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a b s t r a c t 

Plant phenology, the study of recurrent life cycles events and its relationship to climate, is a key disci- 

pline in climate change research. In this context, digital cameras have been effectively used to monitor 

leaf flushing and senescence on vegetations across the world. A primary condition for the phenological 

observation refers to the correct identification of plants by taking into account time series associated with 

their crowns in the digital images. In this paper, we present a novel approach for representing phenolog- 

ical patterns of plant species. The proposed method is based on encoding time series as a visual rhythm. 

Here, we focus on applications of our approach for plant species identification. In this scenario, visual 

rhythms are characterized by image description algorithms. A comparative analysis of different descrip- 

tors is conducted and discussed. Experimental results show that our approach presents high accuracy 

on identifying individual plant species from its specific visual rhythm. Additionally, our representation is 

compact, making it suitable for long-term data series. 

© 2015 Elsevier B.V. All rights reserved. 
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1. Introduction 

Plant phenology, the study of recurrent life cycles events and

its relationship to climate, is a key discipline in climate change re-

search [34] . One key component of phenology research is the leaf

exchange patterns from leaf budding to senescence, due to its rel-

evance to comprehend ecosystem processes, such as growth, water

and gas exchange, and nutrient cycling [24] . The dynamics of plant

growing seasons define the spatial and temporal patterns of car-

bon balance and water exchange, and ultimately the productivity

of terrestrial ecosystems [22,35] . 

Recently, digital cameras have been effectively applied as multi-

channel imaging sensors to estimate color changes (RGB channels)

that are related to leaf flushing and senescence phenology [1,2,30] .

The technique allows to increase the range of study sites and
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pecies and the accuracy of phenological observations, and a clear

erception of the start and end of the growing season [2,16] . 

We have monitored leaf changing patterns of a tropical cerrado-

avanna vegetation by taking daily digital images [2] . We extracted

mage color information from the RGB (red, green, and blue) chan-

els and correlated the changes in pixel levels over time with leaf

henology patterns [2] . The analysis was conducted after we de-

ned regions of interest (ROI) based on the random selection of

lant species crowns identified in the digital image [29] . We ob-

ained a time series associated with each ROI, raising the need of

sing appropriate tools for mining patterns of interest in a given

igital image [7,11,32,33] . 

The plant species identification is a key issue for the pheno-

ogical observation of tree crowns using phenocams, especially in

ropical vegetations where one single image may include a high

umber of species [2,6,7] . This task is time consuming since first

ach crown in the image has to be matched to the tree in the

oil and then the tree is identified at species level. In this sense,

e have developed and deployed computational methods to find

imilar patterns in the digital images and then we checked if they

orrespond to similar species or leaf functional groups [5,6] . 

The major challenge of designing automatic tools for address-

ng the plant identification task is to deal with fine-grained
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Fig. 1. Sample image of the cerrado savanna recorded by the digital camera on Oc- 

tober 5th, 2011. 
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ecognition, where the categories are visually similar. In general,

ifferent plant species may have an analogous behavior with re-

pect to leaf color change and, hence, the differences between their

ime series are quite subtle and hard to be detected, even for hu-

ans without careful training. Usually, plant identification is based

n the analysis of huge volumes of sequential vegetation images,

.e., vegetation images obtained over time. In this scenario, an-

ther challenge refers to efficiency aspects, both in terms of stor-

ge requirements and processing time. Typical existing solutions

or plant identification based on vegetation images [6,28] do not

cale properly for handling ever-growing collections. 

In this paper, we present an effective and efficient approach

or capturing phenological patterns from time series generated by

igital images. Our strategy consists of encoding time series as

 visual rhythm [25] . This simple, yet effective, approach offers

ich information regarding spatio-temporal data, which is useful

n many fields of applicability. Here, we focus on applications of

he proposed method to identify and distinguish the behavior of

lant species. In this scenario, visual rhythms are characterized

y traditional and recently proposed image description algorithms.

uch methods are able to codify key image features into fixed-size

epresentations. 

The proposed method was evaluated in a dataset recorded dur-

ng the main leaf flushing season composed of about 2,700 im-

ges [2] . We performed a detailed experimental comparison of

everal image descriptors. The results show that our approach

resents high accuracy on identifying regions in the images be-

onging to a same plant species. In addition, our strategy provides

 compact representation for time series. The improvement of the

omputation makes it suitable for long-term data sets. 

This paper extends substantially our preliminary works pre-

ented in [3,4] . Here, we introduce several innovations. First, we

resent a review of the state-of-the-art approaches for process-

ng spatio-temporal data. In addition, we discuss new strategies of

enerating visual rhythms from time series. Finally, after a much

ore thorough presentation of the proposed method, we extend

he experimental evaluation of our technique, including a statisti-

al analysis of its performance. 

