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Clothing and Carrying Condition Invariant Gait Recognitio n based on Rotation Forest

Sruti Das Choudhury, Tardi Tjahjadi

School of Engineering, University of Warwick Gibbet Hill Rd, Coventry, CV4 7AL, United Kingdom.
Abstract
This paper proposes a gait recognition method which is iamito maximum number of challenging factors of gait redtign
mainly unpredictable variation in clothing and carryinghddions. The method introduces an averaged gait key-pinasge
(AGKI) which is computed by averaging each of the five keyg#saof the gait periods of a gait sequence. It analyses thelAGK
using high-pass and low-pass Gaussian filters, each atdhre#f frequencies to achieve robustness against unpredictabiéion
in clothing and carrying conditions in addition to other agate factors, e.g., walking speed, segmentation ndiselasvs under
feet and change in hair style and ground surface. The optiotadff frequencies of the Gaussian filters are determined based
on an analysis of the focus values of filtered human subjsiitisuettes. The method applies rotation forest ensenablgning
recognition to enhance both individual accuracy and dityekgithin the ensemble for improved identification rate. té&nsive
experiments on public datasets demonstrate fifxgaey of the proposed method.

Keywords:Gait averaged gait key-phase image, Gaussian filter, faglug yrotation forest ensemble classifier.

1. Introduction

Gait recognition plays a significant role in visual sunagilte as it enables human identification at a distance usingekolution
video sequences. However, variation in view, clothing aaudtied items bring main challenges to any shape-analysiscgait
recognition method, as these factors considerably dithershape of a silhouette. Human identification based onigjaitso
adversely fected by variation in walking speed, shadows under feetpaesknce of occluding objects.

Gaussian filter is a band-pass filter, i.e., a combinatiomwphss Gaussian filter (Lp-Gf) and a highpass Gaussian (fler
Gf) [8]. This paper introduces a gait recognition methodeldlasn filtering which involves a Lp-Gf and a Hp-Gf atfférent
cut-of frequencies to achieve invariance to unpredictable varidm clothing and carrying conditions in addition to otlcewvariate
factors, namely, variation in walking speed, segmentatimise, missing and distorted frames, change in groundeigfad hair
style, shadows under feet and occlusions. Lp-Gf causesthingoor blurring of a silhouette and thus reduces noise. h&s t
cut-of frequency of the Lp-Gf decreases, there is a gradual losswfdary and exterior region. Thus, the application of Lp-Gf
with decreasing cutd frequencies gradually highlights the characteristicsnokr part of a silhouette towards its central region
more than its boundary, enabling the proposed method t@eehobustness against tight versus loose clothing, arllictptype

variation. It also reduces théfect of shape distortions at the silhouette boundary due &l g@rried items. The use of Hp-Gf at
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the same cut4d frequencies retains the boundary and the exterior partsitti@uette more than the central part, thus highlighting
the boundary characteristics of the silhouettes. Thusyabkes improved inter-subject discrimination in the albsesf change in
covariate factors. The cutidfrequencies of the Gaussian filters for optimal performareedetermined experimentally based on
an analysis of the focus values of the silhouettes.

Several state-of-the-art gait recognition methods [4,32 Analyse the dynamic afat static gait characteristics of silhouettes
or the extreme outer boundary of silhouettes, i.e., costobia gait sequence for identifying a human subject. Theopadnce of
these methods largely depends on the correctness of thgroackd segmentation techniques, presence of occludimgij the
scene and shadows under feet, as these factors consideeadtynine the quality of the silhouettes and the extracvedowrs. In
addition, analysing all the silhouettes of a gait sequendiidually, increases computation time and requires nstoyeage space.
[11] thus introduced a novel concept of gait energy imagel]@fich is formed by averaging all the silhouettes of a gaitipd to
capture spatio-temporal gait characteristics in a simggie to facilitate noise-resilient gait feature extrattioreduced space and
time complexity. However, since GEI averages all the siéttas of a gait period, it does not preserve the importatindis/e gait
characteristics of dierent phases of a gait period. To overcome this limitatibis, paper introduces an averaged gait key-phase
image (AGKI) by averaging key-phases of the gait periods exgait sequence.

