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ABSTRACT

This paper presents a methodology to address lexical disambiguation in a standard phrase-based sta-
tistical machine translation system. Similarity among source contexts is used to select appropriate
translation units. The information is introduced as a novel feature of the phrase-based model and it is
used to select the translation units extracted from the training sentence more similar to the sentence
to translate. The similarity is computed through a deep autoencoder representation, which allows to
obtain effective low-dimensional embedding of data and statistically significant BLEU score improve-
ments on two different tasks (English-to-Spanish and English-to-Hindi).

(© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Source context is usually very relevant when translating
texts. However, standard phrase-based statistical machine
translation (SMT) systems use a source context limited to the
words that compose the translation units. The source-context
information becomes specially necessary when translating from
different domains. Also, the source-context information is im-
portant when the source language has source words with the
same form (spelling) that can be translated into a different form
target words.

Addressing the two different motivations, source context in-
formation has been introduced in the phrase-based system from
different perspectives: lexical semantics or topic adaptation
(Section 2). The former uses different classification techniques
to decide the meaning of words with multiple translations. The
latter explore different topic feature functions.

In this paper, we propose to enhance the context-awareness
of translation units by taking into account the semantic con-
text provided by the source sentence to be translated (Section
3). This allows to introduce a new feature function for each
translation unit that informs about the similarity of the input
sentence to be translated with the source sentence from which
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the translation unit was extracted from. The methodology pro-
posed and evaluated in this work is based on the source con-
text similarity approach presented in (Banchs and Costa-jussa,
2011) that use latent semantic analysis (LSA) to compute sim-
ilarity among different contexts. Different from that work, we
introduce the use of auto-encoders to construct a deep represen-
tation of sentences in a reduced space before computing simi-
larities among sentences (used as source context of the trans-
lation units). Our algorithm was tested in the international
evaluation of the Workshop on Statistical Machine Translation
2014 (Costa-jussa et al., 2014). We evaluate the use of fea-
tures learned by deep autoencoders as the modelling frame-
work for assessing semantic similarity among sentences (Sec-
tion 4). Deep learning has shown to outperform compared to
other generative models like the already mentioned LSA (Hin-
ton and Salakhutdinov, 2006) and LDA (Salakhutdinov and
Hinton, 2009; Srivastava et al., 2013). After the introduction of
the unsupervised pretraining (Hinton and Salakhutdinov, 2006;
Erhan et al., 2010), deep autoencoders, used in this work to
estimate similarity between sentences in the contextual latent
space, can efficiently be trained. Deep learning algorithms im-
plemented using GPUs are highly scalable. Domain adaptation
for already trained model, which is an important issue of con-
textual similarity methods, can very effectively be handled with
deep learning methods Glorot et al. (2011); Bengio (2012). For
similar methods like LSA, the context matrix has to be factor-
ized from the scratch for the adaptation. With this methodology,



the goal is to improve the translation output in terms of lexical
selection.

Experiments on standard data collections for English-
Spanish and English-Hindi translation tasks show the proposed
method performs significantly (statisticallly) better than the
baselines (Section 5). We also present a thorough analysis and
scalability aspects of the proposed method.

The rest of the paper is organized as follows. Section 2 re-
ports an overview of the related work on introducing source
context information and using deep learning in standard SMT
systems. Section 3 presents how the phrase-based model is ex-
tended with source context information. Section 4 explains the
deep representation of sentences, which is used to better com-
pute similarities among source contexts. Section 5 describes
the experiments where we proof the relevance of the technique
and section 6 concludes.

2. Related Work

Since the main novelty of this paper is adding source context
knowledge by means of deep learning techniques in a standard
phrase-based SMT system, we give an overview of some rele-
vant works (without aiming at completeness) in this area.

2.1. Adding source context in SMT

As mentioned in the previous Section, addressing the two dif-
ferent motivations, source context information has been intro-
duced in the phrase-based system from different perspectives:
lexical semantics or topic adaptation.

As lexical semantics works, Carpuat and Wu (2005) in-
troduce word sense disambiguation techniques. Bonet et al.
(2009) train local classifiers using linguistic and context infor-
mation to translate a phrase. Haque (2010) use different syntac-
tic and lexical features which are proposed for incorporating in-
formation about the neighbouring words and report a complete
state-of-the-art on introducing source context in a phrase-based
system that the reader can refer to.