The remainder of this paper is organized as follows. Section 2

riefly describes related work. Section 3 discusses the method-

logy adopted for acquiring time series. Section 4 presents our

pproach and shows how to apply it to characterize time se-

ies. Section 5 presents the adopted experimental protocol, while

ection 6 reports the results of our experiments and compares our

echnique with other methods. Finally, we offer our conclusions

nd directions for future work in Section 7 . 

. Related work 

The increasing accessibility to data with high spatio-temporal

esolution has enabled a detailed analysis of vegetation properties.

t the same time, it requires feature extraction techniques able to

epresent such properties, taking into account storage aspects. 

Time series-based vegetation indices from remote sensing im-

ges (RSIs) are widely used for phenological and land cover change

tudies [10,13,17,31] . Rodrigues et al. [31] presented a software to

xtract phenological parameters (e.g., maturity and senescence)

rom Normalized Difference Vegetation Index (NDVI) time series.

oster et al. [13] also applied NDVI time series to detect grassland

egetation. Brooks et al. [10] , in turn, proposed a Fourier-based al-

orithm to fit NDVI multitemporal curves and reduce missing data

ffects in the analysis. Hmimina et al. [17] exploited NDVI time-

eries to evaluate the potential use of MODerate resolution Imag-

ng Spectroradiometer (MODIS) remote sensing data for monitoring

henological patterns in a African savanna. 
In [6,8,23,28] , the authors consider not only temporal but

lso spatial properties. For that, they extract time series from

egmented regions. Petitjean et al. [28] proposed a strategy to en-

ode spatial data over time. Their strategy consists of segment-

ng each image of the series in order to characterize each pixel of

he data with spatial properties. The time series are computed for

ach pixel based on the properties extracted from the segmented

egions. Ardila et al. [8] , in turn, used time series based on spa-

ial properties, from pre-defined regions to monitor urban trees.

lmeida et al. [6] exploited a multiscale segmentation structure to

ompute time series with spatial information, which were used to

etect phenological patterns in a cerrado-savanna vegetation. Ma

t al. [23] analyzed spatial and temporal patterns in savanna veg-

tation phenology in Australia by comparing image datasets from

ifferent spatial resolutions. 

In spite of all the advances, existing strategies for processing

patio-temporal data usually require a considerable amount of stor-

ge space. A traditional phenology database storing information

rom just one event per individual per year, for several species and

bservation stations may encompass a enormous amount of data.

or instance, the data set of phenological observations of plant

pecies from Central Europe, largely Germany, from about 90 0 0

tations, covering 130 years (1880–2009), includes more than 16

illions observations [12] . This paper aims to fill such a gap. Here,

e introduce a compact representation for identifying and char-

cterizing plant species in time series obtained from phenological

bservations. 

. Time series acquisition 

The near-remote phenological system was set up in an 18 m

ower in a Cerrado sensu stricto , a savanna-like vegetation located

t Itirapina, São Paulo State, Brazil. We set up the camera to au-

omatically take a daily sequence of five JPEG images (at 1280 ×
60 pixels of resolution) in the first 10 min of each hour, from 6:00

o 18:00 h (UTC3), totalizing 65 images per day. The present study

as based on the analysis of over 2,700 images ( Fig. 1 ), recorded at

he end of the dry season, between August 29th and October 3rd

011, day of year (DOY) 241 to 278, during the main leaf flushing

eason [2] . 

The image analysis was conducted by defining different regions

f interest (ROI), as described in [1,2,29,30] . For each ROI, a binary

mage with the same dimensions of the original image was cre-

ted. These images are later used as masks. A mask of white pixels

ndicates the ROI, and the remaining area is filled by black pixels.

s defined in [2] , we selected six ROIs ( Fig. 2 ) of six plant species

escribed as follow: (1) Aspidosperma tomentosum ( Fig. 2 (a)), (2)

aryocar brasiliensis ( Fig. 2 (b)), (3) Myrcia guianensis ( Fig. 2 (c)), (4)
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Fig. 2. Regions of interest (ROIs) defined for the analysis of cerrado-savanna digital 

images: (a) Aspidosperma tomentosum , (b) Caryocar brasiliensis , (c) Myrcia guianensis , 

(d) Miconia rubiginosa , (e) Pouteria ramiflora , and (f) Pouteria torta . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Visual rhythm: (a) simplification of a video content by mapping each frame 

into one column of an image; (b) a real example produced by sampling the central 

vertical line of the digital images. 
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Miconia rubiginosa ( Fig. 2 (d)), (5) Pouteria ramiflora ( Fig. 2 (e)), and

(6) Pouteria torta ( Fig. 2 (f)). 

