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ABSTRACT

We propose a method for automated synchronization of vehicle sensors useful for the study of multi—
modal driver behavior and for the design of advanced driver assistance systems. Multi-sensor decision
fusion relies on synchronized data streams in (1) the offline supervised learning context and (2) the
online prediction context. In practice, such data streams are often out of sync due to the absence of
a real-time clock, use of multiple recording devices, or improper thread scheduling and data buffer
management. Cross-correlation of accelerometer, telemetry, audio, and dense optical flow from three
video sensors is used to achieve an average synchronization error of 13 milliseconds. The insight un-
derlying the effectiveness of the proposed approach is that the described sensors capture overlapping
aspects of vehicle vibrations and vehicle steering allowing the cross-correlation function to serve as a
way to compute the delay shift in each sensor. Furthermore, we show the decrease in synchronization

error as a function of the duration of the data stream.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Large multi-sensor on-road driving datasets offer the promise
of helping researchers develop a better understanding of driver
behavior in the real world and aid in the design of future
advanced driver assistance systems (ADAS) (Fridman and
Reimer, 2016; [Reimer, 2014). As an example, the Strate-
gic Highway Research Program (SHRP 2) Naturalistic Driv-
ing Study includes over 3,400 drivers and vehicles with over
5,400,000 trip records (Antin, 2011) that contains video,
telemetry, accelerometer, and other sensor data. The most inter-
esting insights are likely to be discovered not in the individual
sensor streams but in their fusion. However, sensor fusion re-
quires accurate sensor synchronization. The practical challenge
of fusing “big data”, especially in the driving domain, is that it
is often poorly synchronized, especially when individual sensor
streams are collected on separate hardware (Meeker and Hongl
2014). A synchronization error of 1 second may be deemed
acceptable for traditional statistical analyses that focus on data
aggregated over a multi-second or multi-minute windows. But
in the driving context, given high speed and close proximity to
surrounding vehicles, a lot can happen in less than one second.
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We believe that the study of behavior in relation to situationally
relevant cues and the design of an ADAS system that supports
driver attention on a moment-to-moment basis requires a max-
imum synchronization error of 100 milliseconds. For example,
events associated with glances (e.g., eye saccades, blinks) of-
ten occur on a sub-100-millisecond timescale (McGregor and
Stern, [1996).

Hundreds of papers are written every year looking at the cor-
relation between two or more aspects of driving (e.g., eye move-
ment and steering behavior). The assumption in many of these
analyses is that the underlying data streams are synchronized or
aggregated over a long enough window that the synchronization
error is not significantly impacting the interpretation of the data.
Often, these assumptions are not thoroughly tested. The goal of
our work is to motivate the feasibility and the importance of au-
tomated synchronization of multi-sensor driving datasets. This
includes both “one-factor synchronization” where the passive
method is the primary synchronizer and “two-factor synchro-
nization” where the passive method is a validator of a real-time
clock based method engineered into the data collection device.

For the passive synchronization process, we use two event
types: (1) vehicle vibration and (2) vehicle steering. These
event types can be detected by video, audio, telemetry, and
accelerometer sensors. Cross-correlation of processed sensor
streams is used to compute the time-delay of each sensor pair.



We evaluate the automated synchronization framework on a
small dataset and achieve an average synchronization error of
13 milliseconds. We also characterize the increase in accuracy
with respect to increasing data stream duration which motivates
the applicability of this method to online synchronization.

The implementation tutorial and source code for this work is
available at: http://lexfridman.com/carsync

2. Related Work

Sensor synchronization has been studied thoroughly in the
domain of sensor networks where, generally, a large number of
sensor nodes are densely deployed over a geographic region to
observe specific events (Sivrikaya and Yener, 2004; Rhee et al.}
2009). The solution is in designing robust synchronization pro-
tocols to provide a common notion of time to all the nodes in
the sensor network (Elson et al., |2002). These protocols rely
on the ability to propagate ground truth timing information in
a master-slave or peer-to-peer framework. Our paper proposes
a method for inferring this timing information from the data it-
self, in a passive way as in (Olson, |2010). This is only possible
when the sensors are observing largely-overlapping events. Our
paper shows that up-down vibrations and left-right turns serve
as discriminating events in the driving context around which
passive sensor synchronization can be performed.

