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ABSTRACT

Contour and skeleton are two complementary represensatisrshape recognition. However com-
bining them in a principal way is nontrivial, as they are gatlg abstracted by dierent structures
(closed stringrsgraph), respectively. This paper aims at addressing theesteeognition problem by
combining contour and skeleton according to the correspoceibetween them. The correspondence
provides a straightforward way to associate skeletal m&dion with a shape contour. More specif-
ically, we propose a new shape descriptor, nailegleton-associateShapeContext (SSC), which
captures the features of a contour fragment associatedsiatletal information. Benefited from the
association, the proposed shape descriptor provides thplementary geometric information from
both contour and skeleton parts, including the spatiatiligion and the thickness change along the
shape part. To form a meaningful shape feature vector fovarath shape, the Bag of Features frame-
work is applied to the SSC descriptors extracted from itaBynthe shape feature vector is fed into a
linear SVM classifier to recognize the shape. The encougagiperimental results demonstrate that
the proposed way to combine contour and skeletofffectve for shape recognition, which achieves
the state-of-the-art performances on several standapkdienchmarks.
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1. Introduction
Shape is a significant cue in human perception for objec*}
recognition. The objects shown in Fig. 1 have lost their frig

ness, color and texture information and are only repregente S ‘ _ _

by their silnouettes. however it's not intractable for humta Fig. 1. Human biological vision system is able to recognizenése object
. . o L L without any appearance information (brightness, color andtexture).

recognize their categories. This simple demonstratioicatds

that shape is stable to the variations in object color antlitex

and light co_nditions. Due to such advantage_s, recognizling © how to form a informative and discriminative shape représen
jects by their shapes has been a long standing problem in ti}%n

literature. Shape recognition is usually considered assstl Generally. the existing main stream sh representation
fication problem that is given a testing shape, to deternige i enerally, the existing main stream shape rep gse atons
an be classified into two classes: contour based [8, 27 ill] a

category label based on a set of training shapes as well ias thé =N 4 )
category label. The main challenges in shape recognitien arskeleton based[L 8, ¥1.134./46] 40]. The former one delivers

the large intra-class variations induced by deformatiotici the information that how the spatial distribution of the hdu

lation and occlusion. Therefore, the main focus of the netea ari/ p(;rl]ntrs \ilﬁfrlerfnalt%ng Lhe oti)é(fec:rgotri]t?]ur.m;l'ihertefglreeﬁpI- ca
efforts have been made in the last decade [8, 27, 42, 43, 5, 6] }’5' €s more Informalive shape information and is sta e
transformation. However, it is sensitive to non-ridge defa-

tion and articulation; On the contrary, the latter one pdegi
**Corresponding author: Tek:86-13122300551; the information that how thickness of the object changesglo
e-mail: dzeng_shu@outlook.com (Dan Zeng) the skeleton. Therefore, it is invariant to non-ridge defation
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Fig. 2. Some corresponding contour and skeleton parts, magd in green
and red, respectively. The corresponding contour and sketen points are
linked by blue lines.

and articulation, although it only carries more rough gewine
features of the object. Consequently, such two represensat
are complementary. Nevertheless, very few works have toied
combine these two representations for shape recognitibe. T
_reason r_n!ght be that comblnl_ng the data dfetient structures Fig. 3. The Skeleton-associated Shape Context descriptof @ contour

is not trivial, as the contour is always abstracted by a ©0Se pointin a contour fragment, which is a 3D tensor to describe he Euclidean
string while the skeleton is abstracted either by a graphimea  distances, orientations and thickness @erences between the contour point
Consequently, the matching methads [19, 17, 13, 28, 31,30, 2 and others in the fragment. It equals to the concatenated shee context de-

f h a b - dfdient ,ICS [5' - t'h f t, scriptors [8] computed on sub-parts (marked by diferent colors) separated

or these tWO ata_a straction ar 'e_n ) [5] is the firs according to the object thickness diferences between the contour point and
work to explicitly discuss how to combine contour and sk@tet  others in the fragment.

to improve the performance of shape recognition. Howetlaer, t

combination proposed in this work is just a weighted sum ef th

outputs of two generative models trained individually omco marked by diferent colors and the sub-part and its SC descrip-
tour features and skeleton features respectively. Thezgiow  tor are marked by the same color. This new shape descriptor is
to combine contour and skeleton into a shape representation termed askeleton-associateshapeContext (SSC), as it asso-

a principled way is still an open problem. ciates the skeletal information with the contour descripto