It has been experimentally shown in [12] that the random paits method outperforms other ensemble classificationatdgth
e.g., bootstrapping [2] and Adaboost [6], in the case of lghensionality of the feature space for a small number ofegal
samples. The gait recognition method in [10] demonstratatrandom subspace ensemble classifier method providesvath
gait recognition rate byfeectively avoiding overfitting due to high dimensionalitytbke feature space compared to the available
number of gallery samples, which are often recorded at acpéat walking condition. Random subspace method comhiines
identification rates of the component classifiers assatiaith the randomly selected independent feature subsetsransions
smaller than the original feature space using majorityngppiolicy, and significantly outperforms single classifiergy., nearest
neighbour (NN), support vector machine and Bayesian ¢lesgi gait recognition.

Relying on the basic principle of random subspace methadnthin motivation of introducing the rotation forest ensémb
classifier in [21] is to simultaneously encourage membegmdities and individual accuracy within a classifier ensemalthough
the superiority of random forest over bagging and AdaBoastlheen demonstrated on 33 datasets from the UCL repogitory i
[21] and three widely used datasets, i.e., NASAs Airborngible Infra-Red Imaging Spectrometer, Reflective Opticst&y
Spectrographic Imaging System, and Digital Airborne Imggbpectrometer for hyperspectral image classificatior28j, [its
efficacy has yet to be explored in gait recognition. Thus, thepagroduces the use of rotation forest ensemble classifigait

recognition, and experimentally demonstrates its supgyrito random subspace method in this field by simultangoerstouraging



individual accuracy and diversity within the ensemble iditidn to overfitting avoidance.
The rest of the paper is organized as follows. Section 2 digsirelated works and Section 3 presents the proposeddnetho

Section 4 presents the experimental results, and Section@ules the paper.

2. Related work

Various markerless gait recognition methods (model-basednodel-free) have been proposed in the literature taeadame
or more covariate factors of gait. Model-based methods,(Eld@, 23, 9]) use a structural model to measure time-vargait
parameters, e.g., gait period, stance width and stridellengd a motion model to analyse the kinematical and dyrelmiotion
parameters of the subject, e.g., rotation patterns of hiitlaigh, and joint angle trajectories, to obtain gait sigmes. The model-
free gait recognition methods in [4, 3, 27] analyse the dyinandor static gait characteristics of silhouettes or the ex&reuter
boundary of silhouettes, i.e., contours of a gait sequembe. performance of these methods largely depends on thectoess
of the background segmentation techniques, presence hfdieg objects in the scene and shadows under feet, as thetwed
considerably determine the quality of the silhouettes &edeitracted contours. In addition, analysing all the si#ttes of a gait
sequence individually, increases computation time andiregimore storage space. Hence, the introduction of GEI Hifice then
many promising model-free gait recognition methods hawenlgoposed based on a GEl,e.g., [26, 15, 29, 24, 1, 5] to datpe
the original method of GEI.

The boundary shape distortions due to variation in clotloifihe same subject decrease the identification rate. Toresghe
method in [13] applies part-based strategy to adaptivedigasnore weight to body parts that remain fieated due to clothing
variation and less weight tafacted body parts based on a probabilistic framework. Howévis unrealistic to train the model
with all known clothing types in realistic scenario. The hwat in [14] assigns depth information to binary silhouetisig
3-dimensional (3D) radial silhouette distribution traorsfi and 3D geodesic silhouette distribution transform. hi features
extracted by radial integration transform, circular imtgpn transform and weighted Krawtchouk moments are fusgdg a
genetic algorithm (RCK-G). RCK-G is robust to limited cloth variation, but sensitive to carrying conditions.