According to the leaf exchange data from the on-the-ground

field observations on leaf fall and leaf flush at our study site, those

species were classified into three functional groups [2] : (i) decid-

uous: Aspidosperma tomentosum and Caryocar brasiliensis ; (ii) ever-

green: Myrcia guianensis and Miconia rubiginosa ; and (iii) semide-

ciduous: Pouteria ramiflora and Pouteria torta . 

4. Visual rhythm-based description 

Visual rhythms [25] are an effective way to analyze temporal

properties from video data. It consists of an abstraction of a video

that encodes the temporal change of pixel values along a specific

sampling line [21] , as illustrated in Fig. 3 (a). In this example, the

central column of a set of images are put together to create a sin-

gle image, the visual rhythm. A clear advantage of this approach is

the reduction of the storage space of the extracted features. There-

fore, it also speeds up data processing. 

Formally, a visual rhythm is a simplification of a video V =
{ f t } , t ∈ [1 , T ] , in domain 2 D + t, with T frames of dimensions

W V × H V , in which each frame f t is transformed into a vertical line

on an image R , in domain 1 D + t, such that, 

R (t, z) = f t (r x × z + a, r y × z + b) , t ∈ [1 , W R 

] , z ∈ [1 , H R 

] , 

where W R 

( W R 

= T ) and H R 

are its width and height, respectively;

r x and r y are the sampling rates along the horizontal and vertical

directions; a and b are the horizontal and vertical offsets on each

frame, respectively. 

Without loss of generality, a time series comprised of images

taken by digital cameras at fixed time intervals can be viewed as a
ideo of the vegetation. Therefore, a visual rhythm can be used to

implify a time series into a single image, as illustrated in Fig. 3 (b).

his example shows the visual rhythm produced by sampling the

entral vertical line of vegetation digital images such as the one

howed in Fig. 1 . The parameters r x , r y , a , and b used to gener-

te the visual rhythm are 0, 1, W V / 2 , and 0, respectively. In this

aper, we propose to take advantage of existing image descriptors

o identify and characterize phenological changes in visual rhythm

mages. 

The major problem with the previous definition of visual

hythms is that it has been designed for the pixel sampling of

pecific lines (e.g., diagonal, horizontal, and vertical). Here, we are

nterested in analyzing unshapely regions related to plant species

hat are identified by phenology experts (see Fig. 2 ). However, it is

mpossible to adjust values for the parameters r x , r y , a , and b so

hat we can transform a ROI into a vertical line of a visual rhythm.

The novelty of this paper is to generalize the notion of visual

hythms. From a generic point of view, this approach relies on tak-

ng samples of the information to be analyzed and then grouping

hem in an orderly manner. The key contribution of our idea is

he mapping function we design to encode the temporal change of

 ROI into a single image. In the following, we present different

trategies of generating visual rhythms from time series obtained

y digital images of vegetation data. 

.1. Pixel-based visual rhythm 

Let S = {S h } , h ∈ [1 , H] be a set of H image sequences, in which

ach S h = {I dh } , d ∈ [1 , D ] is composed of D images I dh , with di-

ensions W S × H S , taken by the digital camera at the day of year

 and the hour h ; and M be a binary image, with the same di-

ensions of S, in which white pixels indicate an area of interest.

ig. 4 shows how pixel-based visual rhythm images are created. 

Initially, we convert the binary image M into a list of Carte-

ian coordinates L xy = { (x, y ) | M (x, y ) = 1 } . Next, we use this list

or computing the geometric center ( x c , y c ) of the area of inter-

st. After that, we translate the Cartesian coordinate system of the

lements in the list L xy to have its origin at the point ( x c , y c )

nd then we convert them to the polar coordinate system, creat-

ng a list of polar coordinates L rθ . Thereafter, we create an index

 = { k | ∀ (r, θ ) ∈ L rθ , k = 2 π r + θ} which assigns a unique value

o each element in the list L rθ . Finally, we sort the keys in the in-

ex K in an increasing order and then we use them to arrange the

lements in the list L xy . 

Thus, we can define a visual rhythm as a mapping of an image

equence S h into a single image R h , in which each image I dh is a

olumn (i.e., vertical line) at the row d , such that 

 h (d, z) = I dh (L xy (z)) , d ∈ [1 , W R 

] , z ∈ [1 , H R 

] , 
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Fig. 4. Overview of the pixel-based strategy. For each hour, the pixel set of the 

segmented region is linearized. At the end of the process, the pixel values of the 

segmented region along the time is a column in a new image: the visual rhythm. 

One visual rhythm is computed for each hour of the day along the time. 

Fig. 5. Visual rhythms obtained for each ROI by using the pixel-based strategy. 
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Fig. 6. Overview of the area-based strategy. This representation encodes the color 

intensity of each region in each hour (vertically) along the year (horizontally). The 

color intensity of a entire region is computed by using statistical moments. 