In this paper, our goal is to address the above combinationis Following the framework of the recent woBag of Contour
sue to explore the complementarity between contour ané-skel Fragments (BCF)_[45], we can obtain a shape feature vector of
ton to improve the performance of shape recognition. The@maian overall shape by encoding and then pooling the SSC descrip
obstacle of the combination is the data structures of cantouors extracted from it. We term our method@eyg of Skeleton-
and skeleton are fferent (closed strings graph). A contour associatedContourParts (BSCP), as it associates skeletal in-
is usually described by the features of its parts (contaag-fr formation with contour fragments and encodes the shape fea-
ments)|[[42, 21]. As the correspondence between contoutpointures from shape part level. FIg. 4 shows the pipeline ofdbuil
and skeleton points can be obtained easily, for each contoimg a shape feature vector by BSCP. Given a shape, firstly a
point, we can associate the geometric information of itseeor normalization step is performed to align the shape accgrdin
sponding skeleton point with it. In this way, we can recorel th to its major axis (FigiJ4(b)), as thgpatial Pyramid M atching
change of the object thickness, i.e., the skeleton radlosga (SPM) [25] step (Figi}4(g)) is not rotation invariant. Theime
each contour fragment. Such association actually leadseto t skeleton of the shape is extracted and the contour of thesshap
combination of contour and skeleton on part level (Eilg. 2&ho is decomposed into contour fragments (Eig. 4(c)). Each con-
some corresponding contour and skeleton parts. Note that,taur point is associated with a object thickness value,the,
contour fragment may correspond to more than one skeletoradius of its corresponding skeleton point. A shape pahést
segments, such as the second example in[Frig. 2). Therefordgscribed by the contour fragment associated with the bbjec
combing contour and skeleton on part level is a feasible way. thickness values provided by its corresponding skeletgn se

With the extra information provided by skeleton, inspirgd b ments (Fig[#(d)). After that, each shape part is represente
the well known descriptoBhapeContext (SC) [8], we pro- by concatenating the SSC descriptors extracted on itsereder
pose to encode the features of a contour point into a 3D terPoints (FigL#(e)), and then encoded into shape coded(f)y. 4
sor, in which the three dimensions describe the Euclidesn di To encode shape parts, we adopt local-constrained linekr co
tances, orientations and thicknesfigtiences between the con- ing (LLC) [44] scheme, as it has been proved to fient and
tour points and others in the fragment, respectively. tivielly,  €ffective for image classification. Finally, the shape codes ar
the proposed new descriptor extends SC by including the expooled into a compact shape feature vector by SPM [[Fig. 4(h))
tra information, object thickness, provided by skeletohefe- ~ The obtained shape feature vectors can be fed into any dis-
fore, it is more informative; Essentially, this new destoipis  criminative models, such as SVM and Random Forest, to per-
formed by concatenating the SC descriptors of the sub-parf@rm shape classification. Using such discriminative me e
of the contour fragment separated according to thickndes-in  Shape recognition is mordiient than traditional shape classi-
mation. Such sub-parts based representation capture ¥iele le fication methods, as the latter require time consuming niragch
geometric information, so it is more discriminative. Figil-3 and ranking steps.
lustrates the new descriptor for a contour point in a contour Our contributions can be summarized in three aspects,, First
fragment, in which the sub-parts of the contour fragment arave propose a natural way to associate a shape contour with
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Fig. 4. The pipeline of building a shape feature vector by bagf skeleton-associated contour parts

