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Abstract

Deep Learning methods are able to automatically discover better representations of the data to improve the perfor-
mance of the classifiers. However, in computer vision tasks, such us the gender recognition problem, sometimes it
is difficult to directly learn from the entire image. In this work we propose a new model called Local Deep Neural
Network (Local-DNN), which is based on two key concepts: local features and deep architectures. The model learns
from small overlapping regions in the visual field using discriminative feed-forward networks with several layers. We
evaluate our approach on two well-known gender benchmarks, showing that our Local-DNN outperforms other deep
learning methods also evaluated and obtains state-of-the-art results in both benchmarks.

1. Introduction

Gender recognition of face images is an important
task in computer vision as many applications depend on
the correct gender assessment. Examples of these ap-
plications include visual surveillance, marketing, intelli-
gent user interfaces, demographic studies, etc. The gen-
der recognition problem is usually divided into several
steps, similarly to other classification problems (Ng et al.
(2012b)): object detection, preprocessing, feature extrac-
tion and classification. In the detection phase, the face
region is detected and cropped from the image. Then,
a preprocessing technique is used to reduce variations in
scale and illumination. After this normalization, the fea-
ture extraction step aims at obtaining representative and
discriminative descriptors of the face region. Finally, a
binary classifier that learns the differences between male
and female representations is trained.

Perhaps, feature extraction is the most critical step in
order to achieve good performance. Traditionally, fea-
tures have come up as a result of the knowledge and ex-
pertise of many feature practitioners. However, instead
of relying on this human-based process to define the best
representation of the data in a specific problem, it would
be much more interesting to let the algorithm to discover

that representation automatically by itself. For this rea-
son, representation learning has emerged as a promising
research field (LeCun et al. (2015)). The main goal of
representation learning is to automatically convert data
into a form that makes it easier to extract useful infor-
mation when building classifiers (Bengio et al. (2013)).
Deep learning approaches are a particular kind of repre-
sentation learning procedures that discover multiple lev-
els of representations using neural networks, with higher-
level features representing more abstract concepts of the
data. These more abstract representations are closer to
the semantic content of the data, so they are more useful
than the raw data by itself to build classifiers. Also, it
has been demonstrated that our brain works in the same
way dealing with complex tasks like vision and language.
The brain cortex extracts multiple levels of representation
from the sensory input, doing progressively more com-
plex processing tasks (Serre et al. (2007)).

These strategies have shown an excellent performance
in challenging problems on the computer vision domain
(Krizhevsky et al. (2012); Farabet et al. (2013); Taigman
et al. (2014)). However, sometimes it is very difficult to
directly learn from the entire image using standard Deep
Neural Networks (DNN), specially with complex data like
natural images (Krizhevsky (2009)). This problem have
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been tackled using the idea of getting information from
sub-regions of the input image. For instance, unsuper-
vised learning can extract useful features looking only
at small zones of the images, called patches (Krizhevsky
(2009)). A similar idea is used in Deep Convolutional
Neural Networks (DCNN), where individual neurons are
tiled in such a way that they respond only to overlapping
regions in the input field.

Here, we propose a new model called Local Deep Neu-
ral Network (Local-DNN). Our model extracts several lo-
cal features from the input images, and these features
feed a discriminative deep neural network. The network
learns to classify each local feature according to the la-
bel of the image to which it belongs. The final decision
for the whole input image is taken based on a simple vot-
ing scheme that takes into account all the local contribu-
tions. We have found that for some specific applications,
where some registration has been applied to the images,
e.g. a face detector, the Local-DNN has demonstrated to
be superior to other techniques due to a greater robustness
to small translations, occlusions and local distortions, see
(Villegas et al. (2008)). In this paper, we apply the Local-
DNN model to the gender recognition problem using face
images. Nevertheless, it is important to note that the
Local-DNN is devoted to deal with images with this kind
of registration and where some prior knowledge can be
applied in order to select the most informative parts of the
images, a kind of saliency map, while DCNN are devoted
to general problems without any kind of constraint, regis-
tration or prior knowledge of the saliency map.

