in 

each model, and database, extraction type, reduction type, and classification type were 

entered as “fixed factor” independent variables. The direction of significant differences were 

explored using marginal means for all variables except for classification type. In this case, 

posthoc Tukey HSD tests (IBM Corp, 2012) were used to explore differences between the 

three types of classification.
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3. Results

3.1. Smile Intensity Estimation

Across all methods and databases, the average intensity estimation performance was 

ICC=0.64. However, performance varied widely between databases and methods, from a 

low of ICC=0.23 to a high of ICC=0.92.

The overall general linear model for smile intensity estimation was significant (Table 1). 

Main effects of database, extraction method, and supervised learning method were apparent. 

Intensity estimation performance was significantly higher for the BP4D database than for 

the Spectrum database, and intensity estimation performance using SIFT features was 

significantly higher than that using Gabor features. Intensity estimation performance using 

multiclass and regression models was significantly higher than that using the two-class 

approach. There was no significant difference in performance between Laplacian Eigenmap 

and PCA for reduction.

These main effects were qualified by four significant interaction effects. First, the difference 

between SIFT features and Gabor features was greater in the Spectrum database than in the 

BP4D database. Second, while Laplacian Eigenmap performed better in the Spectrum 

database, PCA performed better in the BP4D database. Third, while multiclass models 

performed better in the Spectrum database, regression models performed better in the BP4D 

database. Fourth, PCA reduction yielded higher intensity estimation performance when 

combined with two-class models, but lower performance when combined with multiclass 

and regression models.

3.2. Binary Smile Detection

Across all methods and databases, the average binary detection performance was F1=0.64. 

However, performance varied between databases and methods, from a low of F1=0.40 to a 

high of F1=0.81.

The overall general linear model for binary smile detection was significant (Table 2). Main 

effects of database, extraction method, and supervised learning method were apparent. 

Detection performance on the BP4D database was significantly higher than that on the 

Spectrum database, and detection performance using SIFT features was significantly higher 

than that using Gabor features. Detection performance was significantly higher using 

multiclass models than using two-class models.

These main effects were qualified by a significant interaction effect between reduction 

method and supervised learning method. PCA reduction yielded higher detection 

performance when combined with two-class models, but lower detection performance when 

combined with multiclass and regression models. There was no main effect of 

dimensionality reduction method and no other interactions were significant.

3.3. Distribution of Output Values

The decision values of the best-performing two-class model for each database are presented 

in Figure 4 as box plots (Frigge et al., 1989). The blue boxes represent the first and third 
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quartiles of each smile intensity level, while the red line in each box represents the median. 

The blue lines represent data within 1.5 times the inter-quartile range of the lower and upper 

quartiles. The regression values of the best-performing regression model for each database 

are similarly presented in Figure 5.

Examination of Figure 4 reveals a slight right-leaning tendency, indicating that more 

positive SVM decision values are on average more likely to be higher intensity. However, 

there is substantial overlap between the distributions and a great deal of “clumping” between 

intensity levels; the distributions for levels 2 through 4 (i.e., “B” through “D”) are very 

similar for the BP4D dataset, while the distributions for levels 3 through 5 (i.e., “C” through 

“E”) are very similar for the Spectrum dataset. Finally, the observed range of values spans 

−3.6 to 5.5 for BP4D and −8.4 to 8.1 for Spectrum.

Examination of Figure 5 reveals a stepped and right-leaning pattern, indicating that more 

positive regression values are on average more likely to be higher intensity. There is some 

overlapping between the distributions, although the inter-quartile ranges for each group are 

largely distinct. One exception to this is clumping for levels 4 and 5 (i.e., “D” and “E”), 

especially for the Spectrum dataset. The observed range of values spans −3.1 to 5.7 for 

BP4D and −1.2 to 4.8 for Spectrum.

4. Discussion

4.1. Smile Intensity Estimation

Intensity estimation performance varied between databases, feature extraction methods, and 

supervised learning methods. Performance was higher in the BP4D database than in the 

Spectrum database. It is not surprising that performance differed between the two databases, 

given how much they differed in terms of participant demographics, social context, and 

image quality. Further experimentation will be required to pinpoint exactly what differences 

between the databases contributed to this drop in performance, but we suspect that 

illumination conditions, frontality of camera placement, and participant head pose were 

involved. It is also possible that the participants in the Spectrum database were more 

difficult to analyze due to their depressive symptoms. Previous research has found that 

nonverbal behavior (and especially smiling) changes with depression symptomatology (e.g., 

Girard et al., 2014). There were also differences between databases in terms of social 

context that likely influenced smiling behavior; Spectrum was recorded during a clinical 

interview about depression symptoms, while BP4D was recorded during tasks designed to 

elicit specific and varied emotions. Participants in the Spectrum database smiled less 

frequently (20.5% of frames) and less intensely (average intensity 1.5) than did participants 

in the BP4D database (56.4% of frames and average intensity 2.4). The inter-observer 

reliability for manual smile occurrence coding was also higher in the BP4D database 

(F1=0.96) than in the Spectrum database (F1=0.71). These differences may have affected the 

difficulty of smile intensity estimation.

More surprising was that intensity estimation performance was higher for SIFT features than 

for Gabor features. This finding is encouraging from a computational load perspective, 

considering the toolbox implementation of SIFT used in this study (Vedali and Fulkerson, 
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2008) was many times faster than our custom implementation of Gabor. However, it is 

possible that SIFT was particularly well-suited to our form of registration with dense facial 

land-marking. Although we did not test this hypothesis in the current study, it would have 

been interesting to compare these two methods of feature extraction in conjunction with a 

method of registration using sparse land-marking (e.g., holistic face detection or eye 

tracking). It is also important to note that the difference between SIFT and Gabor features 

was larger in the Spectrum database than in BP4D.