The main advantage of passive synchronization is that it re-
quires no extra human or hardware input outside of the data
collection itself. As long as the sensors observe overlapping
aspects of events in the external environment, the data stream
itself is all that is needed. The challenge of passive synchro-
nization is that sensors capture non-overlapping aspects of the
environment as well. The overlapping aspects are the “signal”
and the non-overlapping aspects are the “noise”. Given this
definition of signal and noise, the design of an effective passive
synchronization system requires the use of sensor pairs with
low signal-to-noise ratio.

Despite its importance, very little work has been done on
passive synchronization of sensors, especially in the driving
domain. This general problem was addressed in (Zaman and
[llingworth, 2004)) using an interval-based method for odometry
and video sensors on mobile robots. Their approach uses semi-
automated and sparse event extraction. The event-extraction
in this paper is densely sampled and fully automated allowing
for higher synchronization precision and greater robustness to
noisy event measurements. The pre-processing of video data
for meaningful synchronizing event extraction was performed
in (Plotz et al., [2012) for gesture recognition. We apply this
idea to video data in the driving context using dense optical
flow.

Optical flow has been used in the driving domain for object
detection (Batavia et al.l [1997) and image stabilization (Gia-
chetti et al.,|1998). Since then, dense optical flow has been suc-
cessfully used for ego-motion estimation (Grabe et al.| 2015)).
We use the ability of optical flow to capture fast ego-motion
(i.e., vibration) for the front camera and scene vibration for the
face and dash cameras in order to synchronize video data with
accelerometer data. Flow-based estimation of ego-rotation is
used to synchronize front video and steering wheel position.
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The advantages and limitations of using passive synchro-
nization in the driving context based on vibration and steering
events can be summarized as follows:

Advantages:

e Requires no manual human annotation before, during, or
after the data collection.

e Requires no artificially created synchronizing events (e.g.
clapping in front of the camera).

e Requires no centralized real-time clock, and therefore does
not require that the individual data streams are collected on
the same device nor that the devices are able to communi-
cate. So, for example, a few GoPro camcorders can be
used to record dash, road, and face video separately and
the synchronization step can then be performed after the
videos are offloaded from the cameras.

o Given the above three non-requirements, this approach can
operate on large driving datasets that have already been
collected in contexts where synchronization was not engi-
neered into the hardware and software of the data collec-
tion system.

e Can be used as validation for a centralized data collec-
tion system based on a real-time clock. If possible, syn-
chronization should always be engineered into the system
through both its hardware and its software before the data
collection begins. Therefore, in a perfect world, the main
application of our passive synchronization approach is for
a second-factor validation that the final dataset is synchro-
nized.

Limitations:

e Requires a large amount of driving data (30+ minutes in
our case) to achieve good synchronization accuracy. The
data duration requirement may be much larger for road
surfaces with low roughness indices and driving routes
with limited amount of steering (e.g. interstate highway
driving).

e Synchronization accuracy may be affected by the position-
ing of the sensors and the build of the vehicle.

e Offers no synchronization accuracy guarantees such as
bounds on the performance relative to the duration of the
driving dataset.

e Has not been evaluated on large multi-vehicle on-road
datasets that contain thousands of driven miles (e.g., SHRP
2 (Antin| 2011)). This is a limitation of this paper and
not the approach itself. Future work that evaluates this
approach on a larger dataset can remove this limitation
and provide a more conclusive characterization of where
this passive synchronization method succeeds and where
it fails.
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Fig. 1: The instrumented vehicle, cameras, and single-board computer used for collecting the data to validate the proposed syn-
chronization approach. The shotgun microphone was mounted behind the right rear tire. The face camera was mounted off-center
of the driver’s view of the roadway. The dashboard camera was mounted in the center of the cabin behind the driver to include a
view of the instrument cluster, center stack, and the driver’s body. The forward roadway camera was mounted to the right of the
rearview mirror as close to the center line of the vehicle as possible (i.e. next to the OEM interior upper windshield enclosure). The
IMU sensor was on the data collection device that was placed behind the driver’s seat.
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Fig. 2: Snapshot from a 30 fps video visualization of a synchronized set of sensors collected for the 37 minute experimental run
used throughout the paper as an example. The plots show a 10 second window around the current moment captured by the three
cameras, the dense optical flow of the front video, and the GPS location on a map in the other subfigures. Full video is available
online at: http://lexfridman.com/carsync