In order to be able to draw relevant conclusions, several
experiments have been carried out using two challenging
and realistic face image databases called Labeled Faces in
the Wild (LFW) (Huang et al. (2007)) and the so-called
Gallagher’s database (Gallagher and Chen (2009)), where
the images were taken in unconstrained conditions. Our
Local-DNN framework outperforms other deep learning
methods evaluated in this work, such as standard DNNs
and DCNNs, and also obtains state-of-the-art results on
these databases.

The remainder of the paper is organized as follows.
Section 2 describes the related work on gender recogni-
tion. Section 3 describes our Local-DNN framework and
Section 4 describes the datasets used and the set of exper-
iments carried out. The final section draws some conclu-
sions about the work in this article.

2. Related work

Extracting a good representation of the data is per-
haps the most critical step in most of the pattern recogni-
tion problems. Initial approaches for gender recognition
used the geometric relations between facial landmarks
as feature representation (Ng et al. (2012a)). However,
these methods required a very accurate landmark detec-
tion and it was shown that quite relevant information was
thrown away. For this reason, all recent approaches use
appearance-based methods, which perform some kind of
operation or transformation on the image pixels. Appear-
ance methods can be holistic, when the whole face is used
to extract features, or local, when information is extracted
from local regions of the face.

The handcrafted features found in the literature for
gender recognition can be as simple as the raw pix-
els (Moghaddam and Yang (2002)) or pixel differ-
ences (Baluja and Rowley (2007)). Sometimes, sim-
ple features are pooled together as in (Kumar et al.
(2009)), where image intensities in RGB and HSV color
spaces, edge magnitudes, and gradient directions were
combined. More elaborated features include Haar-like
wavelets (Shakhnarovich et al. (2002)), Local Binary Pat-
terns (LBPs) (Shan (2012)) or Gabor wavelets (Leng and
Wang (2008)). These features work well and are robust to
small illumination and geometric transformations. How-
ever, they are based on the expertise of the researcher to
find the best option for a given problem. For instance, in
(Moeini and Moeini (2015)) this expertise is used to com-
pensate pose changes using a 3D model of the face.

Feature representations of the face are usually high-
dimensional, and it is common to apply dimensionality
reduction techniques. In Villegas and Paredes (2011) the
authors show a good comparison of different methods on
a gender recognition problem among others. These tech-
niques have been widely used because of their simplicity
and effectiveness (Buchala et al. (2004); Graf and Wich-
mann (2002)). However, they might not capture relevant
information to represent a face in the gender recognition
problem.

After all these steps, the face representation obtained
is fed into a classifier that learns a discriminative model
using the labels of the samples. For instance, the Ad-
aBoost and the SVM algorithms have been widely used
in the literature (Baluja and Rowley (2007); Shan (2012);
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Eidinger et al. (2014)). In this spirit, an excellent com-
parison of gender recognition techniques using different
methods can be found in Dago-Casas et al. (2011).

Regarding deep learning techniques, unsupervised
models, such as Restricted Boltzmann Machines (RBMs)
(Smolensky (1986)), have been demonstrated to be use-
ful as a way to pre-train these deep architectures (Hinton
and Salakhutdinov (2006)). These models are able to au-
tomatically extract good features from unlabeled data that
are useful in supervised tasks like the gender recognition
problem (Mansanet et al. (2014)). On the other hand, DC-
NNs models has shown great performance in computer
vision tasks by learning from small regions in the visual
field, (Krizhevsky et al. (2012); Simonyan and Zisserman
(2014)) and have been successfully used for face recog-
nition (Taigman et al. (2014); Sun et al. (2014); Schroff

et al. (2015)). Focusing on the gender recognition prob-
lem, a recently published work used a DCNN to estimate
the gender and age attributes using real-world face images
(Levi and Hassner (2015)).