For dimensionality reduction, intensity estimation performance was not significantly 

different between Laplacian Eigenmap and PCA. This may be an indication that the features 

used in this study were linearly separable and that manifold learning was unnecessary. This 

finding is also encouraging from a computational load perspective, as PCA is a much faster 

and simpler technique. However, it is important to note that the success of each 

dimensionality reduction technique depended on the database and on the classification 

method used. Laplacian Eigenmap was better suited to the Spectrum database, multiclass 

models, and regression models; while PCA was better suited to the BP4D database and two-

class models.

Most relevant to our main hypothesis are the findings regarding supervised learning method. 

In line with our hypothesis that the decision-value-as-intensity heuristic is flawed in 

practice, the intensity-trained multiclass and regression models performed significantly 

better at intensity estimation than the decision values of two-class models. However, it is 

important to note that the intensity estimation performance yielded by binary-trained models 

was not negligible. Consistent with previous reports, decision values showed a low to 

moderate correlation with smile intensity.

4.2. Binary Smile Detection

Binary detection performance also varied between databases, feature extraction methods, 

and supervised learning methods. These differences were very similar to those for 

expression intensity estimation. Binary detection performance was higher for the BP4D 

database than for the Spectrum database, higher for SIFT features than for Gabor features, 

and no different between Laplacian Eigenmap and PCA for reduction.

Examination of the decision values for the two-class models (Fig. 4) reveals that there is 

substantial overlap between the distributions of “no smile” and “A” level smiles. 

Furthermore, the first quartile of “A” level smiles is negative in both datasets and therefore 

contributes to substantial misclassification. Examination of the confusion matrices for the 

multiclass models reveals a similar pattern: detecting “trace” level smiles is difficult.

Surprisingly, detection performance was higher for multiclass models than for two-class 

models; this difference was modest but statistically significant (Fig. 3). This suggests that 

the best classifier for binary detection is not necessarily the one trained on binary labels. As 

far as we know, this is the first study to attempt binary expression detection using an 

intensity-trained classifier. Although collecting frame-level intensity ground truth is labor-

intensive, our findings indicate that this investment is worthwhile for both binary expression 

detection and expression intensity estimation.
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4.3. Conclusions

We provide empirical evidence that the decision-value-as-intensity heuristic is flawed in 

practice as well as in theory. Unfortunately, there are no shortcuts when it comes to 

estimating smile intensity: researchers must take the time to collect and train on intensity 

ground truth. However, if they do so, high reliability with expert human FACS coders can 

be achieved. Intensity-trained multiclass and regression models outperformed binary-trained 

classifier decision values on smile intensity estimation across multiple databases and 

methods for feature extraction and dimensionality reduction. Multiclass models even 

outperformed binary-trained classifiers on binary smile detection. Examination of the 

distribution of classifier decision values indicates that there is substantial overlap between 

smile intensity levels and that low intensity smiles are frequently confused with non-smiles. 

A much cleaner set of distributions can be achieved by training a regression model explicitly 

on the intensity levels.

4.4. Limitations and Future Directions

The primary limitations of the current study were that it focused on a single facial 

expression and supervised learning framework. Future work should explore the 

generalizability of these findings by comparing different methods for supervised learning 

and other facial expressions. Another limitation is the divergence between the number of 

reduced features yielded by Laplacian Eigenmap and PCA. Future work might standardize 

the number of features or forego dimensionality reduction entirely (at the cost of 

computation time or kernel complexity). Finally, future work would benefit from a 

comparison of additional techniques for facial landmark registration, feature extraction, and 

dimensionality reduction.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Smile (AU 12) intensity levels from no contraction (left) to maximum contraction (right)
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Fig. 2. 
Techniques Used for Automatic Expression Annotation
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Fig. 3. 
Average Performance for Three Approaches to Supervised Learning in Two Databases

Girard et al. Page 21

Pattern Recognit Lett. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
SVM Decision Values by AU 12 Intensity in Two Databases
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Fig. 5. 
SVM Regression Values by AU 12 Intensity in Two Databases
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Table 1

General Linear Model Results for Smile Intensity Estimation

Database ICC F p

BP4D 0.765 158.206 .00

Spectrum 0.521

Extraction ICC F p

Gabor 0.602 17.892 .00

SIFT 0.684

Reduction ICC F p

Laplacian 0.639 0.197 .66

PCA 0.648

Prediction ICC F p

Two-class 0.467a 83.360 .00

Multiclass 0.739b

Regression 0.724b

Interaction Effects F p

Database × Extraction 4.627 .03

Database × Reduction 3.958 .05

Database × Model 8.873 .00

Reduction × Model 13.391 .00
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Table 2

General Linear Model Results for Binary Smile Detection

Database F1 Score F p

BP4D 0.772 440.209 .00

Spectrum 0.504

Extraction F1 Score F p

Gabor 0.618 9.740 .00

SIFT 0.658

Reduction F1 Score F p

Laplacian 0.642 0.501 .48

PCA 0.633

Prediction F1 Score F p

Two-class 0.616a 4.175 .02

Multiclass 0.661b

Regression 0.636

Interaction Effects F p

Reduction × Model 5.753 .00
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