skeletal information. Second, we propose a new shape gescriods to a large extent. Among them, the shock graph and its
tor which encodes the shape features from a contour fragmemariants [41, 34, 32] are most popular, which are abstracted
associated with skeletal information. Last, our methody B from skeletons by designed shape grammar. The second one is
Skeleton-associated Contour Parts achieves the stabe-@frts  finding the correspondences between two sets of the shape de-
on several shape benchmarks. scriptors by matching algorithms such as Hungarian, thétepl
The remainder of this paper is organized as follows. Sec. 2pline (TPS) and dynamic programming (DP). A testing shape
reviews the works related to shape recognition. §kc. 3-intrais classified into the class of its nearest neighbor rankeithéy
duces the proposed shape descriptor as well as our framewonkatching costs. The exemplar-based strategy requirege lar
for shape recognition. Experimental results and analyss&o- number of training data to capture the large intra-clasisxmaes
eral shape benchmarks are shown in §&c. 4. Finally, we drawf shapes. However, when the size of training set become quit
the conclusion in SeEl 5. large, it's intractable to search the nearest neighbor dukd
Our preliminary work|[39] also combines contour and skele-high time cost caused by pairwise matching.
ton for shape recognition, while theftirence to this paper  Generative models are also used for shape recognition. Sun
is obvious. Rather than simply concatenating the contodr anand Super.[42] propose a Bayesian model, which use the nor-
skeleton features on mid-level, this paper associatestskah-  malized contour fragments as the input features for shagse cl
formation with ashape contour on low-level by making fukkus sification. Wanget al. [43] model shapes of one class by
of the natural correspondence between a contour and its-skela skeletal prototype tree learned by skeleton graph majchin

ton. Then a Bayesian inference is used to compute the similagity b
tween a testing skeleton and each skeletal prototype tiet B
2 Related Work al. [5] propose to integrate contour and skeleton by a Gaussian

mixture model, in which contour fragments and skeleton gath
There have been a rich body of works concerning shap@re used as the input features. Unlike their method, ours en-

recognition in recent years [8,127,/42) 22, 7,116,143/ 20| 1.0, 9 codes the contour and skeleton features into one shapepmtescr
In the early age, the exemplar-based strategy has beenywidelor according to the association between contour and sielet
used, such as|[8, 27]. Generally, there are two key steps ihherefore, we avoid the intractable step to finetune the hieig
this strategy. The first one is extracting informative and ro between contour and skeleton models.
bust shape descriptors. For example, Belorgdial. [8] in- Recently, researchers begin to apply the powerful diserimi
troduce a shape descriptor named shape context (SC) whictative models to shape classification. Daliri and Tarre [[%],
describes the relative spatial distribution (distance @iehta-  transform the contour into a string based representaticorde
tion) of landmark points sampled on the object contour adouning to a certain order of the corresponding contour pointstb
feature points. Ling and Jacohs|[27] use inner distance 10 exduring contour matching. Then they apply SVM to the kernel
tend shape context to capture articulation. As for skelbtsed  space built from the pairwise distances between string®io o
shape descriptors, the reliability of them is ensured figce  tain classification results. Edem and Tari[20] transforrkedes
tive skeletonization [33, 12] or skeleton pruning|[4, 35]thhe  ton into a similarity vector, in which each element is theitdm
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ity between the skeleton and a skeletal prototype of oneeshap Formally, for a skeleton poinp(peS(F)), let Z(p) be the
category. Then they apply linear SVM to the similarity vecto radius of the maximal disc of the shapecentered ap and
to determine the category of the skeleton. Wangl.[45] uti-  G(p) be the set of GPs g. On the discrete domaiZ(p) can
lize LLC strategy to extract the mid-level representatidd®B be approached by th@istanceTransform (DT) value ofp to
from contour fragments and they also use linear SVM for clasthe contouiC(F):

sification. Such coding based methods are used for 2D and 3D ,

shape retrieval [6, 2]. Sheat al.[39] propose a skeleton based Z(p) = qL*g'(E) IIp - dll2, 1)
mid-level representation nam&ag of SkeletonPaths (BSP),
and concatenate the BCF and BSP for shape recognition. T
weights between BCF and BSP are automatically learned bg;vely by

SVM. This method implicitly combines contour and skeleton G(p) = (1 APeN(p), q" = arg min |lg— pull2}, 2)
according to the weights learned by SVM, while this paper ex- q<C(F)

plicitly combines contour and skeleton by using the coroesp \yhere A(p) denotes the eight neighbors @f Note that,
dence between them, which is a more natural combination way;5)-c(F). Now we have a one-to-many correspondence be-
tween a skeleton poirg and a set of contour poig(p). For
each contour poingeG(p), we associate the object thickness
valueZ(p) with it, and use the notatiod(-) to denote the cor-