3. Local Deep Neural Networks

3.1. Introduction

In this section, we aim to describe the details related to
our Local-DNN model. On the one hand, we have used
a formal probabilistic framework, introduced in Villegas
et al. (2008), to model the local feature-based classifica-
tion. This framework is general, but in this work, we par-
ticularize it for the problem at a hand, where the local
features became simple windows extracted from the face
image at different locations, called patches. Therefore,
from here onwards, the terms patch and local feature will
be used interchangeably. On the other hand, we introduce
the idea of using deep networks that are able to learn how
to classify each local feature according to its appearance.
During testing, all the contributions are fused using a vot-
ing scheme.

3.2. Formal framework for local-based classification

We denote the class variable by c = 1, . . . ,C and the
input pattern (image) by x. Local features (patches) are
extracted from the input pattern using some selection cri-
terion. Let F denote the number of local features drawn

from the input pattern x. It is assumed that each local fea-
ture x[i], i = 1, . . . , F, contains incomplete yet relevant in-
formation about the true class label of x, and thus it makes
sense to define a local class variable for it, ci ∈ {1, . . . ,C}.

In accordance with the above idea, the posterior proba-
bility for x to belong to class c is computed from a com-
plete model including all the local features labels,

p(c | x) =

C∑
c1=1

· · ·

C∑
cF=1

p(c, c1, . . . , cF | x) (1)

which is broken into two sub-models, the first one to
predict local class posteriors (from x only) and then an-
other to compute the global class posterior from them (and
x),

p(c, c1, . . . , cF | x) = p(c1, . . . , cF | x) p(c | x, c1, . . . , cF)
(2)

In order to develop a practical model for p(c | x), the
first submodel is simplified by assuming independence of
local labels conditional to x; that is, by application of a
naive Bayes decomposition to it,

p(c1, . . . , cF | x) :=
F∏

i=1

p(ci | x[i]) (3)

where x[i] denotes the part of x relevant to predict ci; i.e.
the ith image patch. This simplification is based on the
strong assumption of local features independence. On the
other hand, it yields a very simplified model. Similarly,
the second submodel is simplified by assuming that the
global label only depends on local labels,

p(c | x, c1, . . . , cF) := p(c | c1, . . . , cF) (4)

The above simplifications are clearly unrealistic,
though they may be reasonable if each local feature can
be reliably classified independently of each other. In such
a case, we may further simplify the second submodel by
letting each local feature i vote for ci in accordance with
a predefined (feature) reliability weight α:

3



p(c | c1, . . . , cF) :=
F∑

i=1

αi δ(ci, c) (5)

where δ(·, ·) is the Kronecker delta function; δ(ci, c) = 1
if ci = c; zero otherwise. 0 ≤ αi ≤ 1, i = 1, . . . , F, and∑

i αi = 1.

p(c | x) :=
F∑

i=1

αi p(c | x[i]) =

F∑
i=1

αi p[i]
c (6)

where p[i]
c is the probability of the feature x[i] to pre-

dict the global class c associated to the image x. This
expression is a simple weighted average over all local
class c posteriors, where each feature contributes to the
final decision in accordance with a predefined weight αi

(0 ≤ αi ≤ 1, i = 1, . . . , F, and
∑

i αi = 1). In the sim-
plest case, we may consider all the local features equally
important:

α1 := α2 := · · ·αF :=
1
F

(7)

but in general, αi should encode the reliability or the
discriminative power of each local feature, or at least
some surrogate measure.

Finally, we use a Bayes decision rule to perform the fi-
nal classification of the input image x by choosing a class
with maximum weighted sum of local posteriors,

x→ c (x) = argmax
c

p (c | x) = argmax
c

F∑
i=1

αi p[i]
c (8)

Therefore, during testing, the global classification is
defined by summing all the weighted local posteriors ob-
tained from each local feature contribution. In this paper,
we also studied a small modification to perform the final
classification in which each local feature chooses a class
according to its maximum local posterior. After that, the
most voted class among all local features belonging to the
same sample is selected as the final decision,

x→ c (x) = argmax
c

F∑
i=1

δ(c, argmax
c′

p[i]
c′ ) (9)

In this voting method αi is not considered.

