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a b s t r a c t

People mimic verbal and nonverbal expressions and behaviour of their counterparts in various social inter-

actions. Research in psychology and social sciences has shown that mimicry has the power to influence social

judgment and various social behaviours, including negotiation and debating, courtship, empathy and helping

behaviour. Hence, automatic recognition of mimicry behaviour would be a valuable tool in various domains,

and especially in negotiation skills enhancement and medical help provision training. In this work, we present

the MAHNOB mimicry database, a set of fully synchronised, multi-sensory, audiovisual recordings of natu-

ralistic dyadic interactions, suitable for investigation of mimicry and negotiation behaviour. The database

contains 11 h of recordings, split over 54 sessions of dyadic interactions between 12 confederates and their

48 counterparts, being engaged either in a socio-political discussion or negotiating a tenancy agreement.

To provide a benchmark for efforts in machine understanding of mimicry behaviour, we report a number

of baseline experiments based on visual data only. Specifically, we consider face and head movements, and

report on binary classification of video sequences into mimicry and non-mimicry categories based on the

following widely-used methodologies: two similarity-based methods (cross correlation and time warping),

and a state-of-the-art temporal classifier (Long Short Term Memory Recurrent Neural Network). The best

reported results are session-dependent, and affected by the sparsity of positive examples in the data. This

suggests that there is much room for improvement upon the reported baseline experiments.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Research in psychology has found that people mimic postures,

facial expressions, mannerisms and other verbal and nonverbal ex-

pressions of the counterpart in social interaction [6,16]. Contagious

effects of laughter and yawning, mimicry of speech rate and rhythms,

and imitation of smoking behaviour and mannerisms are just but a

few examples [13]. Mimicry has been operationalised in varying ways

and has overlap with related phenomena including interactional syn-

chrony [9], and interactive alignment [28]. All of these phenomena

(including mimicry) fall under the larger category of behavioural sim-

ilarity. Mimicry behaviour can be divided into motor mimicry and

emotional mimicry [15]. Motor mimicry constrains behaviours to be

identical in expression (but not in duration, intensity or phase). In

emotional mimicry, the displayed behaviours may not be identical,

but have the same “functional value”, i.e. “convey the same message”
✩ This paper has been recommended for acceptance by Gabriella Sanniti di Baja

(3BAJA).
∗ Corresponding author. Tel.: +44 207 594 8195.

E-mail address: sb1006@imperial.ac.uk (S. Bilakhia).

p

i

b

f

o

http://dx.doi.org/10.1016/j.patrec.2015.03.005

0167-8655/© 2015 Elsevier B.V. All rights reserved.
n terms of the underlying affective state, including but not limited to,

adness, empathy, or trust. Note that motor mimicry may also be (a

art of) an emotional mimicry episode. For example, an inner-brow

aise displayed in sadness may be mimicked (and perhaps intensi-

ed by additional displays of chin raise and downwards head tilt).

n this work we largely focus on motor mimicry, mainly because of

ts agnostic character. To wit, while emotional mimicry judgment is

ll about interpretation of what underlies the displayed behavioural

xpression and mimicry episode, motor mimicry judgment is objec-

ive, describing just the “surface” of the shown behaviour, such as

hich facial movement or speech mannerism has been mimicked,

eaving inference about the conveyed message (emotion) to higher

rder decision making.

Research in psychology and social sciences has shown that pres-

nce or absence of motor mimicry behaviour can serve as an (positive

r negative) indicator of co-operativeness [16], social judgment [13],

resence of autism spectrum disorder [20], and even traumatic brain

njury [18]. Hence the presence and characteristics of motor mimicry

ehaviour can serve as a useful step in higher-order behavioural in-

erence. It is not surprising then that automated machine recognition

f interpersonal mimicry behaviours could be of tremendous help to

http://dx.doi.org/10.1016/j.patrec.2015.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.03.005&domain=pdf
mailto:sb1006@imperial.ac.uk
http://dx.doi.org/10.1016/j.patrec.2015.03.005
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esearch and society. It could speed up research in behavioural, polit-

cal, and social sciences. It could be of tremendous value for feedback

rovision in negotiation skills and medical help provision training.

rucially, it could revolutionise the way we interact with robots and

vatars; such technology would enable these artefacts to mimic their

uman counterparts properly and show rapport and collaboration

nd evoke trust. Recently, few pioneering efforts towards machine

nalysis of mimicry behaviour have been reported, but the research

n the topic is still in its infancy, partly because of the lack of suitable

ata to train machine learning algorithms on.

In this work we provide a comprehensive description of the MAH-

OB mimicry database, a collection of fully-synchronised multi-

ensory audiovisual recordings of naturalistic dyadic interactions

uitable for investigation of mimicry and negotiation behaviour. Al-

hough primarily intended for investigation of behavioural mimicry,

he data can be used in studies of other social phenomena such as

urn taking, rapport, and back channel communication. It is also suit-

ble for evaluation of signal processing and machine learning tech-

iques, for head pose estimation, facial expression tracking, auto-

atic speech recognition, and similar. The database contains 11 h

f recordings, split over 54 sessions of dyadic interactions between

2 confederates and their 48 counterparts, being engaged either

n a socio-political discussion or negotiating a tenancy agreement.

ut of 54 sessions 15 have been fully annotated, in terms of facial

oints tracked for both session participants, millimetre-precision six-

egrees-of-freedom (6-DOF) head pose for both participants, and hu-

an judgments of motor mimicry behaviours of head gestures, hand

estures, facial expressions, shoulder movements and postural shifts

f the torso. The database is publicly available for non-commercial

se at http://mahnob-db.eu/mimicry.