The methods in [3, 4, 20] aim to achieve invariance to cagydonditions. The method based on spatio-temporal motion
characteristics, statistical and physical parametert/SPP) [3] analyses the shape of a contour using Procrustdgsis at the
double support phase and elliptic Fourier descriptors (D ten phases of a gait period. The method in [4] combinetemo
based and model-free approaches to analyse the spati@taimpape and dynamic motion (STS-DM) characteristicssoftgect’s
contour. A part-based EFD analysis and a component-basea&sis based on anthropometry are respectively usedih SHP

and STS-DM to achieve robustness to small carried items.niétbod in [20] uses an iterative local curve embedding #lgor
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to extract double helical signatures from the subject'dlbmaddress shape distortion due to a specific carrying tiongde.g., a
briefcase in upright position.

While existing gait recognition methods have only consdethe predefined and limited variation in clothing and dagy
conditions, the proposed method achieves robustnesssagaipredictable variation in clothing and carrying coiadis as well as

several other covariate factors.

3. Proposed method

3.1. Module 1: Feature extraction
3.1.1. AGKI formation

The normalised and centre-aligned silhouettes providettiéypublicly available datasets are used as the input gaitesees
of the proposed method for feature extraction. A gait pesiagts with the heel strike of either foot and ends with tHessguent
heel strike of the same foot and comprises two steps. Eatlinf@ogait period transits between two phases: a stance piase
the foot remains in contact with the ground and a swing phdmnwhe foot does not touch the ground. The components afestan
phase are: initial contact, mid-stance and propulsion. ddmponents of swing phase are: pre-swing, mid-swing amdinex
swing. A detailed description of these phases are provid¢8] i

The gait periods are determined from the video sequencearBlaview of the subject by the number of frames between two
frames of a gait sequence with the most foreground pixelkeed in the region bounded by bottom of the bounding red¢eemgd
the anatomical position of just before the subject’'s handsueed from the bottom (i.e., 0.377H where H is height of ihenaling
rectangle) because this foreground region, i.e., the bogEgment of the bounding rectangle is not distorted byadfusions due
to arm-swing (see Fig.3 of [4]). After estimating the gaitipd, its five key-frames (i.e., double support, midstam&lswing,
ending swing and propulsion) which capture most of the §iicanit gait characteristics, are extracted using regiemigfrest based
contour matching based on weighted Krawtchouk momentsviitig the procedure in [4].

The Krawtchouk moments of ordar ¢ m) of aN x M silhouette with intensity functiofi(x, y) are computed using the sets of

weighted Krawtchouk polynomiakén(x; p, N) andK(x; p, M) as [14]

N-1M-1

Qum= > > Kn(x pL,N = 1).Kin(y; p2, M = 1).F(x.y), @)

x=0 y=0

wheren=0,1,..,Nandm=0, 1,2, ..., M. The set of weighted Krawtchouk polynomials, i}.(x; p, N) is defined as

e _ . /W(x; p,N)
Kn(X; p, N) = Kn(X; p, N) —p(n; ") N),Where pe (0,1), (2)

_ o ap(i-p)
P pN) = ( 1)( . ) — )

and
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Fig. 1. AGKIs for di fferent phases of gait period: (a) double support; (b) midstace; (c) midswing; (d) ending swing; and (e) propulsion.

The five key-frames of a gait period are manually extractecthfOU-ISIR gait dataset and the bottom segment of the bogndin
rectangles of these key-frames are set as the referencerRefginterests (Rf-ROIs). The same silhouette segmdrdi rames
of a subject’s gait period are each referred to as a targebRag-Interest (Tr-ROI). The proposed method computeghted
Krawtchouk moments of each of the Rf-ROIs and Tr-ROIs usigdB by suitably choosing the values of N (say, ¢) and M (say d
(such that they respectively denote the width and heightebbttom segment of the bounding rectangle) of orderdusing p=
0.5. Gait sequence consists of many gait periods. Each &fyphases thus obtained from all the gait periods of a ggiience
are individually averaged to form AGKI. Thus, five AGKIs cesponding to five key-phases are obtained from a gait sequenc
shown in Fig. 1. Note that GEI averages all the frames of aggibd, and thus, does not consider the distinct gait cheniatics
at different phases of a gait period.