3.3. A local class-posterior estimator using DNN
The main problem of using local patches is that the de-

cision boundaries of the classification problem are highly
non-linear and multi-modal. In this particular problem the
local class posteriors p[i]

c has to be estimated from parts of
images that contain parts of faces. These parts lead to a
highly multi-modal distribution where the modes are the
different parts of the faces extracted from different place-
ments. To deal with this kind of probability distribution
we need non-linear and multi-modal estimators like the k-
nearest neighbor used in the past. Therefore, a first simple
option was to use a k-nearest neighbor estimator (Villegas
et al. (2008)), which is very simple yet effective. How-
ever, the main problem of this estimator is that it scales
poorly to large data sets where the memory requirements
grow rapidly. Note that the k-nearest neighbor estimator
is based on storing all the local features extracted from the
training images, so the model is just the patches. More-
over, in test phase, a nearest neighbor search must be pro-
cessed, and this is time consuming even using approxi-
mate strategies like the (1 + ε)-nearest neighbor over kd-
trees. Neural networks can deal with multimodal distribu-
tions (non-linear problems) while the size of the model is
not strictly dependent on the size of the training corpus.
Moreover in test phase the class-posterior estimations are
very fast, just perform a forward operation through the
network. This forward procedure can be done in batch
taking profit of the numerical optimizations for matrix op-
erations. For all these reasons we propose to use a DNN as
an estimator of the local class posteriors p[i]

c , which leads
to the Local-DNN name for the here proposed approach.
In our opinion, using a deep architecture might facilitate
the learning of the complex mapping from the appearance
of patches to classes.

A graphical representation of this Local-DNN model
is shown in Figure 1. As it can be seen, several patches
are extracted from the input image and then are fed into a
DNN. The network is formed by an input layer and several
fully connected hidden layers. An output layer with C
softmax units, that represents the posterior probability of
each local patch. Finally, local posteriors are fused at the
end. During training, the network works at a patch level
by learning to classify each patch with the label of the
image that it belongs. During testing all the contributions
from the patches extracted of the image are combined in
order to classify this image with a final label.
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Figure 1: Graphical representation of our Local-DNN model. The parameters above denote the configuration used in our experiments.

Figure 2: Graphical representation of the process to extract local patches.

3.4. Feature selection and extraction

The definition of a local feature working with images
may include a huge variability of options, for instance
just varying the size and the shape of the feature. How-
ever, we have only considered squared windows of size
w × w. Regarding the locations where to extract these
patches, the simplest case is to use a fixed sampling grid
for all the images. However, this selection leads to a com-
putationally demanding learning due to the huge number
of patches obtained. Therefore, we propose to select the
patches with high information content, discarding those
which associated p(accuracy | x[i]) is likely to be very
low (for instance, uniform patches).

According to this procedure, given an image, we have
to obtain a binary mask in which each active pixel de-
notes the center position of a patch to be extracted. The
process to create this binary mask for each image is as
follows. First of all, we create another image with a Sobel
filter which emphasizes edges and translations. After that,
we apply a low-pass filter over this image and the values
are binarized using a threshold. Finally, we extract the
patches centered in each active pixel in the binary mask,
removing those that lie outside the image. Each patch
is normalized to have zero-mean and unit-variance. The

entire process is represented in the Figure 2. A similar
method was proposed in Paredes et al. (2001) to extract
only informative patches.

3.5. Location information and reliability weight

At this point we have defined the most important details
of the Local-DNN model. Besides this base version of
the model, we have evaluated two optional variations that
might enhance its performance. These improvements are
described bellow, and both of them have been evaluated
in the experiments section.