The MAHNOB Mimicry database is the first of its kind as it satisfies

ll of the following:

• contains fully-synchronised recordings of interpersonal dyadic in-

teractions,
• contains recordings of a fairly large number of subjects and mod-

erately wide range of ethnicities, and near-equal subject gender

balance,
• is filmed in conditions allowing comprehensive research in com-

puter vision and signal processing, in terms of range of views,

amenable lighting conditions, good image resolution, and highly

accurate synchronisation of all recording sensors, and
• is annotated in terms of a large number of head, hand, shoulder

and face gestures, and motor mimicry episodes involving these

gestures.

The MAHNOB mimicry database has been partially presented at

onferences (see [2,35,36]) but a complete description of the data,

he recording protocol and the available annotations, has not been

eported so far. The novelty of this work is not only in provision of a

omplete description of this database, it is also in provision of base-

ine experiments that could serve as benchmark for efforts in the field.

e consider face and head movements tracked by the state-of-the-

rt-trackers (i.e. the face tracker described in [25] and the head pose

stimator described in [17]) and report on binary classification of

ideo sequences into mimicry and non-mimicry categories based on

he following widely-used methodology: two similarity-based meth-

ds (cross correlation as used in [22] and Generalised Time Warping

40]), and the state-of-the-art temporal classifier, long short term

emory recurrent neural network (LSTM-RNN) [32]. Performance of

he methods is evaluated against the ground truth, representing hu-

an annotations of motor mimicry behaviour.

The motor mimicry behaviours considered in our experiments in-

lude smiles, frowns, and eyebrow raises, as well as head nods, head

hakes, and significant shifts in head posture. We say that a motor

imicry episode has occurred if one of the subjects displays a be-

aviour previously displayed by her counterpart and does so within
certain time limit. This time limit has both a lower and an upper

ound. The former is set so as to distinguish between synchronic-

ty and mimicry. The latter is set so as to distinguish between motor

imicry and behaviours that are identical in expression but displayed

ith large delay and, hence, having low likelihood that they represent

otor mimicry. These thresholds are set to 0.04 s and 4 s. Research in

sychology has shown that people need at least 40 ms to recognise

nd start mimicking a facial movement [34], and hence we set the

ower bound to 0.04 s. The upper boundary has been set in an exper-

mental fashion, by reviewing all motor mimicry episodes annotated

s such by the human annotators in the MAHNOB mimicry database

nd setting the threshold to the duration of the longest delay.

The problem of automatic motor mimicry recognition is made

ifficult by the fact that the mimicked behaviour is identical in ex-

ression but may not be identical in duration, intensity and phase. For

xample, for nods, the primary rotation around transverse axis can be

ixed with other rotations, and can vary in velocity, intensity, phase

nd number of periods. This variability implies that the events need

o be related to each other through some non-trivial spatiotemporal

ransform. Most current methods for mimicry detection or classifica-

ion rely on a pair-wise similarity measure, combined with a method

o account for the delay in the reaction (via time-lags) and for the vari-

bility in the duration of the reaction (via temporal-window-based

nalysis). We use similar approaches in this work.

We conduct two sets of experiments. The first one is based on facial

ues only, where positive examples consist of sequences containing

otor mimicry of facial movements only. The second experimental

etup is based on facial and head motions, and positive examples are

equences containing motor mimicry of facial and head movements.

f the tested methods, LSTM-RNNs gave the best performance due to

he methods inherent ability to model well arbitrary spatio-temporal

ransformations. However LSTM-RNNs suffer from significant vari-

nce in classification performance, which we also observed in our

xperiments. The best reported results are session-dependent and af-

ected by the sparsity of positive examples in the data. This suggests

hat there is much room for improvement upon the reported baseline

xperiments.

The paper is further organised as follows. Section 2 reviews prior

ork. Section 3 provides a complete description of the MAHNOB

imicry database. Sections 4 and 5 detail the conducted baseline

xperiments. Section 6 concludes the paper.

. Prior work

.1. Other databases

Various databases containing audiovisual recordings of natural-

stic human behaviour have been reported to date. These include

atabases of elicited naturalistic emotional responses to various video

aterial (e.g., AM-FED [19], see [27,39], for overviews), databases of

roadcast material used in studies on (machine) analysis of social

oles and personality (e.g., see [37] for an overview), databases of

uman–avatar interactions (e.g., SEMAINE database [21], the work

rovides also an overview of other such databases), and databases of

nterpersonal interactions where the involved subjects are co-located

nd recorded simultaneously (e.g. [12] provides an overview of group

eetings data repositories and [9] provides an overview of data used

n studies on (machine) analysis of interpersonal synchrony). How-

ver, most of these data repositories either publicly unavailable (e.g.

30], Spontal [10]) or suffer from some of the following limitations.

• The recordings are of professional actors and it is unclear whether

the recorded interactions are acted or spontaneous (e.g., as in

IEMOCAP [5]).
• The recordings are of short interactions. Research in psychology

has shown that mimicry behaviour becomes more frequent as

http://mahnob-db.eu/mimicry
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interaction progresses [4]; hence, short interactions (less than

5 min, e.g., as in NOMCO [26]) have significantly decreased likeli-

hood of containing mimicry episodes.
• The recordings are technically suboptimal. The most common

problem is the low accuracy of sensory synchronisation. To facil-

itate audio and/or visual analysis of mimicking behaviour, analy-

sis of temporal-interdependencies of behavioural patterns shown

by the interacting persons must be facilitated, and that is pos-

sible only if the utilised sensors (microphones and cameras) are

synchronised to a high accuracy (of less than 40 ms error, given

that people need 40 ms to recognise and start mimicking a be-

haviour [34]). However most of the currently available data on

interpersonal interaction have an error in the synchronisation of

the utilised cameras that is >40 ms (which is the duration of one

frame in 25 fps temporal resolution of the camera, e.g., as in [6]).