In this section, we will introduce our method for shape recog réspending function mapping it to the skeleton pamti.e.,
nition, including the steps of shape normalization, SS@dgs P = %(0). if geG(p). Now considering the overall shape, let
tor and shape classification by BSCP. G(S(F)) be the set of all the GPs &(F):

GSF) = | 6. (3)
peS(F)

. As the SPM strategy assumes thqt t.he parts of.sha.pes fa”irk%te thatg(S(F))cC(F), so the functiorig'(-) can not be ap-

in the same subregion are similar, it is not rotation invatria .plied to all the contour points. However, we can define a utifie

To apply SPM to shape classification, a n_ormahzatlon. step | unctionZ,(-) to compute the associated object thickness value
required to align shapes roughly. One straightforwardtsmiu for each contour poirg:

is to align each shape with its major axis. Here, we use prin-
cipal component analysis (PCA) to compute the orientation o Z4(0) = Z(€(0a)), (4)
the major axis of each shape. Formally, given a sHageR?,
we apply PCA to the point sé¢p; = (x, yi)IpieF}Y,. First, the
NxN covariance matrix is computed by = 5 SR -

IW‘,hereH - |12 is the,-Norm. G(p) can be obtained approxima-

3. Methodology

3.1. Shape Normalization

whereg, = arg minyeg(ser) 1(d. dg) andl(-, -) is denoted by the
minimum contour curve length between two contour points.

— _ — — Eq.[4 means that for each contour paintve search its closest
(Ve — - — yN - — N,

X)(i — ¥i), whereX = ¥i_, /N andy; = X yi/N. Then, contour poingaeG(S(F)) along the contour (iflcG(S(F), then

the two eigenvectorg; andv, of X form the columns of the ; . . .
> ) = (), and assign the associated object thickness valgg of
NxN matrix V, and the two eigenvalues &fare (1, 1;)" = ?an A 9 ! e

diag(VTZV). The orientation of the major axis of the shape
is the orientation of the eigenvector whose correspondgene
value is bigger. All shapes are rotated to ensure their astith
major axes are aligned with the horizontal line, such asthe e
ample given in Fig.4(b).

3.2.2. Shape Descriptor Computation

Part-based methods [42,/21,5/) 45] have been widely used
for shape recognition, as shape parts are the basic meahingf
elements of a shape. We want to build a discriminative and in-
formative shape representation based on shape parts. ape sh
parts can be obtained by any contour decomposition methods,
In this section, we show how to compute the SSC descriptosuch like Discrete Contour Evolution (DCE) [28]. Given a

3.2. Skeleton-associated Shape Context

for a given contour point step by step. shape contou€(F), we apply DCE to obtain its critical points
{ui}_,, whereT is the number of the critical points. We build
3.2.1. Skeleton-associated Contour a shape part s€?c(r), which consists of the contour fragments

For a given shap€&, let C(F) and S(F) denote its contour Petween any pairs of critical points, u;. Let c;; denote the
and skeleton, respectively. The skele§(F) can be obtained contour fragment fromy; to u; (anticlockwise direction), then
by the method introduced in [37], which does not require pa¥e have
rameter tun_mg forskeleton_computatlon. Our goa_l is to fhmlt_ Pey = (Gili#h0, jelL, ..., T)). (5)
corresponding skeleton point of each contour point andyassi
a object thickness value to it. To describe our method glearl Note that we do not force; andu; to be adjacent points in the
here we first briefly review some skeleton related definitionscritical point set, andjj andc; are two diferent parts. Also
According to the definition of skeleton [11], a skeleton ih s we haveC(F) = cjJc;j. Using the method described in the
of the centers of the maximal discs of a shape. A maximal disprevious section, any contour part can be transformed into a
has at least two points of tangency on the contour, which arekeleton-associated contour part. In the reminder of thxep
calledGeneratingoints (GPs). unless otherwise specified, we treat these two conceptdgqua
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Now we propose how to compute the SSC descriptor at &rom c,, by setting the corresponding entriesaéire equal to
reference contour point of a skeleton-associated contarr p c,'s and others are zero.
Each pointg on a skeleton-associated contour part can be rep- Note that, the SSC descriptors of a contour part and its
resented by a tripletx(y, Za(q)), where &, y) is the relative flipped mirror are dierent, as shown in Fi@l 5. To make our
coordinate and?Z,(q) is the associated object thickness vBlue shape code invariant to the flip transformation, for a contou
From this view, the point] actually lies in a 3D space. Given part, we propose to add the shape code of its flipped mirror to
a contour part, we uniformly samptepoints on it, then for a its in an element-wise manner (as shown in Eig. 5). In this,way
given reference contour point, we describe its descriptor by the shape codes of a contour part and its flipped mirror are the
the distribution of relative dierences to the@ sampled points same. The available encoding of contour parts and theirdtipp
on Euclidean distance, orientation and associated oltjatt-t  mirrors are ensured by thefigient samples used for codebook