On the one hand, the simplifications performed in the
probabilistic framework to obtain the expression (6) are
based on the strong assumption that the placement of each
patch is not relevant for the final decision. This topolog-
ical information might be useful to enhance the contribu-
tion of each local feature, as it happens in convolutional
neural networks. To evaluate this phenomenon we pro-
pose a slight modification in which the key idea is that
a local feature x[i] should contain not only the content of
the image patch itself, but also the location where it was
extracted. In the context of DNNs, this information can
be introduced in the input layer of the network by adding
two extra units that encode the horizontal and vertical im-
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age coordinates of the center of the patch. This modifi-
cation allows the network to use the location information
together with the appearance of the patch to learn a more
accurate discriminative function over the patches. It is
important to stress that this improvement only affects the
process to obtain the local posteriors, so the fusion step
during testing remains unchanged.

An additional enhancement is related to the use of the
reliability weights αi during testing. In the basic version
of the model, all the features selected by the binary mask
are equally reliable when the final label is defined, with
αi = 1/F, being F the number of local features consid-
ered in each image. The slight modification proposed is to
compute αi as p̂(accuracy | x[i]), being p̂(accuracy | x[i])
an empirical estimation of the accuracy of a particular
patch x[i]. This estimation is computed by considering
only the placement of the patch but discarding its content.
Accordingly, the weight associated to a specific location
will only depend on the mean classification accuracy of
all the patches belonging to that location. These weights
are estimated using the training patches once the DNN
model has been trained. It is important to make it clear
that this modification is independent from the previous
one explained, despite both of them use the location of
the image patch.

4. Experiments

4.1. Datasets

Two different datasets have been considered during the
experiments:

Labeled Faces in the Wild
The Labeled Faces in the Wild (LFW) (Huang et al.

(2007)) is composed by 13233 face images (10256 male
and 2977 female) from 5749 celebrities collected from the
web. The Facial Image Processing and Analysis group
(FIPA, http://fipa.cs.kit.edu) proposed a bench-
mark to evaluate the gender recognition problem using
these images. Following this protocol, we have employed
the 5 folds described in FIPA (2011b), using 4 folds
for training and 1 for testing, and the results were aver-
aged. Similar articles in the bibliography have used a re-
duced version of this dataset, taking out a huge number
of challenging images (Tapia and Perez (2013); Ren and

Li (2014)). However, it is important to note that our ex-
periments are performed using the entire dataset, without
discarding any image.

Gallagher’s DB
The Gallagher’s database (Gallagher and Chen (2009))

contains 28231 face images taken from Flickr, and they
were manually labeled with its gender and age group in-
formation. There is not an standard protocol for gen-
der classification in Gallagher’s DB, so we have used the
same protocol proposed by Dago-Casas et al. (2011). On
that article, a new version of the dataset was created by
removing several low resolution face images. Also, they
removed some of the male faces to obtain a final dataset
of 14760 images evenly distributed. This image collection
was divided in 5 folds, using 4 folds for training and 1 for
testing, and the results were averaged. All the information
of this protocol is available in FIPA (2011a).

4.2. Image normalization and patch extraction
Due to the unconstrained nature of the images, it is nec-

essary a preprocessing step. First of all, we have used an
aligned version of the LFW database created by Huang
et al. (2012). In the case of the Gallagher’s DB, we have
used the location information of the eyes to transform
each face to a canonical pose with the eyes located in the
same position.

Once the face is aligned, we crop a face region of the
image of 105×105 pixels and the cropped image is resized
to 60 × 60 pixels. Each image is converted to grayscale
and all the pixel values are scaled to the range [0,1]. Af-
ter that, we create a binary masks for each image using
the method described in Section 3.4, which indicates the
locations where the patches are extracted from. This pro-
cess is the same for both databases and allows to discard
32% and 41% of the available patches in the LFW and
Gallagher’s datasets respectively. It should be mentioned
that due to the fact that there is a clear imbalance between
genders in the LFW dataset, we have randomly discarded
as many male patches as required to have an equally dis-
tributed training set for each fold. Obviously, this pro-
cess is only done for the training and validation data. The
Gallagher’s dataset does not need this step because it is
already equally distributed. Finally, the patches are nor-
malized to be zero mean and unit variance as explained in
Section 3.4.