Fig. 7. Visual rhythms obtained for each ROI by using the area-based strategy. Each 

ROI was encoded by the first-order moment. 
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here W R 

= D and H R 

= |L xy | are its width and height, respec-

ively. Fig. 5 presents the visual rhythms produced by the pixel

ampling of the digital images using each ROI from Fig. 2 . 

.2. Area-based visual rhythm 

Let S = {I dh } , d ∈ [1 , D ] , h ∈ [1 , H] be an image sequence com-

osed of D × H images I dh , with dimensions W S × H S , taken by

he digital camera at the day of year d and the hour h ; and M be

 binary image, with the same dimensions of S, in which white

ixels indicate an area of interest. Fig. 6 shows how area-based vi-

ual rhythm images are created. 

Initially, we convert the binary image M into a list of Cartesian

oordinates L xy = { (x, y ) | M (x, y ) = 1 } . After that, we use this list

o draw a sample of the pixels from an input image I dh . Finally, we

xtract a feature F dh that uniquely characterizes the natural dis-

ribution of all those pixels by calculating color moments of this

egmented region. 

Here, we use the three central moments of a color distribu-

ion [37] . The first-order moment can be interpreted as the average

olor intensity, and it can be calculated by using the formula: 

 dh = E dh = 

∑ 

(x,y ) ∈L xy 

I dh (x, y ) 

|L xy | . 

The second-order moment is the standard deviation, which is

btained by taking the square root of the variance of the color dis-
ribution, i.e., 

 dh = σdh = 

√ √ √ √ 

∑ 

(x,y ) ∈L xy 

[ I dh (x, y ) − E dh ] 
2 

|L xy | . 

The third-order moment is the skewness. It measures how

symmetric the color distribution is, and thus it gives information

bout the shape of the color distribution. It can be computed with

he following formula: 

 dh = s dh = 

3 

√ √ √ √ 

∑ 

(x,y ) ∈L xy 

[ I dh (x, y ) − E dh ] 
3 

|L xy | . 

Thus, we can define a visual rhythm as a mapping of an image

equence S into a single image R , in which each feature F dh is a

ixel at the position ( d , h ), i.e., 

 (d, h ) = F dh , d ∈ [1 , W R 

] , h ∈ [1 , H R 

] , 

here W R 

= D and H R 

= H are its width and height, respectively.

igs. 7 –9 present the visual rhythms produced by the pixel sam-

ling of the digital images using each ROI from Fig. 2 , where each

OI was encoded by the first-order, second-order, and third-order

oments, respectively. 



94 J. Almeida et al. / Pattern Recognition Letters 81 (2016) 90–100 

Fig. 8. Visual rhythms obtained for each ROI by using the area-based strategy. Each 

ROI was encoded by the second-order moment. 

Fig. 9. Visual rhythms obtained for each ROI by using the area-based strategy. Each 

ROI was encoded by the third-order moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Flowchart of a content-based region retrieval system used in the evaluation 

protocol. 
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5. Experimental protocol 

This section presents the adopted experimental protocol. First,

we introduce the region-based image retrieval scenario used in

our evaluation in Section 5.1 . Next, we present the used evaluation

metrics and the baseline considered in our study in Sections 5.2

and 5.3 , respectively. 

5.1. Image retrieval protocol 

We carried out experiments to identify plant species in the

image using the proposed visual rhythm representations. In this

work, we approach the plant identification as an image retrieval

problem, in contrast to some initiatives that have addressed this

task in the context of image classification [5,6] . Our objective is

to use the proposed representations in search services that could

leverage the understanding of phenological changes over time by

providing areas of plant individuals whose visual features are sim-

ilar to those of a region of interest defined as input. 

We adopted a content-based region retrieval approach in our

evaluation protocol. This approach relies on the execution of simi-

larity searches [41] , according to which image regions are ranked in

order of their distance from a given query region. From each image

region, feature vectors are extracted by taking into account differ-

ent representations (e.g., pixel-based or area-based visual rhythm)
nd descriptors (e.g., Global Color Histogram). Two regions are con-

idered similar to each other, if the distance of their feature vectors

re small. The more effective a descriptor is, the more relevant im-

ge regions are ranked at top positions of the returned ranked list.

The flowchart of the content-based region retrieval system is

llustrated in Fig. 10 . The process is composed of offline and on-

ine steps. The offline steps comprise: (1) the representation of

ach labeled segmented regions in the multitemporal data by

sing visual rhythms; (2) the extraction of features from each vi-

ual rhythm through descriptors; and (3) the indexing of features

n a data repository. The online steps consists of a query search

omposed of the following steps: (4) the selection of a query pat-

ern, which is a segmented region along the multitemporal images;

5) the computation of the query’s visual rhythm; (6) the extrac-

ion of features by using descriptors; (7) the search computation

y similarity; and (8) the final similarity ranking, including all pat-

erns learned at the offline stages. 