To automatically obtain the five key-frames of a gait peribe, Rf-ROIls are compared with the target Region-of-IntgfEs
ROI) using silhouette comparison based on weighted Krasutkimoments to obtain similarity scores [7 Sore = [(Rf-ROIknm — Tr-ROl,
where Rf-RO} and Tr-ROj . respectively denote the{d) order weighted Krawtchouk moments of the Rf-ROI and Tr-RDie
frame whose Tr-ROI results in the loweSiq e With the corresponding Rf-ROI is extracted as one of the feygfkames, and the
process continues by comparing the next Rf-ROI with the meim@ Tr-ROIs until all five key-frames are obtained.

Since the shape characteristics of the key-frames, nadmjale support, midswing and ending swing are highly distirom
each other (see Fig. 1), they are extracted very precisahy the gait sequences of the USF and OU-ISIR gait datasetsevéo,
there are some cases where the double support and proppitgieas are extracted interchangeably due to |&&selces between
them especially for the USF dataset, as the silhouettesotitliaset are noisy due to the presence of disjoint holdseitody
and shadows under feet. Also, the performance of gait pelébelction from a gait sequence depends on the precise éstima
of the bottom segment of the bounding rectangle. Based opixeécount, a gait period might be overestimated, i.e. taiming
more images after ending swing, or underestimated. If thitepgaiod is overestimated, the five key-frames are obtapertectly,
otherwise the nearest match is obtained if the exact matebtifound. Since, the AGKIs are formed by averaging the kayies
over a gait sequence, the few erroneously extracted kayefsare not significantly manifested in the AGKIs.

3.1.2. Gaussian filtering
Spatial domain filtering is computationally faster than flegquency domain filtering for small value of standard déeia

(kernel size), but its computational complexity increaasgshe size of the filter kernel increases. Whereas, the catiqal
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Fig. 2. Radial cross-section of (a) Lp-Gf and (b) Hp-Gf for diferent values of cut-df frequency.

complexity of the frequency domain filtering is independehthe kernel size. More importantly, the proposed methassus
different cut-é frequencies for Lp-gf and Hp-Gf, thus frequency domaintiittg is preferred. Fig. 2(a) and (b) respectively show
the radial cross-sections of the Lp-Gf and Hp-Gf difatent cut-df frequencies used in the method. The proposed method aralyse
AGKIs using Lp-Gf and Hp-Gf in frequency domain atférent cut-d& frequencies. The Discrete Fourier Transform (DFT) of
anM x N AGKI I(x,y) is computed. The Fourier transformed AGKI, i.BET(u, V) is translation invariant, but since it exhibits
the translational property of DFT, it is subjected to shiecation to ensure that the zero-frequency componentd #ne aentre.

To represent the inner part of a silhouette gradually tos/éineé centre more than its boundary, Lp-Gf is applied to therieo

transformed image using selected cétfcequencies, i.e.,
DFTL(u,v) = DFT(u, v)el-(“+v/20%) (4)

wheree~(+¥)/2D%) s the transfer function of Lp-Gf [8], an®F T, (u,V) denotes the image filtered using Lp-Gf at the cfit-0
frequencyD. The filtered AGKI at cut-& frequencyD in the image space is obtained by applying inverse DFT. Kay)-&) show
the AGKIs filtered by Lp-Gf with decreasing cuffdrequency, and Fig. 3(w)-(ag) show the corresponding Eospectrum. Since
Lp-Gf attenuates high frequency components, it blurs th&A&hd smooths detailed clothing curvatures at its boundasythe
cut-of frequency decreases, it results in a greater loss of boyraaal exterior regions (due to increase in blurring) to gedigu
highlight the inner shape characteristics. Gaussian fomgtin the spatial and frequency domain behave recipypdatince an
increase in standard deviation of Lp-Gf in the spatial dommasults in more blurring and vice versa [8].