ness value. We compute a coarse histognafar r;: building (recall that our codebook is generated by clustgs
. o set of contour parts randomly sampled from all the shapes in a
hi(j) = #a#ri : (@~ ri)ebin(j)}, jell,.... M} (6)  dataset as well as their flipped mirrors).

Here, -ri) = (oi. 61, 109(Za(0)) —109(Za(ri))), wherep; andé;
are the Euclidean distance betwepandr; and the orientation
angle of the ray fronr; to q defined on log-polar space, re-
spectively. We us® bins that are uniform in such a 3D space,
which follows the strategy used in SC [8] to make the desoript
more sensitive to nearby sample points than those farthay.aw
The histogrant; is defined to be the SSC of

Finally, we concatenate the SSC descriptors of the referenc
points on a contour pad; to form the descriptor vectdy;eRP
for ¢j: fij = (hi;i = 1,...,n)T, wheren is the number of the
reference points and = nxM.

3.3. Bag of Skeleton-associated Contour Parts ||| I |I . [Dj I |I| |
In this section, we introduce how to perform shape classifi- o o
cation by BSCP. @

3.3.1. Contour Parts Encoding | .I|.-|..III._._|I||
Encoding a skeleton-associated contour paRP is trans-
forming it into a new spaceé by a given codebook with  rig 5 The shape codes of a contour part and its flipped mirrorre added
entries,B = (by,b,,...,bx) € RP*K. In the new space, the in an element-wise manner to form the final shape code for it, Wich is
contour parf is represented by a shape cad®X. invariant to flip transformation.
Codebook construction is usually achieved by unsupervised
learning, such as k-means. Given a set of contour parts ran- .
domly sampled from all the shapes in a dataset as well as the‘|?1’3‘_2‘ Shape Code _Poolmg )
flipped mirrors, we apply k-means algorithm to cluster them Given a shapd-, its skeleton-assomgted contour parts are
into K clusters and construct a codebddke (by, by, ..., bk).  encoded into shape codgs};, wherenis the number of the
Each cluster center forms an entry of the codebmok contour parts irF. Now we d.escrlbe how to obtain a colmpact
To encode a contour pafitwe adopt LLC schemé [44], as it shape fgature vector by poollng thg shape f:odes. SPMidysual
has been proved to béfective for image classification. Encod- US€d to incorporate spatial layoutinformation when papiire
ing is usually achieved by minimizing the reconstructioroer ~ IMmage codes. It usually divides a image inte2(1 = 0,1,2)
LLC additionally incorporates locality constraint, whisblves ~ Subregions and then the features in each subregion aredpoole

the following constrained least square fitting problem: respectively. For the aligned shapes belong to one category
the contour parts falls in the same subregions should béegimi

min|lf = By Crll, s.t. 1c, =1, (7)  Here, the position of a contour part is defined as its median

ok point. More specifically, we divide a shapeinto 2x2'(l =
whereB,, is the local bases formed by tkenearest neighbors 0. 1, 2) subregions, i.e. 21 subregions totally. &R denote
of f andc,, R is the reconstruction céiécients. Such a local- the shape code of a contour part at positipto obtain a shape
ity constrain leads to several favorable properties sudhcas ~ feature vectog(F), for each subregio8 R, i<(1,2, .., 21), we
smooth sparsity and better reconstruction. The codeesf-  Perform max pooling on it as follow:

. K .