3. Dataset and Sensors

In order to validate the proposed synchronization approach
we instrumented a 2014 Mercedes CLA with a single-board
computer and consumer-level inexpensive sensors: 3 webcams,
a shotgun microphone behind the rear tire, GPS, an IMU mod-
ule, and a CAN controller for vehicle telemetry. The instru-
mented vehicle is shown in Fig. 1| Details on the positioning of
the sensors are provided in the figure’s caption. Through empir-
ical testing we found that small changes in the position of the
sensors did not have any noticeable impact on synchronization
accuracy.

The collection of data was performed on 5 runs, each time
traveling the same route in different traffic conditions. The du-
ration of each run spanned from 37 minutes to 68 minutes. Un-
less otherwise noted, the illustrative figures in this paper are
based on the 37 minute run.

Three manual synchronization techniques were used on each
run to ensure that perfect synchronization was achieved and
thus can serve as the ground truth for the proposed automated
synchronization framework:

1. The same millisecond-resolution clock was placed in front
of each camera at the beginning and end of each run. This
allowed us to manually synchronize the videos together.

2. We clapped three times at the beginning and the end of the
each run. This was done in front of the camera such that
the tire microphone could pick up the sound of each clap.
This allowed us to manually synchronize the audio and the
video.

3. We visualized the steering wheel (see Fig. [2) according
to the steering wheel position reported in the CAN and
lined it up to the steering wheel position in the video of
the dashboard. This allows us to manually synchronize
video and telemetry.

A real-time clock module was used to assign timestamps to
all discrete samples of sensor data. This timestamp and the
above three manual synchronization methods were used to pro-
duce the ground truth dataset over which the evaluation in §4]is
performed.

3.1. Sensors

The following separate sensor streams are collected and syn-
chronized in this work:

e Front Video Camera: 720p 30fps video of the forward
roadway. Most of the optical flow motion in the video is of
the external environment. Therefore, vibration is captured
through ego-motion estimated by the vertical component
of the optical flow. Steering events are captured through
the horizontal component of the optical flow. See

o Dash Video Camera: 720p 30fps video of the dashboard.
This is the most static of the video streams, so spatially-
averaged optical flow provides the most accurate estimate
of vibrations.
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e Face Video Camera: 720p 30fps video of the driver’s
face. This video stream is similar to dashboard video ex-
cept for the movements of the driver. These movements
contribute noise to the optical flow vibration estimate.

e Inertial Measurement Unit (IMU): Accelerometer used
to capture the up-down vibrations of the vehicle that cor-
respond to y-axis vibrations in the video. Average sample
rate is 48 Hz.

e Audio: Shotgun microphone attached behind the right rear
tire of the vehicle used to capture the interaction of the tire
with the surface. Sample rate is 44,100 Hz and bit depth is
16.

e Vehicle Telemetry: Parsed messages from the controller
area network (CAN) vehicle bus reduced down in this
work to just steering wheel position. Sample rate is 100Hz.

A snapshot from a video visualization of these sensor streams
is shown in Fig.|2| GPS position was collected but not used as
part of the synchronization because its average sample rate is 1
Hz which is 1 to 2 orders of magnitude less frequent than the
other sensors.