From the topic adaptation perspective, works basically fo-
cus on addressing the challenge of translating in different do-
mains. For example, Banchs and Costa-jussa (2011) use latent
semantic analysis (LSA) to compute similarity among differ-
ent contexts. More recently, Chen et al. (2013) compute phrase
pair features from vector space representations that capture do-
main similarity to a development. Hasler et al. (2014) use latent
Dirichlet allocation (LDA) to compute topic feature functions.

2.2. Using Deep Learning techniques in SMT

For the last 10 years, there has been an increase of studies on
MT that use different strategies based on deep learning. What is
worth noticing is that there has been a huge explosion of works
on this topic in the last big conferences of ACL, NAACL and
EMNLP. Most of the approaches try to modify some feature or
model from an standard SMT system. Other few works propose
novel MT architectures.

First works in adding deep learning in SMT systems are
those that use continuous-space or neural language models,
e.g. Schwenk et al. (2006); Vaswani et al. (2013). Other
ones smooth bilingual language models inspired on the previ-
ous ones, e.g. Schwenk et al. (2007); Zamora-Martinez et al.

(2010) After that, Liu et al. (2013) use deep learning algorithms
to improve translation and target language modeling in MT SoA
et al. (2012); Kalchbrenner and Blunsom (2013). More recent
works use deep learning to model phrase probabilities, e.g. Cho
et al. (2014); new reordering models, e.g. Li et al. (2013); or
new different features Lu et al. (2014). Different neural ar-
chitectures to face bilingual translations have been presented
in e.g. Sundermeyer et al. (2014); Kalchbrenner and Blunsom
(2013).

2.3. Dimesionality reduction techniques for similarity estima-
tion

The field of similarity estimation in continuous space has
also advanced in the recent past. The early models based on
LSA (Dumais et al., 1988) laid the foundation for dimension-
ality reduction techniques to incorporate context in form of
correlation matrix. Same formulation was exploited by some
more advanced linear models such as oriented principle compo-
nent analysis (OPCA) (Platt et al., 2010) and S2Net (Yih et al.,
2011). The other non-linear extensions which outperform to
linear counterparts include use of deep autoencoders (Hinton
and Salakhutdinov, 2006; Srivastava et al., 2013; Gupta et al.,
2014). In this work, we exploit the deep autoencoders based
model to estimate source context similarity.

3. Extended Phrase-based Model

This section describes the standard phrase-based SMT sys-
tem and the methodology of the integration of source contexts
in this system both from the theoretical and practical point of
view.

3.1. Phrase-based SMT

Given a source string s{ = S...Sj...5; to be translated into
a target string t{ =1f...t;...1;, a phrase-based SMT system
aims to choose, among all possible target strings, the string with
the highest probability:

f= argmax P(r]]s)

4

where I and J are the number of words of the target and
source sentence, respectively. The phrase-based system seg-
ments the source sentence into segments, then translates each
segment by using phrases which contain source and target se-
quence of words (sy..5,||#1..t,,). Finally, the system composes
the target sentence. Standard implementations of the phrase-
based system use several features to give probabilities to com-
bine the relative frequencies together with the: target language
model, word and phrase bonus and source-to-target and target-
to-source lexical models and reordering model Koehn et al.
(2007).

3.2. Theoretical Integration Methodology

The idea of an extended concept of translation unit or phrase
(p) is defined by a unit of three elements: phrase-source (ps),
phrase-target (pt) and source-sentence (ss).

p = {pslliptlllss} €]



From this definition identical source-target phrase pairs that
have been extracted from different training sentences (or source
sentences) are regarded as different translation units. According
to this, the relatedness of contexts can be considered as an ad-
ditional (hereinafter, source-context) feature function (scf) for
each phrase and input sentence.

p = {pslliptliscf} @

The source-context feature function consists of a similarity
measurement between the input sentence to be translated and
the source context component of the available translation units
as illustrated in Fig. 1.

S1: the hotel did not book more rooms

T1: el hotel no reservaba mas habitaciones

S2: everybody wants to write a book about himself

T2: todo el mundo quiere escribir un libro sobre si mismo

Input: i am reading a nice book

S2
_..w Input

book : libro \/

book :
%1 ook : reservar ><

Fig. 1. Illustration of the proposed similarity feature to help choosing trans-
lation units.