6



4.3. Results

This section summarizes the results obtained from the
experiments carried out. These experiments have evalu-
ated both the basic version of the Local-DNN model and
two extra enhancements, location and reliability weight,
explained in Section 3.5. Additionally, cross-database re-
sults, in which one database is used for training and the
other for testing, are included to show the validity of our
approach and generalization capabilities. Finally, our lo-
cal DNN model is compared against other state-of-the-art
approaches.

Our Local-DNN has several parameters to choose.
First, we have set the patch size to 13 × 13 pixels. This
value was inspired from our experience in other previ-
ous works that also use a local feature framework applied
to face images, extracting patches similar to the size of
an eye in the image (Paredes et al. (2001)). Second, the
DNN itself has also several parameters. In this work, we
have used hidden layers with 512 ReLU units and we have
changed the number of hidden layers to compare the clas-
sification performance. A representation of this network
can be seen in the Figure 1. Note that the input layer has
169 units because the patch size is 13 × 13. Note that
the dimension of the input layer could also be 171 if the
patch location information is used. Finally, it should be
mentioned that we have used five-fold cross-validation in
both databases. The network is trained until the average
cross-entropy error on the training data falls bellow a pre-
specified threshold. To figure out this threshold, we train
another network with the same architecture but using only
3 folds from the training data and using the remaining
fold as a validation set. Then, the cross-entropy thresh-
old value is fixed with the smallest classification error ob-
tained on the validation set. At the end, the test results on
the 5 combinations are averaged.

Table 1 presents the accuracy at the patch level of sev-
eral networks varying the number of hidden layers. With
these results, we can get an idea of how well the network
is able to classify each patch as a male or as a female.
Note that the results also show the advantage of including
the location information of each patch, as a modification
of the base model.

According to these results, we can see that there is a big
difference between the network with one hidden layer and
the networks with two or more hidden layers. This issue

Table 1: Accuracy at patch level on the test set for the Local-DNN model
varying the depth.

LFW Database

Model Depth Patch Acc. (%)
w/o loc. with loc.

Local
DNN

1 layer 68.48 71.18
2 layer 74.30 77.17
3 layer 74.50 77.87
4 layer 74.34 77.26

Gallagher’s Database

Model Depth Patch Acc. (%)
w/o loc. with loc.

Local
DNN

1 layer 64.87 67.14
2 layer 70.70 72.83
3 layer 70.51 72.65
4 layer 70.52 72.37

Figure 3: Estimation of the probability of accuracy at patch level

occurs in both databases and denotes the poorer represen-
tation power in the case of using just one hidden layer. It is
also clear that using the location information at the patch
level improves the performance and allows the network to
better estimate the label of each patch.

Delving into the topic of the patch-based results, it is
also interesting to analyze the distribution of this accu-
racy depending on the position of the patch in the image.
In fact, this could be considered an empirical approxima-
tion of the p(accuracy | x[i]) mentioned in Section 3. To
this end, the Figure 3 qualitatively shows the probability
of accuracy depending on the position where the patch
was extracted. In other words, a pixel in that image indi-
cates how likely is that the patch extracted in that position
predicts the correct class. In the image, the light color de-
notes higher probability and the dark color denotes lower
probability. From this figure, we notice that the “best”
patches are those centered around the eyes and the mouth.
To some extent, this makes sense because those areas of
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the face are very representatives for distinguishing the
gender of a person.

Table 2 summarizes the results obtained with the final
decision rule to classify the whole face image. These re-
sults are the accuracy obtained for both databases on the
test set. As proposed in Section 3, the probabilistic frame-
work allows to make this decision using two methods dur-
ing testing: the first one is summing all the posteriors
given by each patch of the image (Eq. 8), and the sec-
ond one is based on a voting scheme where each patch
chooses a class according to its maximum local posterior
(Eq. 9). We present the results for both methods and vary-
ing the depth on the network as well. Note that the results
obtained by summing posteriors use the same weight for
all the contributions, so αi = 1/F.