coded by the codebodg, i.e. ceR", can be easily converted gi(F) = max(c@zeSR), @)

where the “max” function is performed in an element-wise
1To ensure scale invariant, this value should be normalizediiding by ~ Manner, I.e. for each co_deword, we tr_:ike_the max Value_ of all
the mean value of the points on the contour part. shape codes in a subregion. Max pooling is robust to noise and




has been successfully applied to image classificag@f)isa 4.1. Experimental Setup
K dimensional feature vector of the subregiR. The BSCP For each contour part, we form a descriptor vector for it

vec_torg(F) is a concatenation of the feature vectors of all S“b'by concatenating the SSC descriptors computed on 5 referenc
regions. points. Unless otherwise specified, we set the number of bins
for computing SSC to 300 (5 Euclidean distance bins, 12 erien
9(F) = (gI(F), gg(F), e gL(F))T. ©) tation bins, 5 object thicknessftérence bins). Thus the dimen-
sion of a descriptor vector for a contour part is 1500. The-hum
ber of Euclidean distance bins and the number of orientation
bins are set to the default values used in SC [8]. Hence, we wil
discuss theféects of the number of object thicknesffdience
3.4. Shape Classification by BSCP bins on classification accuracy individually. When leagnthe
) o v o codebook, the number of cluster centers (codebook size} is s
Given a training sel(gi, ¥i)};Z, consisting ofM shapes from 1 5500 by default. We also study the performances of BSCP
L classes, wher_g andyi€{1,2,..., L} are the BSC_P vecto_r and by varying the codebook size. To encode a contour part, we
t_he class Iapel afth shapes r_e_spectlvely, we train a muIU-cIass(,idOpt the approximated LLC with 5 nearest neighbors. When
linear SVM [14] as the classifier: pooling, a shape is divided intox 1, 2x 2 and 4x 4, in to-
M tal 21 regions. The weight between the regularization terth a
min Z ||Wj||2 + QZ max(Q 1+ W|Tgi —W;gi), (10) the mult!-cla_ss hinge-loss term in the multl-clas§ linesiVb
W WL 4 i ' formulation is set to 10. Default parameter settings regubrt
in [37] are adopted to extract skeletons.
wherel; = argmaxe12,..L)12y wngi and« is a parameter to All the experiments were carried out on a workstation
balance the weight between the regularization term (leff)pa (3.1GHz 32-core CPU, 128G RAM and Ubuntu14.04 64-bit
and the multi-class hinge-loss term (right part). For aingst OS). It takes about 25 ms to compute our SSC descriptor for

Finally, g(F) is normalized by itsf>-norm: g(F)
9(F)/lI9(F)ll2.

shape vectog, its class label is given by one contour fragment, and1ls to encode the BSCP feature
vector for one shape. The whole training process takes about
V= argI (lngaxu W,Tg. (11)  hours (including feature computation and codebook legpnin
el,z,...,

the testing process for one shape take$ 17s (excluding fea-

Here we adopt linear SVM, as the proposed BSCP featurfiré computation). -
vector is a high dimensional sparse vector, computed by LLC We evaluate our method on several shape classification
coding. Thef, normalization in LLC makes the inner product Penchmark datasets, including the MPEG-7 dataset [24], the
of any vector with itself to be one, which is desirable foeim ~ Animal dataset [5], and the ETH-80 dataset [26]. To avoid the
kernels [44]. Using classifiers with nonlinear kernel, sash biases caused by randomness, such a procedure is repeated 1C

kernel SVM and random forest, instead leads to performancémes. Average classification accuracy and standard dieniva
decrease. are reported to evaluate the performance fitgént shape clas-

sification methods. In each round, we randomly select half of
shapes in each class to train and use the rest shapes totevalua
4. Experimental Results for every dataset except the ETH-80 dataset. On the ETH-80
dataset, following the previous methods|[26} 27,15,/16, 45]
we use all shapes except the current one for training and use
pt(?1e current one for testing (Leave-one-out setting [18Rpét-
imental results and analysis are given in the rest of thissec

In this section, we evaluate our method on several sha
benchmarks in comparison to the state-of-the-arts. Weiadso
vestigate the fects of two important parameters introduced in
our method on classification accuracy: the number of object .
thickness dference bins for computing S9G, and codebook ~ 4-2- Animal Dataset
sizeK. We firstly test our method on the Animal dataset which is

introduced in|[5]. This dataset contains 2000 shapes divide
! ’ {h, into 20 kinds of animals, including cat, spider, leopard, ét