This scf is included for each phrase in addition to the stan-
dard feature functions, i.e. conditional (cp) and posterior
(pp) probability, lexical weights (1, [2) and phrase bonus (pb).
Therefore, we are extending the phrases.

p = {psliptlilcp, pp, 11,12, pb, scf} 3

This schema is similar to previous work with Banchs and Costa-
jussa (2011). Differently from the previous work, for comput-
ing similarities between the input sentence to be translated and
the original sentences, we compute a cosine distance between
the deep representation of sentences, which is explained in Sec-
tion 4.

3.3. Practical Integration Implementation

The source-context feature function is dynamic because it de-
pends on the input sentence to be translated. At the moment,
this feature function is integrated in the standard phrase-based
SMT system as described by the following procedure.

Fig. 2 shows the procedure for implementing the source-
context feature function. For each training (¢s) and validation
(vs) (either development or test) sentence, we compute the sim-
ilarity measure and build the similarity matrix (W) between the
training and the validation set. Then, for each sentence in the
validation set (vs,) we extract a phrase list (P,) that can be

Ty = M training sentences (7s)
Vi = N validation sentences (vs)
for each rs,, € Ty
for each vs, € Vy
Won = w (tSp, vs,) = similarity(ts,,, vs,)
end for
end for
for each vs, € Vy
P, = Phrase List € T, used for decoding
p = Phrase Entry ||| ts,, € P,
for each p e P,

P plll Wi
end for
translate vs, with P;
end for

Fig. 2. Source-context feature implementation algorithm.

used for decoding. Each phrase entry (p) in the phrase list is
an extended translation unit that contains the training sentence
(ts,) from which it was extracted. Then, the phrase entry is
assigned the corresponding source-context similarity from ma-
trix W between vs, and ts,,, which is position W,,,. Finally,
each sentence in the validation set vs,, is translated with its cor-
responding extended phrase table (P}) that now includes the
source-context feature. The flow of the system is depicted in
Fig. 3.

4. Deep Representation of Sentences

We represent the sentences in a latent space through non-
linear dimensionality reduction technique. Our method is based
on the deep autoencoder architecture which allows to obtain ef-
fective low-dimensional embeddings of text data. The autoen-
coder is a network which tries to learn an approximation of the
identity function so as the output is similar to input. The input
and output dimensions of the network are the same (n). The
autoencoder approximates the identity function in two steps: i)
reduction, and ii) reconstruction. The reduction step takes the
input v € R" and maps it to h € R™ where m < n which can be
seen as a function h = g(v) with g : R” — R™. On the other
hand, the reconstruction step takes the output of the reduction
step h and maps it to ¥ € R” in such a way ¥ = v which is
considered as a v = f(h) with function f : R"™ — R”". The full
autoencoder can be seen as f(g(v)) = v.

In a neural network based implementation of the autoen-
coder, the visible layer corresponds to the input v and the hid-
den layer corresponds to h. When the m is sufficently small the
autoencoder is able to derive powerful low-dimensional repre-
sentation of data in the latent space Hinton and Salakhutdinov
(2006). There are two variants of autoencoders: i) with a sin-
gle hidden layer, and ii) with multiple hidden layers. If there is
only one single hidden layer, the optimal solution remains the
PCA projection even with the added non-linearities in the hid-
den layer Bourlard and Kamp (1988). The PCA limitations are
overcome by stacking multiple encoders, constituting what is
called a deep architecture. This deep construction is what leads
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Fig. 3. Workflow of the system.

to a truly non-linear and powerful reduced space representa-
tion Hinton and Salakhutdinov (2006). The deep architecture is
constituted by stacking multiple restricted boltzmann machines
(RBM) on top of each other.

Let visible units v € {0, 1}" be binary bag-of-words repre-
sentation of text documents and hidden units h € {0, 1} be
the hidden latent variables. The energy of the state {v,h} is as
follows,

n m

E(v,h) = — Z av; - Z bjhj— ) vihjwi;

i=1 Jj=1 i,j

“)

where v;, h; are the binary states of visible unit i and hidden unit
J» ai, bj are their biases and w;; is the weight between them.

Then, it becomes easy to sample the data in both directions
as shown below,

pvi = 1) = (g + ) hjWyy) &)

J

plhy = 1V) = b+ Y viWyy) ©)

where o(x) = 1/(1 + exp(—x)) is the logistic sigmoid function.
The architecture of the autoencoder is shown in Fig. 4. La-
tent space representation hﬁz) for a sentence s can be obtained
as shown in Eq. 6. The sentences in the latent space can be
compared by means of cosine similarity as shown below:

w(sl, 52) = cosine(h? vy, h|v,0)

)

5. Experiments

This section describes the experimental framework used to
test the introduction of deep context features in a standard
phrase-based SMT system.