In this system, we provide a time series extracted from an im-

ge area associated with a given species and we query for simi-

ar time series computed from other image areas that belong to

he same species. For describing time series encoded into a vi-

ual rhythm, we used six traditional and recently proposed im-

ge descriptors: Auto Color Correlogram (ACC) [18] , Color Coher-

nt Vector (CCV) [26] , Border/Interior pixel Classification (BIC) [36] ,

nd Global Color Histogram (GCH) [38] , for encoding color infor-

ation; Generic Fourier Descriptor (GFD) [42] and Haar-Wavelet

escriptor (HWD) [20] , for analyzing spectral properties. The dis-

ance function used for feature comparison is the Manhattan

 L 1 ) distance. For more details regarding those image descriptors,

efer to [27] . 

Our strategy to evaluate image descriptors in the context of

ime series description is based on assessing the similarity among

egions associated with individuals of a same species. For that, we

sed the Guigues algorithm [15] to segment the hemispheric im-

ge into small polygons, obtaining 8, 849 segmented regions (SR).

hen, we associated each SR with a single ROI aiming to label it. A
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Table 1 

MAP scores obtained by each of the image descriptors along all the available periods of the day. 

Pixel-based visual rhythm Baseline 

Hour ACC BIC CCV GCH GFD HWD RGB ExG NDI 

6 0.587 0.601 0.601 0.608 0.338 0.374 0.739 0.523 0.490 

7 0.561 0.555 0.549 0.545 0.353 0.377 0.720 0.515 0.569 

8 0.571 0.555 0.554 0.546 0.355 0.385 0.716 0.480 0.532 

9 0.572 0.574 0.548 0.569 0.353 0.380 0.733 0.422 0.619 

10 0.620 0.612 0.588 0.614 0.354 0.382 0.741 0.407 0.644 

11 0.607 0.586 0.562 0.585 0.345 0.372 0.744 0.398 0.640 

12 0.535 0.528 0.519 0.534 0.342 0.356 0.731 0.381 0.632 

13 0.542 0.526 0.506 0.513 0.334 0.364 0.718 0.407 0.628 

14 0.577 0.577 0.553 0.554 0.341 0.387 0.723 0.419 0.625 

15 0.567 0.562 0.542 0.542 0.346 0.395 0.718 0.427 0.633 

16 0.558 0.548 0.530 0.524 0.347 0.386 0.700 0.434 0.615 

17 0.554 0.555 0.531 0.548 0.358 0.388 0.686 0.464 0.610 

18 0.576 0.590 0.596 0.595 0.338 0.376 0.688 0.498 0.656 

Table 2 

P@5 scores obtained by each of the image descriptors along all the available periods of the day. 

Pixel-based visual rhythm Baseline 

Hour ACC BIC CCV GCH GFD HWD RGB ExG NDI 

06 0.761 0.795 0.769 0.767 0.451 0.502 0.878 0.779 0.728 

07 0.779 0.778 0.729 0.782 0.495 0.523 0.922 0.764 0.848 

08 0.805 0.742 0.713 0.749 0.506 0.513 0.878 0.724 0.777 

09 0.778 0.757 0.706 0.735 0.500 0.521 0.856 0.661 0.800 

10 0.807 0.824 0.788 0.818 0.494 0.532 0.834 0.642 0.816 

11 0.833 0.817 0.765 0.770 0.466 0.503 0.852 0.639 0.806 

12 0.785 0.743 0.728 0.749 0.471 0.449 0.860 0.620 0.809 

13 0.810 0.788 0.743 0.775 0.463 0.466 0.835 0.675 0.792 

14 0.780 0.768 0.763 0.794 0.475 0.517 0.872 0.702 0.814 

15 0.714 0.711 0.751 0.736 0.466 0.523 0.862 0.700 0.798 

16 0.697 0.729 0.732 0.725 0.480 0.518 0.866 0.676 0.800 

17 0.738 0.740 0.724 0.762 0.505 0.538 0.866 0.676 0.817 

18 0.798 0.787 0.788 0.777 0.432 0.520 0.906 0.720 0.908 
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abeled region is created if there is at least 80% of overlapped area

etween a SR and a ROI. In the remainder of this paper, when we

efer to regions of interest related to tree crowns of plant species

dentified manually in the digital image, we use the acronym ROI;

nd when we refer to segmented regions obtained from the seg-

entation algorithm, we use the acronym SR. The similarity be-

ween two SRs is computed as a function of the distance between

he feature vectors extracted from their visual rhythms. An image

escriptor is better than another if it ranks more SRs belonging to

he same ROI of a query SR at the first positions. 

For each ROI, we randomly selected twenty percent of its total

umber of SRs to be used as queries. Five replications were per-

ormed in order to ensure statistically sound results. Presented re-

ults consider the average performance of the evaluated image de-

criptors, which were computed based on the mean and standard

eviation of each replication. 