Other technical problems include low-resolution videos (e.g., as

in NOMCO [26] and IFADV [33]), suboptimal view of the subjects

(e.g., as in D64 [23]), and similar.
• The recordings have not been annotated by human experts in

terms of motor mimicry episodes, facial movements, head and

hand gestures, body postures, etc. (e.g., as is the case with IFADV

[33]). Building effective and efficient machine learning algorithms

for mimicry recognition depends on having suitable ground truth

to learn from. Hence, an important aspect of making progress

in the field lies in providing suitable datasets of enough labelled

examples for building robust tools.

As explained in Section 3, the MAHNOB Mimicry database has been

collected as to address these limitations of the currently available

databases of spontaneous dyadic interactions.

2.2. Machine recognition of motor mimicry

Previous works on mimicry detection have been based on a mea-

sure of correlation between the subjects’ data. The methods usually

rely on the construction of a control dataset, in which each subjects

data is independently and randomly permuted. This permutation is

applied to either windows of samples or individual samples. Gen-

erally a synchrony score is calculated on both the control and the

original dataset, and a hypothesis test is used to either highlight in-

formative variables, or temporal windows with significant similarity.

Ramseyer and Tschacher [29] used a proprietary dataset containing

104 sessions of cognitive behavioural therapy, in order to investigate

the relationship between synchrony and clinical outcomes. They cal-

culated windowed cross-correlation of motion energy, with time lags

ranging from −4 to +4 s (i.e. for cross-correlation at time lag L, motion

energy extracted from the first subject S1 in the time interval [t1, t2]

is compared against that extracted from the second subject S2 in the

time interval [t1 − L, t2 − L]). These per-window scores were then

aggregated into a global score. The global scores between original

and (window-level) permuted data were compared for significance

to distinguish those with synchrony behaviour. Boker et al. [3] in-

vestigated whether movement synchrony increased in the presence

of acoustic noise. They used a proprietary dataset of eight subjects

in a conversational setting. Data were captured from body-mounted

inertial sensors. They used windowed cross-correlation and peak-

picking, with time lags ranging from −2 to +2 s, to estimate syn-

chrony in head movement. Neither of the prior two works report

any performance figures. Sun et al. [36] used the MAHNOB Mimicry

database to show that subjects tend to mimic body postures, head

movements and hand gestures of their counterparts, and to inves-

tigate how mimicry evolves during an interaction. They used win-

dowed cross-correlation of motion intensity histograms to provide

a similarity measure for mimicry behaviour. They observed that the

mean(s.d.) windowed cross-correlation across all negotiation scenar-

ios rose from 0.53(0.01) at the start of a session, to 0.6(0.02) at the
nd of a session. For discussion scenarios, the average windowed

ross-correlation rose from 0.3(0.02) to 0.5(0.03). These trends were

lso apparent in individual sessions. Altmann [1] used a proprietary

ataset of schoolchildren, to investigate how synchrony varies be-

ween friend and non-friend dyads, when placed in competitive and

eutral scenarios. They used motion energy features to compute two

inear regression models per window. The first model contained auto-

egressive and cross-regressive components, whilst the second model

ontained an auto-regressive component only. If the difference in R2

etween the two models was significant (by F-test), it was inferred

hat the variance explained by the cross-regressive terms was signifi-

ant, and hence an indicator of synchrony between the subjects. They

uantify synchrony occurrence as the proportion of windows with

tatistically significant R2 differences. Across all sessions, they report

ean(s.d.) synchrony occurrences of 0.187(0.11) and 0.120(0.09) for

eutral and conflict states respectively. Feese et al. [11] used a large,

roprietary dataset to quantify behavioural mimicry. Subjects worked

n small groups to rank fictional job candidates. Data were captured

rom body-mounted inertial sensors. They used gesture detectors

or behavioural events, including head, arm and torso movements.

hey define positive output from the detectors closer than a temporal

hreshold to be mimicry. They report precision, recall and F1 scores

or detection of their behaviour primitives, but they do not com-

are against human-rated annotations for mimicry behaviour specif-

cally. They report F1 scores of e.g. 0.57 for posture changes, 0.67

or head nods, and 1.00 for face-touching. Delaherche and Chetouani

8] used a proprietary dataset of students completing a co-operative

ask to quantify behavioural synchrony. They used motion energy,

ptical flow, and prosodic features, and calculated cross-correlation

nd magnitude coherence between all pairs of features, in 1-s win-

ows. Synchrony was assumed for a pair of features if the difference

n cross-correlation between the real data and a sample-permuted

ontrol dataset was statistically significant. They quantify synchrony

ccurrence as the percentage of windows with statistically significant

ross-correlation (compared to their control set). This percentage is

igh for some feature-pairs (e.g. 83.3% for both subjects’ motion his-

ory image, 73.2% for both subjects’ motion energy), and low for others

e.g. 28.9% for cross-correlation between one subject’s acoustic pitch

nd the other subject’s motion energy). None of the works mentioned

bove attempt to compare their methods to ground truth of mimicry

ehaviour. Michelet et al. [22] used a proprietary dataset for sequence

lassification into mimicry and non-mimicry classes. Their dataset

ontains 256 clips of posed, gross body movements, set against a uni-

orm, static background. They used spatio-temporal interest points to

xtract HOG/HOF features, which were quantised into a dictionary.

indows within a sequence were then described by a bag-of-words.

ross-correlation and dynamic time warping (across these windows)

ere used as a similarity measure between entire sequences. For each

equence, a threshold was used to discriminate between mimicry and

on-mimicry classes. ROC (receiver operating characteristic) curves

ere reported, giving a best performance of 0.920. Delaherche et al.