L is the most challenging shape dataset due to the largedizsa-
variations caused by view point change and various gestifires
animals (as shown in Fi§] 6). We randomly choose 50 shapes
per class for training and leave the rest 50 shapes for gestin

' ' methods is demonstrated in Tafjle. 1.
Fig. 6. Shapes of two classes_ from Ammal dataset [_5].‘The firsow shoyvs As shown in TableJ1, the proposed method achieves a clas-
5 shapes of the Cat class, with large intra-class variationsaused by view
second row are similar to those cats on the first row, which mags recogni-  the previous state-of-the-art method, Contextual BOW 19],
tion of these two kinds of shapes much more dicult. over 30%. This result proves that the introduction of the ob-

The comparison between BSCP and other shape classification
point change and various gestures of the cats. Moreover, lpards on the  Sification accuracy at 894% which significantly outperforms
ject thickness information extracted from skeletons imtteslp
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shape recognition. Our method also performs much better thacuracies of the state-of-the-arts on this dataset havadyrap-
BCF+BSP [39], evidencing that our method which associateproached to 100%.

a shape contour with skeletal information in such a prircipa
way is more fective than the previous method, which com-

. . .. . . Table 2. Classification accuracy comparison on MPEG-7 datas |24
bines contour and skeleton implicitly according to the viagsg LS el

learned by SVM. The comparison between our method and Algorithm Classification accuracy
BCF [45], directly shows that SSC descriptor can capture not Skeleton Paths [5] 86.70%
only the geometric information of the object contour bubals Contour Segments [5] 90.90%
the object thickness information for a shape. The combina- Bioinformatic [10] 96.10%
tion of such two kinds of complementary information leads to ICS [5] 96.60%
an improvement on resisting interference caused by ir#&ssc BCF [45] 97.16+ 0.79%
variations. BCF+BSP [39] 98.35+ 0.63%
BSCP 98.41+ 0.44%
Table 1. Classification accuracy comparison on Animal dataet |5]
Algorithm Classification accuracy
Skel baths [5 57 909 4.4. ETH-80 Dataset
eleton Paths [5] D The ETH-80 dataset [26] contains 80 objects, which are di-
Contour Segments [5] 71.70% . . .
vided into 8 categories. There are 41 3-D color photographs
IDSC [27] 73.60% ; . .
ICS [5] 78.40% token from diferent V|ewp(_)|nts for each object. We use the
' segmentation masks provided by the dataset to evaluate our
BCF [45] 83.40+ 1.30% ) i
- ; method. The result is shown in Tal[é. 3.
Bioinformatic [10] 83.70% ; . -
Compared with other methods, ours achieves the classifica-
ShapeVocabulary [6] 84.301.01% . . :
tion accuracy of 93.05%, outperforming the previous stdte-
BCFBSP [39] 85.50: 0.88% the-art approach in [45] by over 1.5%
Contextual BOW [9] 86.00% PP vl By 270
BSCP 89.04+ 0.95%
Table 3. Classification accuracy comparison on ETH-80 datas |26]
Algorithm Classification accuracy
Color histogram [26] 64.86%
PCA gray [26] 82.99%
PCA masks [26] 83.41%
* *. A + # T % SC+DP [26] 86.40%
IDSC+DP [27] 88.11%
Robust symbolic [15] 90.28%
Fig. 7. Typical shapes of some classes from MPEG-7 dataset]2 Kernel-edit [16] 91.33%
BCF [45] 91.49%
Bioinformatic [10] 91.50%
4.3. MPEG-7 Dataset BSCP 93.05%