To represent the boundary and exterior regions of an AGKlettwan its central part, Hp-Gf is applied to the AGKI at the eam
cut-of frequencies, i.e.,

DFTh(u,v) = DFT(u, v)(1 — e~ +v)/2D%)y (5)

where 1- e-(#+)/2D% js the transfer function of Hp-Gf with cutfofrequencyD [8]. The filtered AGKI is similarly obtained
using inverse DFT. Fig. 3(1)-(v) shows the AGKIs filtered bp4&f with decreasing cutfbfrequency and Fig. 3(ah)-(ar) show the

corresponding Fourier spectrum. Hp-Gf emphasizes thefréginency components but retains limited low frequencyponents,
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Fig. 3. Application of Lp-Gf (Row 1) and Hp-Gf (Row 2) to a AGKI from OU-ISIR dataset with decreasing cut-df frequency: (a) & (I) D1 = 20; (b) & (m)
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Fig. 4. (a) The original AGKI wearing (a) standard clothes ard (I) down jacket from OU-ISIR gait dataset. The original AGK | (w) walking on grass without
a briefcase and (ah) walking on concrete with a briefcase fim USF gait dataset. Application of Lp-Gf at at the cut-df frequenciesD; = 20,D, = 18,D3 =
16,D4 = 14,D5 = 12,Dg = 10,D7 = 8, Dg = 6, Dg = 4, D1 = 3 on the AGKIs from OU-ISIR gait dataset (row 1 and 2) and USF gét dataset (row 3 and 4).

thus making the boundary characteristics of a silhouetteerpoominent, and its application represents the exteegions of a
AGKI as the cut-& frequency decreases. We used separable kernel to reducentipaitational complexity of applying Gaussian
filters to an image of height and widthw to Owwh)+O(hwh) as opposed to @fw,wh) for a non-separable kernel, whesg
andw, respectively denote the width and height of the kernel.

Fig. 4 demonstrates the robustness of the proposed metlaatsagariation in view and surface, and the presence ofréedar
item with examples from two gait datasets, i.e., OU-ISIR gaitaset and USF HumanID gait dataset. Fig. 4(a)-(k) anf/)I)
respectively show the AGKI of a subject wearing standarthels (type 9) (gallery) and the same subject with down jagieibe)
from OU-ISIR gait dataset with their filtered versions usinqyGf at the cut-d frequencieD; = 20,D, = 18,D; = 16,D; = 14,

D; =12,D; =10,D; =8,D; = 6,D; =4, D; = 3. Similarly, Fig. 4(w)-(ag) and (ah)-(ar) respectivelpshthe AGKIs of a subject
walking on grass without a briefcase (gallery) and the sambgest carrying a briefcase walking on a concrete surfacg) from

the USF dataset with their filtered versions using Lp-Gf atsame cut-ff frequencies. It is evident from Fig.3(l) and Fig.3(ah)
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when respectively compared to Fig.3(a) and Fig.3(w), thatvariation in clothing, carrying and surface cause sigaifi shape
alterations at the boundary resulting in high intra-subjiéscrimination. The alteration decreases as the blussiirecreases, and
disappears in the last column, where there is ifi@tBnce between the gallery and its corresponding probedbj
3.1.3. Cut-gffrequency selection

The cut-df frequencies for Hp-Gf and Lp-Gf are selected based on foalisevanalysis of silhouettes. The focus value used
to measure the degree of sharpness of an image, is the maxXionahe most focused, i.e., the original silhouette. It igeirsely
proportional to the image blurriness caused by the Gaud#iaring at diferent cut-& frequencies. It has been graphically
demonstrated in [30] that the wavelet based method of campidcus value has the sharpest focus measure profile ahérig
depth resolution compared to the spatial domain based mgtkay., Tenengrad [25] and sum modified Laplacian [19] tduke
localised support property of wavelet basis. The first I@Q@IDaubechies-6 wavelet decomposition of a silhouette arfgg, y)
of sizeM x N results in four subband imagea  , Wy, Wy andWyy, wherel andH respectively denote lowpass filtered and
highpass filtered, and their order denotes the order of ttezifiy applied, e.g.Wu. is a subband image obtained by highpass

filtering followed by lowpass filtering. The focus valug\() of a silhouette is measured using [30]