7] proposed a similar approach to that in [22], using the likelihood

atios between one-class SVMs as a distance measure between class

istributions. They used the same posed data from [22]. They re-

orted a maximum area-under-curve of 0.92, similarly to the results

eported in [22]. Bilakhia et al. [2] did preliminary investigation of

ong short-term memory networks. This is currently the only work

n mimicry behaviour detection in continuous data (i.e. detection of

ultiple events in one entire sequence), as opposed to classification

f pre-segmented sequences. They used facial animation parameters

FAPs) and cepstral features, extracted from the MAHNOB Mimicry

atabase. For both the mimicry class and the non-mimicry class, an

nsemble of regressors was learnt. These regressors learned to map

he features from one subject to the features from their counterpart,

nd vice-versa. Given an unseen input sequence, the class-specific en-

emble of regressors with the lowest reconstruction error was taken
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Fig. 1. Camera views available from the MAHNOB mimicry database.
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1 As explained in Section 1, the value of this threshold has been determined experi-

mentally for the data in the MAHNOB Mimicry database.
o be the one corresponding to the input sequence. Experiments were

ession-specific. The results show good recall, between 60% and 90%,

ut poor precision (between 6% and 80%), for each class. This is due

o the class imbalance in the dataset.

. Database

In this section we provide a comprehensive description of the

AHNOB Mimicry database, a collection of annotated, accurately syn-

hronised (to an error of less than 4 ms), multi-sensorial, audiovisual

ecordings of naturalistic, dyadic interactions.

Protocol. The dataset consists of 54 recordings of face-to-face in-

eractions. Of these, 34 are discussions on a contemporary sociopolit-

cal topic, and 20 remaining are tenancy agreement negotiations. In

oth cases, while the participants are given the topic of discussion, no

cript was provided—participants were free to discuss at their leisure.

n the latter case, session outcomes, i.e. whether participants decided

o live together, are provided together with the rest of the data (of

hese, 18 are positive). Session lengths range between 5 and 20 min,

ith an average length of 12 min. In total, 11 h and 40 min of record-

ngs are available.

Recording setup. The corpus was recorded using the following

ensors (see Fig. 1):

• Audio sensors: one far-field microphone, one head-mounted mi-

crophone per subject.
• Visual sensors: two frontal cameras per subject, covering the head

and torso (∗FaceNear{1, 2}); three frontal cameras per subject,

covering the head only (∗FaceFar{1, 2, 3}); two downward facing

cameras per subject, covering the entire body (∗Body{1, 2}); and

one profile-oriented camera covering both subjects (overview).

Exact details of the utilised sensors, capture computers, and sen-

or fusion and synchronisation procedures can be found in [35]. The

rontal camera descriptors “Far” and “Near” refer to “far-field” and

near-field” measurement. The far-field camera has a longer focal-

ength than the near-field camera, hence the subject comprises more

f the frame. Highly accurate synchronisation (of less than 4 ms) of 15

ameras, with 1024 × 1024 spatial- and 58 Hz temporal resolution,

nd three microphones with 48 kHz temporal resolution, is achieved

y recording all trigger signals with a multi-channel audio interface.

ach subject also wore a “tiara” with nine white markers to provide

ccurate head pose estimates, as in Fig. 1 (see [17] for more details).

he head pose data are available in each camera’s respective reference

rame, or the global reference frame.

Participants. Twelve confederates and 48 counterparts took part

n the study. Non-confederate subjects were told that the purpose of
he recordings was automatic measurement of behaviour in debate

nd negotiation scenarios. Subjects were recruited from staff and stu-

ents at Imperial College London, and span a range of ethnicities and

rimary languages (primarily Europe or the Near-East). Subject na-

ionalities include Spanish, French, Greek, English, Dutch, Portuguese,

nd Romanian. The subjects’ ages range between 18 and 34 (μ = 25,

= 4.8). Subjects’ age and nationality are available for all subjects.

ubjects were previously unacquainted. The database is recorded in

nglish. There are 29 female and 31 male subjects, of which 15 wore

ye-glasses.

Annotations. The data have been fully annotated for 15 out of

4 sessions, for motor mimicry behaviour of head gestures, hand

estures, body movement and facial expressions. The annotations in

erms of gestures (i.e. which gesture occurs when in the data) have

een attained in a semi-automatic manner—an automated detector

f the target gesture has been run and the results have been man-

ally inspected and corrected. For head gestures—nods, shakes, and

ilts—the method in [14] has been used. Postural shifts of the head

in pitch, yaw and roll) have been tracked by the highly accurate

ethodology of [17]. For hand gestures—hand raising of left and right

and—the method in [24] has been used. For postural shifts in the

orso and shoulder shrugs, optical flow methodology similar to that

sed in [36] has been used. Finally, for facial gestures—smiles, frowns,

nd raised eyebrows—we used the facial point tracker and facial ac-

ion parameter coder in [25]. As already explained in Section 1, we

ocus on motor mimicry episodes in this work. The adopted definition

f motor mimicry is similar to that used in [11], and is illustrated in

ig. 3. The episode onset is taken to be the onset of the mimickee’s ges-

ure, whilst the offset is taken to be the offset of the mimicker’s iden-

ical gesture. Assume a behaviour instance bSm
i

. We define the start

nd end times of each behaviour instance to be ts(b
Sm
i

) and te(b
Sn
i

),

espectively. A behaviour of subject Sm, bSm
i

, is mimicked by subject

n if a behaviour instance bSn
j

exists that satisfies1:

Sm

i
= bSn

j
, ts

(
bSn

j

)
> ts

(
bSm

i

)

s

(
bSn

j

)
< te

(
bSm

i

) + 4 s

he start time of a mimicking event is given by te(b
Sm
i

), while the

nd time is given by te(b
Sn
j

). Mimicry episodes have significant vari-

bility in their temporal structure, as seen in Fig. 3. These gener-

lly fall into four cases. Fig. 3a illustrates the case where only short
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Fig. 2. Mimicry episode of laughter, S32, 9m06s–9m16s.

(a) Idealised motor mimicry (b) Short stimulus, long response

(c) Reflective mimicry (d) Multiple mimicry

Fig. 3. Mimicry episode construction (black dashed lines define episode boundaries).
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time delay exists between the onsets and offsets of corresponding

behaviours (e.g. in S16 at 13m07s). Fig. 3b illustrates the case where

a short-duration initial behaviour (such as a monosyllabic laughter

episode) triggers a much longer response by the counterpart (e.g. in

S26 at 1m08s). The inverse can also occur, where a long-duration

initial behaviour triggers a much shorter response by the counter-

part. Several mimicry occurrences can also be aggregated into the

same episode, as illustrated in Fig. 3c and d. Fig. 3c shows “reflec-

tive” mimicry, where subject 2 mimics an action of subject 1, which

is subsequently mimicked by subject 1, such as in contagious laugh-

ter (e.g. in S28 at 2m7s). Episodes of reflective mimicry contain 3 or

more displays of the same behaviour. Fig. 3d shows multiple mimicry,

where the onset of a behaviour subsequently mimicked occurs before

the offset of a previously mimicked behaviour (e.g. in S19 at 1m54s).

These mimicry episodes are concatenated together due to temporal

overlap. However, unlike reflective mimicry, they are not required

to contain mimicry of the same behaviour display. For example, a

multiple mimicry episode may contain an instance of smile mimicry

concatenated to an instance of nod mimicry.

All motor mimicry episodes have been annotated by two anno-

tators using the ELAN annotation software [38]. If discrepancies in

annotation occurred (e.g. in the exact timing of onset/offset of an

episode), these were discussed to reach an agreement. Table 1 shows

annotated session statistics for these motor mimicry episodes, per

mimicked gesture. Mimicry episodes of head nods, smiles, and laugh-

ter are the most numerous—this is not surprising, as the confederates

and their counterparts were previously unacquainted. Research in

psychology has shown that people try to be liked by new acquain-

tances and tend to mimic positive emotions, characterised by laugh-

ter, smiles, and nods, more often [15]. An example of ideal motor

mimicry of laughter is illustrated in Fig. 2.

4. Baseline experiments: setup

Here we describe the setup for the conducted baseline experi-

ments. We consider face and head movements, tracked by the state-

of-the-art-trackers, in 10 annotated sequences (S3, S4, S5, S6, S11, S21,

S32, S33, S42, S44) described in Table 1, and report on binary clas-

sification of these video sequences into mimicry and non-mimicry

categories based on the following widely-used methodologies: two

similarity-based methods and the state-of-the-art temporal classi-

fier (LSTM-RNN). We conduct two sets of experiments. The first one

is based on facial cues only, where positive examples consist of se-

quences containing motor mimicry of facial movements only. Hence

(for the first experimental scenario only) an example sequence con-

taining a mimicry episode of head nods is considered as a negative ex-

ample. The second experimental setup is based on facial and head mo-

tions, and positive examples are sequences containing motor mimicry

of facial and head movements. In both scenarios, all data from each

session are used. Performance of the methods is evaluated against

the ground truth, representing human annotations of motor mimicry
behaviour. e
Data. To account for the extreme inter-session and inter-subject

ariability, all experiments were performed on a per-session ba-

is. We used 10 sessions in all experiments. As can be seen from

able 1, these sessions have enough positive examples of motor

imicry of both facial and head movements. The mimicry episodes

n these sessions are also of reasonable intensity, in contrast to others

here subject expressions are very subtle (such as session 1). Hence

ur choice to use these sessions. For each session, the data were split

nto three disjoint subsets for training, model validation, and testing.

he training data consisted of the first part of the session such that it

ontained half of all mimicry episodes encountered during that ses-

ion. The second part of the session containing the next quarter of all

he mimicry episodes formed the validation set. The remaining data

ere used for testing. Splitting of the data per session into the train-

ng, validation and testing sets could have been done differently, e.g.

ased on the median and third-quartile of duration. However, such

pproaches would be suboptimal as positive examples are sparse and

nevenly distributed over time. Hence, such an approach could cause

ne of the sets, e.g. the validation set, to have no positive examples.

e also encountered another problem. As our data are fully sponta-

eous data, non-mimicry episodes in such data are significantly more

requent and longer than mimicry episodes. Hence, classification of

uch episodes into mimicry and non-mimicry classes is trivial using

simple threshold on episode length. To avoid this pitfall, we artifi-

ially segment long negative examples (i.e. non-mimicry episodes),

ith segment boundaries drawn from a Gamma distribution, fit to the

mpirical distribution of positive examples’ (i.e. mimicry episodes’)
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Table 1

Per-session mimicry incidence statistics.