3.2. Dense Optical Flow

The dense optical flow is computed as a function of two im-
ages taken at times ¢ and ¢ + Az, where At varies according to
the frame rate of the video (30 fps in the case of this paper)
and the burstiness of frames due to the video buffer size. We
use the Farneback algorithm (Farneback, [2003) to compute the
dense optical flow. It estimates the displacement field using a
quadratic polynomial for the neighborhood of each pixel. The
algorithm assumes a slowly varying displacement field, which
is a valid assumption for the application of detecting vibrations
and steering since those are events which affect the whole im-
age uniformly relative to the depth of the object in the image.
Segmentation was used to remove non-static objects, but it did
not significantly affect the total magnitude of either the x or y
components of the flow. The resulting algorithm produces a
flow for which the following holds:

I(x,y,t) = I(x + Ax,y + Ay, t + At) (1)

where I(x, y, t) is the intensity of the pixel (x, y) at time 7, Ax is
the x (horizontal) component of the flow, and Ay is the y (ver-
tical) component of the flow. These two components are used
separately as part of the synchronization. The vertical com-
ponent is used to measure the vibration of the vehicle and the
horizontal component is used to measure the turning of the ve-
hicle.

4. Synchronization Framework

Unless otherwise noted, the figures in this section show sen-
sor traces and cross correlation functions for a single 37 minute
example run. The two synchronizing event types are vibra-
tions and steering, both densely represented throughout a typi-
cal driving session.
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(a) The accelerometer, video, and audio sensors capturing the vibration of the vehicle. The x-axis is time in minutes and the y-axis is the value of
the sensor reading.
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(b) The cross-correlation functions and optimal time-delay ¢* of audio and video with respect to the accelerometer. The x-axis is the shift 7 in
and the y-axis is the magnitude of the correlation.

Fig. 3: The vibration-based synchronization for the 37-minute example run.



4.1. Cross-Correlation

Cross-correlation has long been used as a way to estimate
time delay between two regularly sampled signals (Knapp and
Carter, [1976). We use an efficient FFT-based approach for
computing the cross correlation function (Lewis|, [1995) with an
O(nlog n) running time complexity (compared to O(n?) running
time of the naive implementation):

Sxl E ) flil gli+ ] @
i=—oo
where f and g are real-valued discrete functions, ¢ is the time
shift of g, and both f and g are zero for i and i + ¢ outside the
domain of f and g respectively.
The optimal time shift 6* for synchronizing the two data
streams is computed by choosing the 7 that maximizes the cross
correlation function:

&' = argmax(f * g)[1] 3)

This optimization assumes that the optimal shift corresponds
to maximum positive correlation. Three of the sensors under
consideration are negatively correlated: (1) vertical component
of face video optical flow, (2) vertical component of dash video
optical flow, and (3) horizontal component of front video opti-
cal flow. These three were multiplied by -1, so that all sensors
used for synchronization are positively correlated.

Vibration and steering events are present in all vehicle sen-
sors, but post processing is required to articulate these events
in the data. Accelerometer and steering wheel position require
no post-processing for the cross correlation computation in (3)).
The three video streams were processed to extract horizontal
and vertical components of dense optical flow as discussed in
§3.2] The shotgun microphone audio was processed by sum-
ming the audio energy in each 10 ms increment. Several fil-
tering methods (Wiener filter, total variation denoising, and
stationary wavelet transform) under various parameter settings
were explored programmatically, but they did not improve the
optimal time shift computation accuracy as compared to cross
correlation of un-filtered sensor data.

Fig. [3]shows the sensor trace and cross correlation functions
for the z component of acceleration, the y component of dense
optical flow for the three videos, and discretized audio energy.
These data streams measure the vibration of the vehicle dur-
ing the driving session. All of them capture major road bumps
and potholes. The audio captures more complex properties of
the surface which makes vibration-based synchronization with
audio the most noisy of the five sensors. These 5 sensors can
be paired in 10 ways. We found that the most robust and least
noisy cross correlation function optimization was for the pair-
ing all sensors with the accelerometer. This is intuitive since the
accelerometer is best able to capture vibration. The resulting 4
cross correlation functions for the 37 minute example run are
shown in Fig. [3b]

Fig. f] shows the sensor trace and cross correlation function
for the x component of dense optical flow for the front video and
the position of the steering wheel. This is an intuitive pairing
of sensors that produced accurate results for our experiments in
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(a) The telemetry and video sensors capturing the steering of the ve-
hicle. The x-axis is time in minutes and the y-axis is the value of the
sensor reading.