.2. Evaluation metrics 

We assess the effectiveness of each approach using the metrics

f Precision and Recall. Precision is the ratio of the number of rel-

vant SRs retrieved to the total number of irrelevant and relevant

Rs retrieved. Recall is the ratio of the number of relevant SRs re-

rieved to the total number of relevant SRs in the database. Here,

 given SR is considered as relevant only if it belongs to the same

OI of a query SR. However, there is a trade-off between Precision

nd Recall. Greater Precision decreases Recall and greater Recall

eads to decreased Precision. So, we choose to report the results

sing unique-value measurements: Mean Average Precision (MAP),

hich is the mean of the precision scores obtained at the ranks of

ach relevant SR; and Precision at 5 (P@5), which is the average

recision after 5 SRs are returned. These metrics combine Preci-
ion and Recall into a single measure, which makes the comparison

asier. 

.3. Baseline 

We compare the visual rhythm-based techniques against three

pproaches widely used by phenology experts for characterizing

eaf-changing patterns of plant species from digital images. The

rst approach is a normalized index called RGB chromatic coor-

inates (RGBcc), which was developed by Gillespie et al. [14] and

s considered the most efficient index to detect the color of plants

n relation to their background [40] . The normalized RGBcc index

ndergoes a nonlinear transform, as follows: r = R/ (R + G + B ) , g =
/ (R + G + B ) , b = B/ (R + G + B ) ; where R , G , and B are the average

ixel intensity of the red, green, and blue bands, respectively. 

The second approach is a contrast index named as Excess Green

ExG), which was introduced by Woebbecke et al. [40] and is com-

only applied to separate green plants from soil and residue back-

round. The ExG index is defined as: ExG = 2 g − r − b. Similarly,

he third approach, known as Normalized Difference Index (NDI),

ses only green and red channels and is given by [39] : NDI =
(G − R ) / (G + R ) . 

. Experimental results 

The objective of our evaluation is to confirm that the use of

he proposed visual rhythm representations yields comparable re-

ults, in terms of search result effectiveness, when compared with

he traditional RGBcc index. The evaluation results are discussed

n Sections 6.1 and 6.2 , for the pixel-based and area-based visual

hythm representations, respectively. The correlation analysis and

eature combination between different approaches is discussed in
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Table 3 

Differences between MAP of the different image descriptors by con- 

sidering the best result of each approach. 

Confidence interval (99%) 

Approach Min. Max. 

RGB@11h - ACC@10h −0 .236 0.401 

RGB@11h - BIC@10h −0 .291 0.461 

RGB@11h - CCV@06h −0 .290 0.475 

RGB@11h - GCH@10h −0 .282 0.441 

RGB@11h - GFD@17h 0 .022 0.744 

RGB@11h - HWD@15h −0 .045 0.757 

Table 4 

Differences between P@5 of the different image descriptors by con- 

sidering the best result of each approach. 

Confidence interval (99%) 

Approach Min. Max. 

RGB@07h - ACC@11h 0 .012 0.378 

RGB@07h - BIC@10h 0 .085 0.298 

RGB@07h - CCV@10h −0 .001 0.316 

RGB@07h - GCH@10h −0 .006 0.207 

RGB@07h - GFD@08h 0 .201 0.750 

RGB@07h - HWD@17h 0 .109 0.730 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. MAP scores obtained for each ROI. 

Fig. 12. P@5 scores obtained for each ROI. 
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Section 6.3 . Finally, in Section 6.4 , we discuss on efficiency aspects

of the visual rhythm-based techniques, highlighting the main ad-

vantages of using the proposed approaches. 

6.1. Pixel-based visual rhythm 

Tables 1 and 2 compare the pixel-based visual rhythm tech-

niques and the baseline methods with respect to the MAP and P@5

measures, respectively. MAP is a good indication of the effective-

ness considering all positions of obtained ranked lists. P@5, in turn,

focuses on the effectiveness of the methods considering only the

first positions of the ranked lists. For each approach, we highlight

the hour of day that provided the best result. 

Those results indicate that the performance of the different

evaluated approaches is similar, with a small advantage to the

RGB-based baseline. Notice that early hours (from 8h to 11h) are

better to characterize the phenological changes of plant species by

using color descriptors. As we can observe, the best performances

were achieved using the digital images taken at ten in the morn-

ing. This finding disagrees with the general suggestion of extract-

ing color information from midday hours (from 11h to 14h) for

ecological studies [1,19,29] . 

Paired t -tests were performed to verify the statistical signifi-

cance of those results. For that, the confidence intervals for the

differences between paired means of each ROI were computed to

compare every pair of approaches. If the confidence interval in-

cludes zero, the difference is not significant at that confidence

level. If the confidence interval does not include zero, then the sign

of the difference indicates which alternative is better. 