Table 2: Accuracy on the test set for our Local-DNN model varying the
depth.

LFW Database

Model Depth
Acc. (%)

Voting
∑

Posteriors
w/o loc. with loc. w/o loc. with loc.

Local
DNN

1 layer 91.63 92.38 91.66 92.64
2 layer 95.19 95.86 95.35 95.98
3 layer 95.62 95.74 95.81 96.04
4 layer 95.71 96.20 95.79 96.25

Gallagher’s Database

Model Depth
Acc. (%)

Voting
∑

Posteriors
w/o loc. with loc. w/o loc. with loc.

Local
DNN

1 layer 82.62 83.76 83.25 84.73
2 layer 89.14 90.02 89.48 89.96
3 layer 89.58 90.49 89.74 90.58
4 layer 89.64 89.94 89.85 90.29

According to the results it is clear that summing poste-
riors yields slightly better results for all cases. Again, the
results show a big gap between using a one hidden layer
network or using more hidden layers. On the other hand,
the improvement obtained at a patch level (previous ta-
ble) by including the location information produces also
an improvement at image level, obtaining the best results
in both databases for this case.

Besides these results, we have also evaluated the mod-

ification proposed in Section 3.5 regarding the use of dif-
ferent weights when summing posteriors during testing.
The αi values are estimated using the probability of accu-
racy of each patch placement, as explained before. These
values were normalized to sum up 1.0 for all the patches
extracted. This means that the higher αi values will cor-
respond with features with high probability of accuracy,
and vice-versa. The experiments were performed only for
the best case in both databases. We obtained 96.23% of
accuracy in the LFW database and 90.23% in the Gal-
lagher’s database. Both results are quite similar to those
obtained using equally reliable features in both databases.
Probably, this is because the feature selection described in
Figure 2 is adequate and it has already selected the most
important features for each image.

Table 3: Cross-database accuracy at image level using the Local-DNN
model by summing the local class posteriors.

Train using LFW and test using Gallagher’s

Model Depth Accuracy (%)
w/o loc. with loc.

Local
DNN

1 layer 73.33 78.47
2 layer 80.50 83.03
3 layer 82.04 82.91
4 layer 82.15 81.21

Train using Gallagher’s and test using LFW

Model Depth Accuracy (%)
w/o loc. with loc.

Local
DNN

1 layer 89.56 90.41
2 layer 93.53 93.93
3 layer 93.98 94.39
4 layer 93.76 94.48

To further prove the validity of our approach, Table 3
presents cross-database results in which one database is
used for training and the other for testing. The cross-
database results show that the local-DNN models can gen-
eralize well to a different database at the expense of a
small performance penalty. It should be emphasized that
our cross-database results are better than the only previ-
ously published cross-database results presented in Dago-
Casas et al. (2011) where a 81.02% and 89.77% are ob-
tained when testing with the Gallagher’s and LFW respec-
tively.

Finally, the last Table 4 compares the best results ob-
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tained with our Local-DNN model along with other state-
of-the art approaches that follow the same evaluation pro-
tocol in both databases. In this table we have also included
other results obtained using two well-known deep learn-
ing networks. On the one hand, we have tested a stan-
dard DNN with three hidden layers and 512 hidden ReLU
units in each layer. The weights of this network were pre-
trained using RBMs, and the dropout technique has been
applied to the last hidden layer. This configuration was
obtained by performing an extensive set of experiments
to fix the best configuration for the problem at a hand.
Note that the original images were cropped and resized to
a smaller size (40 × 32 pixels) to reduce the number of
connections. On the other hand, we have also evaluated
a Deep Convolutional Neural Network (DCNN). The ar-
chitecture that we have used is inspired by the excellent
results obtained recently in Taigman et al. (2014) with the
LFW database in the face recognition problem. More de-
tails about the architecture of the network can be found
in that reference. All the hidden units are ReLU, and the
dropout technique has been also applied to the last hidden
layer.