Session # 1 2 3 4 5 6 11 21 30 32 33 35 42 44 53 Total

Smile 10 2 5 10 16 10 11 7 11 23 6 14 28 18 5 176

Laughter 6 0 0 5 4 0 1 7 8 7 0 0 13 3 1 55

Frown 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 3

Eyebrow raise 0 0 0 0 0 0 0 0 0 1 0 2 4 0 0 7

Head nod 32 8 21 90 68 56 40 41 12 48 27 13 38 22 4 520

Mimicry Head shake 5 0 1 2 4 1 1 0 0 1 2 1 1 5 0 24

type Head pose shift 6 2 2 3 1 4 6 0 0 8 1 5 0 0 0 38

Shoulder shrug 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5

Left hand movement 3 0 1 1 2 0 0 2 2 1 0 1 0 6 0 19

Right hand movement 3 0 1 2 4 1 0 4 3 4 0 3 3 8 0 36

Torso shift 1 0 3 0 0 0 3 1 2 2 0 3 0 1 0 16

Total 69 13 34 114 99 72 64 62 38 95 36 42 88 63 10 900
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engths. In that way we obtain positive and negative examples of

omparable temporal lengths.

Features. For head movements, we use the millimetre-precision

-DOF head pose estimator in [17] and calculate three rotation ve-

ocities as the features to be used in further processing. Velocities

ere obtained using finite-differences of the smoothed head pose

nd were then scaled to the interval [0, 1]. Smoothing has been car-

ied out using a cubic polynomial fit to a sliding window of 15 frames.

or facial movements, we use facial point tracker in [25] and adopt Fa-

ial Animation Parameters (FAPs), directly calculated by the utilised

racker, as the features to be used in further processing. We chose

ot to use raw facial points and instead use the FAPs (corresponding

o the upper lip position, jaw drop, lip width, inner brow height, lip

orner position, and outer brow height), as they are representative of

acial motion and descriptive of facial expressions. This results in nine

eatures (six FAPs and three head rotation velocities) for each video

rame of a target video sequence.

Cross-correlation. Analogous to the work in [22], we use a DXs1
×

Xs2
cross-correlation matrix P, where DXs1

and DXs2
are the feature

imensionalities of data matrices Xs1
and Xs2

. These data matrices

orrespond to the features of subjects S1 and S2 respectively, for a

iven input sequence. A scalar measure of similarity is then calcu-

ated from this cross-correlation matrix. To this end, we take the

race of the cross-correlation matrix, as we are interested in (homo-

eneous) motor mimicry—i.e. mimicry of the same gestures (i.e. the

ame features). We account for reaction delay by calculating this mea-

ure across different time-lags. We define time-lag relative to sub-

ect S1. A cross correlation matrix with time-lag t, Pt(X, Y), is defined

lement-wise as:

t
ij =

∑n
k=t(xk−t,i − x̄i)(yk,j − ȳj)√∑n

k=t(xk,i − x̄i)2
∑n−t

k=1(yk,j − x̄j)2

1 ≤ i ≤ DXs1
, 1 ≤ j ≤ DXs2

, n = len(Xs1
) = len(Xs2

) (1)

he final similarity measure between the two sequences is then taken

o be the mean of these traces:

corr_dist(Xs1
, Xs2

) =
T∑

i=1

tr(P ti(Xs1
, Xs2

))

∀i = 1 . . . T (2)

here T is the size of the set of time-lags, and tr() is the matrix trace

unction. A decision threshold θ ∗ is then used to discriminate be-

ween mimicry and non-mimicry. This is empirically determined by

ptimizing over the range of similarity values calculated on a valida-

ion set S:

∗ = argmax
θ

2∗τ ∗ν∗(τ + ν)−1 (3)
here:

τ =
∑N

i=1 yiŷi∑N
i=1 ŷi

ν =
∑N

i=1 yiŷi∑N
i=1 yi

∗ ∈ [min(xcorr_dist(Xs1,i, Xs2,i), i = 1 . . . N),

max(xcorr_dist(Xs1,i, Xs2,i), i = 1 . . . N)]

ŷi = I[xcorr_dist(Xs1,i, Xs2,i) > θ ∗]

S = {(Xs1,1, Xs2,1, y1), (Xs1,2, Xs2,2, y2). . . (Xs1,N, Xs2,N, yN)}
here yi is the true class label for example sequence i, ŷi is the pre-

icted class label for example sequence i, N is the number of example

equences, θ∗ is the optimal decision threshold, τ is precision, ν is

ecall, and I[] is the indicator function.

Generalized time-warping: Generalized time-warping (GTW)

40] aligns sequences of multivariate data. It does so by jointly find-

ng a low-dimensional projection for each sequence that maximises

he projections’ cross-correlation, and a warping that maximises the

lignment of these discovered projections. The GTW objective cost at

onvergence can be used as a similarity measure between sequences,

tw_dist(Xs1
, Xs2

). Note however, that in this case a higher score

ill indicate dissimilarity between sequences. As with the cross-

orrelation similarity measure above, we use a decision threshold θ ∗

iven by Eq. (3) to discriminate between mimicry and non-mimicry.

owever, when using gtw_dist(Xs1
, Xs2

), the comparison operator in

he indicator function is reversed compared to Eq. (3), as a higher

alue for the gtw_dist(Xs1
, Xs2

) score indicates that sequences are

issimilar.