Tables 3 and 4 present the 99% confidence intervals of the

differences between the RGB-based baseline and the pixel-based

visual rhythm techniques for the MAP and P@5 measures, re-

spectively. For simplicity and readability purposes, we report only

the results for the hour of day that provided the best result of

each approach. Such analyses confirm that the pixel-based visual

rhythm techniques and the RGB-based baseline exhibit similar per-

formance. Notice that the confidence intervals include zero and,

hence, the differences between those approaches are not signifi-

cant at that confidence level. 

Figs. 11 and 12 compare the individual scores obtained for each

ROI considering the best results of the evaluated methods in terms
f the MAP and P@5 measures, respectively. It is interesting to note

he differences in responsiveness of the different approaches with

espect to each of the species individually. The main reason for

hose results is the different patterns of the leaf color change of

ach species. In general, different image descriptors are designed

o capture different visual features. 

.2. Area-based visual rhythm 

In Fig. 13 , we compare the effectiveness of the baseline meth-

ds and the area-based visual rhythm techniques by consider-

ng different image descriptors. The graphs present the individual

cores obtained for visual rhythms encoded by the first-order (first

olumn), second-order (second column), and third-order (third col-

mn) moments. We show the results for the MAP (top row) and

@5 (bottom row) measures. 

In general, those graphs demonstrate that visual rhythms en-

oded by lower order moments (left column) outperform the

igher order ones (right column). On the other hand, for a

ame statistics, the performance of different image descriptors of a

ame type (color or texture) is similar. Unlike the results obtained

or the pixel-based visual rhythm techniques, the texture descrip-

ors (GFD and HWD) are more effective than the color ones (ACC,

IC, CCV, and GCH). 

Table 5 presents the 99% confidence intervals of the differences

etween the RGB-based baseline and the area-based visual rhythm
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Fig. 13. Comparison between the effectiveness measures obtained by the evaluated approaches. These graphs present the results for visual rhythms encoded by the first- 

order (first column), second-order (second column), and third-order (third column) moments. They report the MAP (top row) and P@5 (bottom row) scores. . 

Table 5 

Differences between MAP and P@5 scores of the different image descriptors by con- 

sidering visual rhythms encoded by different color moments. 

MAP P@5 

Method Min . Max. Min . Max. 

First-Order RGB - ACC −0 .062 0.311 −0 .084 0.407 

RGB - BIC −0 .087 0.267 −0 .047 0.314 

RGB - CCV −0 .048 0.276 −0 .097 0.437 

RGB - GCH −0 .086 0.306 −0 .093 0.360 

RGB - GFD −0 .181 0.145 −0 .094 0.059 

RGB - HWD −0 .134 0.198 −0 .141 0.161 

Second-Order RGB - ACC 0 .010 0.475 −0 .020 0.654 

RGB - BIC −0 .066 0.434 0 .001 0.513 

RGB - CCV −0 .089 0.445 −0 .031 0.529 

RGB - GCH −0 .105 0.457 −0 .015 0.494 

RGB - GFD −0 .134 0.4 4 4 −0 .066 0.265 

RGB - HWD −0 .199 0.361 −0 .125 0.239 

Third-Order RGB - ACC 0 .082 0.520 0 .131 0.518 

RGB - BIC 0 .087 0.384 0 .035 0.496 

RGB - CCV 0 .098 0.414 0 .041 0.511 

RGB - GCH 0 .083 0.386 0 .071 0.471 

RGB - GFD 0 .029 0.566 0 .050 0.550 

RGB - HWD −0 .002 0.540 0 .065 0.570 
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echniques for the MAP and P@5 measures, respectively. Such anal-

ses confirm that the area-based visual rhythm techniques and the

GB-based baseline exhibit similar performance. Note that the con-

dence intervals include zero and, hence, the differences between

hose approaches are not significant at that confidence level. 

In Fig. 14 , we compare the individual scores obtained for

ach ROI in terms of the MAP (top row) and P@5 (bottom row)

easures, respectively. We show the results for visual rhythms

ncoded by the first-order (first column), second-order (second

olumn), and third-order (third column) moments by considering

ifferent image descriptors. Notice the differences in responsive-

ess of the evaluated methods with respect to each of the species

ndividually. For instance, despite the overall performance of the

rst-order visual rhythms outperform the second-order ones, these

atter have achieved the best results for the Pouteria torta . On the

ther hand, they have obtained the worst results for the Myrcia

uianensis . 
This behavior reflects their contrasting leaf phenology [2] : the

yrcia guianensis is an evergreen species and, therefore, the leaf

enescence is a continuous process and color changes are more

ubtle over time; in contrast, the Pouteria torta is semideciduous,

hus the color change reflects the rapid leaf senescence and the

ush of new leaves. 