Steering Wheel / Front Flow (X)
6 =310.0 ms

(b) The cross-correlation functions and optimal time-delay 6* of
telemetry and front video. The x-axis is the shift ¢ in () and the y-
axis is the magnitude of the correlation.

Fig. 4: The steering-based synchronization for the 37-minute
example run.
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Fig. 5: The decrease of synchronization error versus the dura-
tion of the data stream. The mean and standard deviation form-
ing the points and errorbars in the plot are computed over 5
sensor pairs and over 5 runs, each of which involved the instru-
mented vehicle traveling same route (lasting 37-68 minutes).

a single vehicle. However, since the way a vehicle’s movement
corresponds to steering wheel position depends on the sensitiv-
ity of the steering wheel, the normalizing sensor-pair delay (see
may vary from vehicle to vehicle.

4.2. Online and Offline Synchronization

Table 1: The mean and standard deviation of the optimal delay
6" in (3). The mean serves as the normalizing sensor-pair delay.
The standard deviation, in this case, is an estimate for average
synchronization error. Across the five sensor pairs listed here,
the average error is 13.5 ms.

Sensor Pair ?r\rlg;&*) Zt:ljs()é R
Accelerometer / Tire Audio  305.2 22.8
Accelerometer / Front Flow  -279.9 12.7
Accelerometer / Dash Flow  246.4 8.7

Accelerometer / Face Flow 95.0 14.2

Steering Wheel / Front Flow  312.1 9.3

Table [T] shows the results of computing the optimal delay &§*
for each sensor pairing in each of the 5 runs as discussed in
The value avg(6*)for each sensor pairing is the “normal-
izing delay”, which is an estimate of the delay inherent in the
fact that optical flow, audio energy, accelerometer, and steering
wheel position are capturing different temporal characteristics
of the same events. For example, there is a consistent delay of
just over 300ms between steering wheel position and horizontal
optical flow in the front camera. This normalizing delay is to
be subtracted from ¢* computed on future data in order to de-
termine the best time shift for synchronizing the pair of sensor
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streams. In this case, the standard deviation std(6*)is an esti-
mate of the synchronization error. For the 5 runs in our dataset,
the average error is 13.5 ms which satisfies the goal of sub-100
ms accuracy stated in

The proposed synchronization framework is designed as an
offline system for post-processing sensor data after the data col-
lection has stopped. However, we also consider the tradeoff
between data stream duration and synchronization accuracy in
order to evaluate the feasibility of this kind of passive synchro-
nization to be used in an online real-time system. Fig. [5|shows
the decrease in synchronization error versus the duration of the
data stream. Each point averages 5 sensor pairings over 5 runs.
While the duration of each run ranged from 37 to 68 minutes,
for this plot we only average over the first 37 minutes of each
run. The synchronization error here is a measurement of the
difference between the current estimate of 6* and the one con-
verged to after the full sample is considered. This error does
not consider the ground truth which is estimated to be within
13.5 ms of this value. Data streams of duration less than 8 min-
utes produced synchronization errors 1-2 orders of magnitude
higher than the ones in this plot. The takeaway from this trade-
off plot is that an online system requires 10 minutes of data to
synchronize the multi-sensor stream to a degree that allows it to
make real-time decisions based on the fusion of these sensors.

5. Conclusion

Analysis and prediction based on fusion of multi-sensor driv-
ing data requires that the data is synchronized. We propose a
method for automated synchronization of vehicle sensors based
on vibration and steering events. This approach is applicable
in both an offline context (i.e., for driver behavior analysis)
and an online context (i.e., for real-time intelligent driver as-
sistance). We show that a synchronization error of 13.5 ms can
be achieved for a driving session of 35 minutes.
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