Long short-term memory: The long short-term memory recur-

ent neural network (LSTM-RNN) [32] is a recurrent neural network

odel that can preserve long-range dependencies in sequential data.

hey outperform standard recurrent neural networks, which suffer

rom gradient diffusion as the error is backpropagated during train-

ng. LSTM-RNNs preserve the error signal through a different choice

f activation function and recurrent connection weight. We perform

inary classification by concatenating the features of each subject to-

ether for the whole episode, and train with gradient-descent and

esilient backpropagation using the ground-truth labels as output.

e use the PyBrain [31] implementation of LSTM-RNN.

Classifier training: As cross-correlation and GTW are unsuper-

ised, we combine the training set and validation sets to estimate the

yperparameters. For the cross-correlation similarity measure, the

race of cross-correlation matrix for each sequence is calculated, for

oth positive and negative time-lags (in order to account for the fact

hat any subject could mimic their counterpart). We used time lags

f {−24, 0, 24} samples, i.e. we define {ti: i = 1 . . . T} � {−24, 0, 24} in

corr_dist. Given that the utilised cameras record at 58 Hz, a time lag

f 24 frames amounts to approximately 0.5 s. This value was deter-

ined in an experimental fashion by inspecting the annotated motor

imicry sequences. The majority of motor mimicry occurred within

.5 s of the display of the mimicked behaviour in our data. Hence
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we opted to use 0.5 s as the longest time lag considered. Preliminary

experiments showed that longer time lags had no effect on perfor-

mance. The optimal hyper-parameters are taken to be those which

produce the best F1 performance on the validation set. Due to severe

class-imbalance we use a skewed cost-matrix for model validation, to

prevent selecting a classifier that just returns the negative class. The

skew was set proportional to the class imbalance. For LSTM-RNNs, we

use a single hidden layer. The only hyper-parameter is the number

of LSTM-RNN blocks in this hidden layer (i.e. the rank of the hidden

representation of the data), chosen experimentally by inspecting the

performance for [15, 25, 35, . . . , 75] blocks, and selecting the best

performing one on the validation set. It is well known that the number

of model parameters greatly increases with model depth. In turn, the

risk of overfitting on small datasets is significantly augmented. Hence

we chose to use a single hidden layer of moderate size, to prevent this

risk. LSTM-RNNs were trained using resilient back-propagation, and

training was stopped when the error gradient fell below some small

threshold ε, or the number of training epochs (i.e. model parameter

updates during learning) reached 500. LSTM networks are trained and

tested 10 times with the hyper-parameters found during the valida-

tion procedure, to account for the stochastic learning procedure.

Evaluation measures. Classification performance on the test set

is measured using sequence-level negative predicted value (NPV),

specificity, precision and recall:

NPV = TN

TN + FN
specificity = TN

FP + TN

precision = TP

TP + FP
recall = TP

TP + FN

where TP, FP, TN, FN correspond to true positive, false positive, true

negative, and false negative respectively.
(a) Subject 1 power spectrum (

(c) Head pitch, nod mimicry

sequence

(d

c

Fig. 4. Cross-correlation based similarity measures are unsuitable for dynamic phenomena

spectrum of miscellaneous head motion as in (d), cross-correlation in the time domain is sens
. Baseline experiments: results

As explained above, we decided on session-dependent experi-

ents because of high inter-subject and inter-session variability. This

ould have adversely affected the simple cross-correlation-based and

TW-based classifiers due to their low learning capacity. For example,

ne could imagine a session with very expressive subjects, where ex-

ess extraneous motion drives down similarity globally. This would

ause the learned classifier to perform even worse for some other

ession where subjects are less expressive and display only simple

estures (pushing up similarity globally).

Results for cross-correlation based classification in scenario 1 are

hown in Fig. 5a. In most cases, precision is poor, and recall is highly

ariable, from 33% to 87% (precision/recall of 0 indicates no true-

ositive predictions). This is mainly due to the sparsity in positive ex-

mples and low class-separability that cross-correlation-based clas-

ification can achieve. Positive example sparsity depresses precision,

s misclassifying a small proportion of negative examples inflates the

umber of false positives relative to true positives. Non-separability

rises from cross-correlation’s inadequacy for temporal data. For ex-

mple, both subjects sitting motionless gives a high cross-correlation

alue, whereas complex movements (even when being a part of a

imicry episode) give a low correlation value. Examples can be seen

n Fig. 6a, where negative examples give high similarity e.g. in S5,

500 < t < 8000, due to neutral facial expressions in both sub-

ects. Sometimes cross-correlation performs reasonably well e.g. in

32, 4500 < t < 5000 (Fig. 6b), corresponding to the intense laugh-

er episode shown in Fig. 2. It also captures well motor mimicry

n S32, 2700 < t < 3800, where a series of intense smile-mimicry

pisodes occur with small time delay between behaviours. Both

bove-mentioned cases correspond to idealised motor mimicry (as
b) Subject 2 power spectrum

) No significant cross-

orrelation (-0.0213)

. Though the power spectra are very similar, especially when compared to the power

itive to e.g. phase, changing intensity over the episode duration, and non-stationarity.
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(a) Cross-correlation, scenario 1 (b) Cross-correlation, scenario 2

(c) GTW, scenario 1 (d) GTW, scenario 2

(e) LSTM, scenario 1 (f) LSTM, scenario 2

Fig. 5. Experimental results for cross-correlation, time-warping, and LSTM classifiers. Scenario 1 tested classification of facial expression mimicry, whilst scenario 2 tested for

mimicry of both facial expressions and head movement. Error bars show standard-deviation over 10 independent experiment repetitions.
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n Fig. 2(a)), which cross-correlation can detect well. In the second

xperimental scenario (see Fig. 5b), cross-correlation has lower per-

ormance. It tends to give lower specificity and precision, and higher

ecall. This is due to the introduction of head nods and shakes into the

ask, greatly increasing the number of positive examples. However

ross-correlation is unsuitable for periodic motion, as illustrated in

ig. 4, where an example of idealised mimicry is shown (low time de-

ay, high overlap between actions). The bottom-left panel shows the

rst derivative of head-pitch for both subjects from a nod mimicry

pisode in S44. Periodicity is evident in the time domain, whilst their

ower spectra in Fig. 4a and b are similar, with a defined peak power

etween 3 and 5 Hz. This corresponds to the frequency range for head

ods and shakes. However cross-correlation gives very low similarity,

s seen in Fig. 4d.