We report details on the data sets used, the baseline system,
the training of the deep structure from which similarities among
sentences are extracted, the improvements of our technique in
terms of BLEU score Papineni et al. (2002) and, finally, the
scalability of the technique.

5.1. Data Sets and Baseline

We used an English-to-Spanish parallel corpus extracted
from the Bible, which is publicly available and constitutes an
excellent corpus for experimenting with and testing the pro-
posed methodology as it provides a rich variety of contexts.
The corpus contains around 30,000 sentences of training with
around 800,000 words, and 500 sentences each development
and test sets. Additionally, as a larger data set, we used an
English-to-Hindi corpus available from WMT 2014 Bojar et al.
(2014). The training sentences are 300,000 sentences, with
3,500,000 words, 429 sentences of development and 500 sen-
tences of test. Our baseline system is a standard state-of-the-art
phrase-based built using Moses toolkit Koehn et al. (2007). We
used the following options to train the system, which include:
grow-diagonal-final-and word alignment symmetrization, lex-
icalized reordering, relative frequencies (conditional and pos-
terior probabilities) with phrase discounting, lexical weights
and phrase bonus for the translation model (with phrases up
to length 10), a 5-gram language model using Kneser-Ney
smoothing and a word bonus model. In order to further com-
pare our technique we built a contrastive system with a context
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Fig. 4. The architecture of the autoencoder. (a) deep formation of stacked RBMs. (b) Unrolling during the fine-tuning.

feature based on LSA Banchs and Costa-jussa (2011) as another
baseline. The systems were computed on a 2Intel Xeon E52670
v3 2,3Ghjz 12N processors server.

5.2. Autoencoder training

To model the sentences in the autoencoder framework we
consider the vocabulary after removing the least frequent terms
which appear in less than k sentences in the training partition of
the dataset. We remove the stopwords and apply stemmer. For
Bible and WMT14 dataset, the considered vocabulary sizes (1)
are 3543 (k=5) and 7299 (k=20) respectively !.

The autoencoder was first pretrained using Contrastive Di-
vergence (CD) with step size 1 (Hinton, 2002). Minibatches of
size 20 and 100 were used during pretraining and fine-tuning re-
spectively. The architecture of the autoencoder was n-500-128-
500-n 2 as shown in Figure 4. Weight decay was used to pre-
vent overfitting. Additionally, in order to encourage sparsity in
the hidden units, Kullback-Leibler sparsity regularization was
used. We used GPU? based implementation of autoencoder to
train the models which took around 45 minutes for Bible dataset
while around 4.5 hours for WMT 14 dataset.

5.3. Latent Semantic Analysis

LSA basically performs singular value decomposition of the
sentence-term matrix D in the lines of principal component
analysis (PCA) (Dumais et al., 1988). LSA obtains top k prin-
cipal components of D which is considered as projection space
and sentences are compared in this space. The inherent idea is
semantically similar terms (dimensions of D) will correspond to
similar latent components and these sentences are near to each
other in the reduced comparison space.

This method can also be looked as eigenproblem which is
formulated as below:

®

CVj :/lej,

I'The value of k is decided considered from the size of the dataset and the
size of vocabulary

ZDifferent architectures were tried with a rule of higher layers not larger than
the previous layers (because of sparsity in the data) but no statistical difference
in results was observed. We also tried three layers n-500-250-128-250-500-n
which produced worse results, so we did not go beyond 3-layers.

3NVIDIA GeForce GTX Titan with Memory 6 GiB and 2688 CUDA cores

where, A; is the j™ largest eigenvalue, v ; 18 corresponding
eigenvector and C is correlation matrix (D7 D). LSA uses top k
eigenvectors for projection.

5.4. Results

Table 1 shows the improvements in terms of BLEU Papineni
et al. (2002) of adding deep context over the baseline system for
English-to-Spanish (En2Es) and English-to-Hindi (En2Hi), re-
spectively over development and test sets. Note that the En2Es
quality is higher than En2Hi because the former is an easier
translation task than the latter and with a higher training cor-
pus. As shown in the Tables, the proposed method performs
significantly better than the baseline and than the LSA method
for both translation tasks consistently.