Then we evaluate our method on the MPEG-7 dataset [24],
which is the most well-known dataset for shape analysisén th
field of computer vision (see Figl 7). 1400 images of the datas 4.5. Parameter Discussion
are divided into 70 classes with high shape variability,acte In this section, we investigate thé&ects of three important
of which there are 20 étierent shapes. Average classification parameters on shape classification accuracy.
accuracy and standard derivation of classification aceesace  The number of object thickness dfference bins for comput-
reported in Tabld.]2. ing SSC.Since the proposal of the shape descriptor SSC is an
As shown in Table12, our method achieves the best perfoiimportant contribution, it is necessary to study houfatient
mance on the MPEG-7 dataset. BCF [45] has already obtainezkttings of the descriptoffect the performance on shape clas-
good result, since it applies the Bag of Features framewmrk tsification.
obtain the mid-level model of shape representation, which i As an extension of the Shape Context, SSC has one more
more robust and accurate. BEBSP [39] combines skeleton dimension to describe the thicknesfeliences, the number of
and contour information in a simple bufective way, and per- object thickness dierence bindNy. To investigate the influ-
forms better than BCF, which proves that both skeleton an@nce of this parameter, we ¢ to different values to observe
contour features are important in shape classification.d¥ew the performance change on the Animal dataset, while other pa
with adopting SSC descriptor to combine contour and skeletorameters are set to the default values. The result is reporte
information, our method achieves better result than BBEP  Fig.[8.
on this dataset. The improvement on this dataset is not so sig Observed that our method achieves the best performance
nificant as the one on the Animal dataset, the reason is the asgthenNy is set to 5.Nig = 3 (or Nig = 1) leads to performance



decrease. The reason may be that SSC with Syattan only
give a coarse representation of the thickness informatibiie
losing most of the information a skeleton provides. Althbug
Nig = 7 leads to a result close to the best one, it will result in
significant increase in SSC descriptor computation, codkebo
learning and feature encodinfq = 5, which is selected by
us, is thought to be the best tradfHoetween accuracy and ef-
ficiency. We use it as the default value in our experimentd, an
gain the state-of-the-art performances on several datéset
Table[1, Tabld.]2 and Tablg. 3).
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Fig. 8. Classification accuracies on Animal dataset|[5] by \ging the num-
ber of object thickness diference bins for computing SSQNiq.

The number of reference points for computing SSCWe also

show how performance changes by varying the number of ret
erence points when computing our SSC descriptor in [Hig. 8
Unsurprisingly, with the increase of the number of refeeenc
points, the classification accuracy is improved, as morpeha
details are considered. However, using more referencdgoin

Fig.
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leads to a significantly time Consuming shape feature compLE-ig' 10. Classification accuracies on Animal datasetl[5] byarying code-

tation process. To balance the performance and compughtion
cost, we choose 5 reference points.

Codebook size.In this experiment, we adopt codebooks with achieve an obvious classification improvement on the MPEG-7

ook sizeK.

different sizes, including 500, 1000, 1500, 2000, 2500 an@ataset, as shown in Talile 2.
3000, to classify shapes on the Animal dataset. Other param-

eters are fixed to their default values. The classificatiauac

racies of BSCP by using flerent codebook sizes are shown in
the Fig[10. As the codebook size increases, shape classifica
accuracy improves generally, which was also reporte@h [45

4.6. Limitation

Our SSC descriptor relies on the quality of the extractec
skeleton. It also requires that the object can be well reprtes!
by its skeleton. Some objects in the MPEG-7 dataset, such ¢
the “device” classes shown in FIg.]11, are not suitable te&pe r
resented by skeletons. In this case, our SSC descriptomnddes

perform well. We have applied our SSC descriptor to the shape

retrieval framework of “Shape Vocabularﬂ [6] and test ittbe

Fig. 11. Each row represents four shape examples from one kihof “de-
vice” class in the MPEG-7 dataset. The skeleton of each shajsevisualized

MPEG-7 dataset. Unfortunately, we do not see the performanay black curves. The envelope contour of the shapes in eachwaare simi-
increase. This may be another reason why our method does niet while their skeletons are totally different.



5. Conclusion [17]

In this paper, we present a novel shape representationicalle
BSCP, which combines contour and skeleton in a principal wa)llg]
Thisis achieved through the adoption of a novel low-levakeh 1,4,
descriptor, the SSC, which is able to make full use of the nat-
ural correspondence between a contour and its skeletod Bof20]
the normalization step and SPM are adopted to ensure that Ot'érll
method is €ective and accurate, without losing the invariance
to rotation. We have tested BSCP in many benchmarks, and thez]
results lead to a conclusion that our method has achieved the
state-of-the-art performance. Parameter discussiosdscine
as a reference for other researchers. In the future, we wvil f
ther study how to apply BSCP to recognize objects in naturalk4]
images, which requires reliable object contour deteciBfj [
and symmetry detectioh [36].
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