In the first experimental scenario, GTW has worse performance

han cross-correlation in terms of specificity and precision (Fig. 5c),

s its objective cost is also unrepresentative of gesture similarity.
he sequence S5, 2000 < t < 3200 (Fig. 6a), contains intense smile

imicry episodes, but their time-warping cost is high compared to

ther non-mimicry sequences in the test set (note that lower cost

ndicates higher similarity). As with cross-correlation, this is due to

ntra-gesture variability and weak coupling—one subject smiles with

ell-defined onset/offset (and constant apex), whilst the other smiles

ntensely but significant lip movement from enunciated speech is also

resent. Similarly to cross-correlation in the second experimental

cenario, GTW proves inadequate for alignment of periodic data, as

he performances in Fig. 5d show. Its requirement that the temporal

arping be monotonic precludes alignment of signals with different

umbers of periods. This reduces similarity for complex, semantically

quivalent gestures, raising the optimal decision-threshold on the

alidation set. This leads to more false positive classifications, giving

igh recall and NPV.

In experimental scenario 1 (Fig. 5e) LSTM-RNNs have high NPV,

nd specificity performance between 50 and 70%, with low precision.
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(a) S5 test data, similarity values
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(b) S32 test data, similarity values

Fig. 6. Similarity values for test data from S5 and S32 (scenario 1). Note that high

similarity values can occur for sequences with no (facial) mimicry present, e.g. for

sequences where both subjects have static facial pose. High values for cross-correlation,

and low values for time-warping cost, indicate “similar” sequences. A ground truth

value of 1 indicates a sequence containing a mimicry episode. Green horizontal lines

represent decision boundaries. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Table 2

Per-method performance (mean/s.d.) averaged over all sessions, scenario 1 (facial

mimicry only experiments).

Model Negative predicted value Specificity Precision Recall

Cross-corr 82.2(8.3) 81.4(6.4) 29.0(18.4) 45.9(21.4)

GTW 84.7(15.4) 51.9(28.5) 11.8(8.0) 47.5(29.3)

LSTM 87.7(8.9) 59.9(6.0) 17.7(12.8) 47.7(9.7)

Table 3

Per-method performance (mean/s.d.) averaged over all sessions, scenario 2 (facial +
head mimicry experiments).

Model Negative predicted value Specificity Precision Recall

Cross-corr 56.3(30.8) 24.9(27.3) 26.1(8.9) 76.1(24.0)

GTW 68.1(28.3) 30.7(31.2) 22.0(10.6) 66.6(34.2)

LSTM 76.1(8.3) 67.9(5.53) 28.8(10.0) 37.8(7.9)
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As the LSTM-RNN is not constrained to a linear separator, it does not

need to learn a decision boundary that misclassifies large volumes of

the negative-class to get a few true positives. However, whilst they

make positive predictions in temporal proximity to mimicry episodes,

they suffer from large numbers of false positives. Their performance is

highly variable when trained repeatedly. This is because the training
ata contains mimicry episodes with no significant overlap between

estures, due to reaction-delay or duration difference. Hence samples

orresponding to a behaviour in one subject are aligned with sam-

les corresponding to a different behaviour (or a neutral state) in the

ther subject (similarly to Fig. 3a). The classifier learns to associate

hese non-matching behaviours with mimicry, causing false positives

t the onset of a non-reciprocated gesture. In scenario 2, precision

nd specificity improve significantly across all sessions, though recall

ecreases.

The LSTM-RNNs generally have better precision, with more stable

ecall across the sessions. Session-specific performance is consistent

cross all models, e.g. most methods perform better on S42 and S44,

hilst all perform poorly on S6. Table 2 shows average performance

cross all sessions for scenario 1, revealing the classifiers’ positive bias.

or scenario 2, despite the reduced class imbalance, performance is

egraded for correlation and GTW. This is because they are unsuit-

ble for characterising oscillatory motion. LSTM-RNN performance

oes not degrade as significantly. Table 3 shows the average perfor-

ance across all sessions for scenario 2. We see that NPV and speci-

city drop for nearly all classification methods compared scenario

, whilst precision and recall increase. The performances shown in

hese experiments indicate that more advanced learning methods are

eeded to accommodate for the variability in human motor-mimicry

ehaviour.

. Conclusion

In this paper we present the MAHNOB Mimicry database, a set of

ighly-accurately synchronised multi-sensory audiovisual recordings

f naturalistic dyadic interactions, suitable for investigating mimicry

nd negotiation behaviour. The amount of mimicry data captured and

nnotated is significant. The database can be used for other applica-

ions as well, including facial point tracking, continuous interest pre-

iction, or automatic speech recognition. The database is not yet fully

nnotated, however raw data and current annotations are publicly

vailable for non-commercial use, at http://mahnob-db.eu/mimicry.

n this paper we also presented experimental studies considering

otor mimicry of facial and head movements and widely-used clas-

ifiers including two similarity-based methods (cross-correlation and

eneralized time warping), and a state-of-the-art temporal classifier

LSTM-RNN).
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