.3. Correlation analysis and descriptor combination 

One important issue with regard the evaluation of multiple rep-

esentations and descriptors concerns the investigation of their

orrelation. The objective is to somehow confirm if the differ-

nt representations/descriptions provide complementary informa- 

ion regarding the image visual properties. 

Figs. 15 (a) and 16 (a) present the correlation among the ranked

ists defined by the most effective descriptors associated with the

ixel-based and area-based visual rhythm representations, respec-

ively. The correlation score is computed using the Kendall rank

orrelation coefficient, defined as: 

(x, y ) = 

(P − Q ) √ 

(P + Q + T ) × (P + Q + U) 

here P is the number of concordant pairs, Q the number of dis-

ordant pairs, T the number of ties only in rank x , and U the num-

er of ties only in rank y . If a tie occurs for the same pair in both

 and y , it is not added to either T or U . 

The RGB-based baseline is referred at the first line and column

n both figures. Notice that the proposed descriptors are not cor-

elated to each other. More importantly, they are not correlated to

he RGB-based baseline. That opens a novel possibility of investi-

ation concerning their combination. 

In this sense, we have combined the ranked lists associated

ith the two best descriptors for the pixel-based and area-based

isual rhythm representations with the RGB-based baseline using

he traditional Borda Count rank aggregation approach [9] . The

orda Count algorithm is an order-based method, according to

hich a score is assigned to an element x in the ranked list r i ,

qual to | r i | − r i (x ) , where r i ( x ) is the position of the element x in

 i . The final score of an element is the sum of the scores obtained

n each ranked list. 
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Fig. 14. Individual scores obtained for each ROI. These graphs present the results for visual rhythms encoded by the first-order (first column), second-order (second column), 

and third-order (third column) moments. They report the MAP (top row) and P@5 (bottom row) measures. 

Fig. 15. (a) Correlation scores and (b and c) Combination results of the two best pixel-based descriptions with the RGB-based baseline. 

Fig. 16. (a) Correlation scores and (b and c) Combination results of the two best area-based descriptions with the RGB-based baseline. 
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Table 6 

Computational costs and space requirements of each of the evaluated approaches. 

Computational cost 

Method Extraction Matching Space requirements 

Visual rhythm VR + ACC O ( n ) O (1) O (1) 

VR + BIC O ( n ) O (1) O (1) 

VR + CCV O ( n ) O (1) O (1) 

VR + GCH O ( n ) O (1) O (1) 

VR + GFD O ( n log n ) O (1) O (1) 

VR + HWD O ( n log n ) O (1) O (1) 

Baseline RGB O ( n ) �( n ) �( n ) 

ExG O ( n ) �( n ) �( n ) 

NDI O ( n ) �( n ) �( n ) 
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Figs. 15 (b and c) and 16 (b and c) present the MAP and P10

cores achieved by the most promising combinations for the pixel-

ased and area-based visual rhythm representations, respectively.

s we can observe, even considering a fairly simple approach, the

ombination of the proposed methods with the RGB-based base-

ine improved the effectiveness results both in terms of MAP and

@5. These results show the potential of the idea, opening a new

orld of research possibilities. 

.4. Computational efficiency 

The key advantage of our technique is its computational effi-

iency. Table 6 presents the computational cost and the space re-

uirements (in terms of the length n of the time series) of all the

ompared methods. In this way, we can investigate the relative dif-

erence of performance among different approaches. 

Clearly, the visual rhythm-based techniques are much more ef-

cient than the current solutions. This improvement makes our ap-

roach suitable for long-term collections of image data. 

Note also that the larger the time series, the bigger would be

he visual rhythm image generated, independently of the represen-

ation considered (either the pixel-based or area-based approach).

or larger time series, the feature extraction process will probably

ake more time. Note, however, that the size of the final feature

ector generated is not dependent on the size of the input image.

t only depends on the descriptor used to characterize the visual

roperties of the visual rhythm images. 

. Conclusions 

In this paper, we have presented a novel approach for captur-

ng phenological patterns from time series and distinguishing the

ehavior of plant species. Our technique relies on encoding time

eries as a visual rhythm, which is characterized by image descrip-

ors. The improvement of the computational efficiency makes our

ethod suitable for long-term temporal data. 

We have validated our technique using about 2700 images,

aken from a tropical cerrado-savanna vegetation, including a high

iversity of plant species. Experimental results obtained by the ap-

lication of our method with several image descriptors show that

t presents high accuracy and computational speed when identify-

ng regions that belong to the same species. 

Future work includes the evaluation of other visual features

or image retrieval. In addition, the proposed method can be aug-

ented to consider temporal segmentation and/or summarization

ethods. Finally, we also plan to consider learning-to-rank meth-

ds (e.g., genetic programing) for combining different descriptors. 
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