En2Es En2Hi
Dev Test Dev Test
baseline | 36.81 37.46 9.42 14.99
+LSA 37.20* 37.84* 9.83* 15.12F
+Deep | 37.28*7 | 38.19*" | 10.40*T | 15.43*

Table 1. BLEU scores for En2Es and En2Hi translation tasks. * and
depicts statistical significance (p-value<0.05) wrt Baseline and LSA respec-
tively.

It can be noticed that the results from En2Es and En2Hi are
consistently improved. We can argue that both Hindi and Span-
ish have a higher vocabulary variation compared to English,
with richer morphology. The benefits of adding source-context
information are better reflected in cases where the source phrase
can have various target word translations. The improvements in
translation proves that the deep representation helps finding the
adequate contextual similarities among training and test sen-
tences. BLEU scores show improvement over all tasks and
translation directions. Further analysis of the translation out-
puts presented in Table 2 using ASTYA # shows some examples
of how the translation is improved in terms of lexical selection
which is the goal of the methodology presented in the paper.
Examples are shown in Table 2.

In Table 3, we further analyse why our method improves. It
can be noticed in the Table 3 that the most probable sense of

“http://www.asiya.lsi.upc.edu



System Translation

Source but he brake the bands

Baseline pero él rompid las tropas

+Deep pero €l rompi6 las cuerdas
Reference | pero €l rompi6 las ataduras
Source soft cry from the depth

Baseline | MEYTSAT & TATIH T AT
+Deep TEYTSAT § JAT9H 9|
Reference TI%TI?@' T e e

Table 2. Manual analysis of translation outputs. Adding the deep feature
allows for a more adequate lexical selection.

co | pp | sef
bandsl|||tropas | 0.31 | 0.17 | 0.01
bands|||cuerdas | 0.06 | 0.07 | 0.23
cryl|[XTT 0.23 | 0.06 | 0.85
cry||[<reE 0.15 | 0.04 | 0.90

Table 3. Probability values a phrase-based system) for the word bands and
two Spanish translations; and the word cry a nd two Hindi translations.

bands in our considered dataset is tropas, which literally means
“troups”. The idea of the proposed source-context feature is
to use the contextual similarity between the input sentence (IN)
and the sentences in the training set as an additional source of
information used during decoding. Therefore, given the entire
input sentence: And he was kept bound with chains and in fet-
ters ; and he brake the bands, the method is be able to infer
the correct sense for the word bands (i.e. in this case cuer-
das, which literally means “ropes”, a synonym of the reference
ataduras, which literally means “tying with ropes”) by consid-
ering its similarity to the training sentences: (S1) and the lord
sent against him bands of the chaldees , and bands of the syr-
ians and (S2) they shall put bands upon thee , and shall bind
thee with them. In this case, w(s2, in) > w(sl, in) as seen in Ta-
ble 3. Similarly, in the Hindi example, the most frequent sense
of word cry is TIFT, which literally means “to cry” while the
example in Table 2 refers to the sense of cry as ST, which
means to scream. Our method could identify the context and
hence the scf' (CryIIIEﬁ'@') > scf (crylll'{:I?T).

This source-context feature is capable of choosing better
translation units given the context but only if the correct trans-
lation has been seen in the training data.

5.5. Scalability

There are two components of this method: i) Incorporation
of source-context features during the tuning phase of MT and
projection of training sentences in the latent space; and ii) sim-
ilarity estimation of the input sentence with the training sen-
tences in the latent space. The former step is computationally
expensive but being one-time and offline, it is not a big con-
cern. While the similarity estimation is online, it can be very
efficiently computed using multi-cores CPU or GPU as it is es-
sentially a matrix multiplication. However, we plan to further
integrate this similarity estimation in the translation decoding.

6. Conclusions

This work has shown a novel methodology exploiting deep
representation techniques to effectively include a deep learn-
ing based contextual similarity estimation method which han-
dles source context and its incorporation in the end-to-end SMT
system.

The proposed method shows statistically significant improve-
ments compared to the strong baseline systems in English-to-
Spanish and English-to-Hindi translation tasks.

Manual analysis clearly illustrates the advantages in choos-
ing the appropriate translation unit taking into account the in-
formation of the input sentence context and the deep relation
with the training sentences.

The presented method also scales during the run-time.

Interesting further work would be to include shorter contexts,
experiment with deeper auto-encoders and better integrate the
dynamic feature into translation decoding. Also, to speed-up
search we could divide the feature space in chunks and search
hierarchically, perform clustering or use kd-trees.
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