Table 4: Best accuracy on the test set for DNN, DCNN and Local-DNN
models, and other published results.

LFW Database
Model Acc.(%)
DNN 92.60

DCNN 94.09
Best Local-DNN 96.25

Gabor+PCA+SVM Dago-Casas et al. (2011) 94.01
Boosted LBP+SVM Shan (2010) 94.44

Gallagher’s Database
Model Acc.(%)
DNN 84.28

DCNN 86.04
Best Local-DNN 90.58

Gabor+PCA+SVM Dago-Casas et al. (2011) 86.61
FPLBP+Drop SVM Eidinger et al. (2014) 88.60

LBP+CH+SIFT SVM Fazl-Ersi et al. (2014) 91.59

According to these results, our Local-DNN model out-
performs other deep learning methods, such as DNN and
DCNN, and also obtains the best published results on the

LFW dataset. The results obtained with DCNN are worse
mainly because the number of images is low in order to
get good results with these deep networks. Note that our
Local-DNN is trained with patches (millions) while the
DCNN are trained with whole images (thousands). In
this sense, it is important to note that dropout did not im-
prove the results with the LDNN due to the large number
of training patches and the fact that these training patches
represent local parts of the face with different translations.
Thus, these properties of the training patches act as a kind
of regularization. On the other hand, some prior knowl-
edge about the content is used to extract the patches from
edge areas, a kind of saliency detection, while the DCNN
method has to learn not only the discriminative part of
the problem but also the saliency detection with a relative
small number of training samples.

Other results using this database presented by Tapia
and Perez (2013); Ren and Li (2014), not included in this
table, were obtained removing many images, using only
7443 and 6840 samples out of 13233, respectively. It is
important to underline that our results are obtained with
the entire dataset, without removing any image. For this
reason, both results cannot be compared on equal terms.
On the other hand, very recently, Fazl-Ersi et al. (2014)
obtained a slightly better result in the Gallagher database.
However, this result is obtained by using a complex en-
semble composed by several handcrafted features such
as LBPs, Color Histograms and SIFT. In contrast, our
method is quite simple and generic to apply, so it may
also work well in other computer vision tasks.

5. Conclusions

This paper presents a new discriminative model called
Local Deep Neural Network (Local-DNN), which is
based on two key concepts: local features and deep ar-
chitectures. This model learns to classify small patches
extracted from images using a standard DNN. The final
classification of each image is performed using a simple
voting scheme that takes into account the contributions
from all the patches of that image. The experiments car-
ried out have evaluated the model on the gender recog-
nition problem using unconstrained face images, by fol-
lowing two benchmarks proposed for the LFW and the
Gallagher datasets.
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The results obtained in the experiments confirm the ad-
vantage of learning independently from small regions in
the visual field when using DNNs in the problem at a
hand. In particular, our Local-DNN model works well
with networks with at least two hidden layers to be able to
learn from small patches. After that, the final decision rule
based on summing posteriors yields slightly better results
than the simple voting scheme. It is also worth mention-
ing the improvement obtained by keeping the topological
information of each patch, including in the network the
location were it was extracted. However, the use of dif-
ferent weights in the final decision, obtained as an esti-
mation of the probability of accuracy of each patch, did
not improve the results. Using this configuration of pa-
rameters, our Local-DNN model outperforms other Deep
Learning models also evaluated in this work, such as pre-
trained DNNs and Deep Convolutional Neural Networks
(DCNNs). There is also an improvement over other state-
of-the-art results in the LFW dataset, which are obtained
using traditional handcrafted features and a Support Vec-
tor Machine (SVM) classifier. Actually, we obtain the
best result published using this protocol without discard-
ing any image from the original database. The result ob-
tained in the Gallagher’s dataset is also competitive, con-
sidering the simplicity and the generalization capability
of the model proposed. Finally, the cross-database results
obtained using one database for training and the other one
for testing demonstrate that our approach can generalize
well, and obtains better results than the only previously
published cross-database result presented using the same
databases.
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