N M
FV = ﬁ D7D IWHLOG W)+ WL (X V)T + W (% Y)). ()
y=0 x=0

The focus value of the original silhouette always reducelseiow 50% if it is filtered by Lp-Gf at cutfb frequencyD =
20, and decreases linearly as the blurriness increasedeftteasing cut{d frequencies. If the cut{bfrequency is decreased
further to belowD = 8, the focus value decreases abruptly. The focus value teorfinitesimally small ifD < 4, resulting in
excessively blurred silhouette without any discrimingtinformation (e.g., Fig. 3(j)-(k)). The boundary of a silleite is obtained
by the application of Hp-Gf usin® approximately in the range [18,22] for the USF dataset [&2hce the silhouette boundary
corresponds to the sharpest image, e.g., Fig. 3(I)-(mJottes value of a silhouette filtered by Hp-Gf usiDgn this range remains
the maximum which is considerably higher than the focusevaliithe original silhouette (i.e., Fig. 5(b)). With furthéecrease
in cut-of frequency, the focus value decreases linearly with a deerigasharpness of the image as the silhouette is recoresfruct
by regaining its central region. The focus value is neargnittal to that of the focus value of the original silhouétt¢he range
1 < D < 4 due to almost perfect reconstruction of the original siktte. Since the boundary as well as central shape chasticter
of a silhouette are considered separately by using Lp-GfHmdsf, it is not necessary to use cudrequencies in the range
1 < D < 4 which will increase the computational complexity. Thdls2D] is considered to be the ideal range of cfiitfrequencies.

Fig. 5 (a) and (b) respectively show the normalised focuseval.r.t. decreasing cutfofrequencies in the range [22,0] of a

silhouette filtered by Lp-Gf and Hp-Gf, where normalisedf®walues are obtained by dividing the focus values with tagimum
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Fig. 5. Normalised focus value w.r.t. decreasing cutfbfrequencies of a silhouette from USF 2.1 dataset filtered usg (a) Lp-Gf; and (b) Hp-Gf. -’ denotes
focus value of the original silhouette.

focus value in the range [22,0]. Fig. 5 shows the focus valuefittered silhouette maintains an almost linear relatiopsvith the
cut-of frequencies of the Gaussian filters.

The identification rate of a gait recognition method incessgigthe discriminability between theftBrent subjects is high, while
the same subject shows similar shape characteristicstdegpiation in clothing and carrying conditions infférent situations.
Also, the computational complexity is directly proportédto the the number of cutffrequencies. Hence, we chose the minimum
three cut-df frequencies based on the following three cases. For case Higcriminability between fferent subjects with no
variation in clothing and carrying conditions is high: lebkirring (for Lp-Gf) and accurate boundary (for Hp-Gf) akesirable to
satisfy this. Thus, the upper cuffof the ideal range of cutfbfrequencies, i.e D=20 for both Lp-Gf and Hp-Gf is selected. For
case 2, i.e., same subjects with small shape distortionsoduegriation in carrying conditions, hair style and presentshadows
under feet show similar shape characteristics: mediuntibfyiand considerably regained central region of the AGI€ldeasirable.
Hence, the mid value of the ideal range of ctitfoequency, (i.e.D=12) for Ip-Gf and lower cut-fi frequency for Hp-Gf, (i.e.,
D=4) are chosen. For case 3, the drastic shape variation ofaithe subject due to unpredictable variation in clothing kemta
into account. Thus, the cutffidfrequency which causes excessive blurring for Lp-Gf, tlee, lower bound of the ideal range of
cut-of frequencies, i.eD=4 is chosen. For Hp-Gf, this requires midway of the promirmntndary and almost reconstruction of
the original silhouette, hencB, = 12 is appropriate. Thus, the three ciifoequencies chosen for Lp-Gf and Hp-Gf are 4, 12 and

20. In view of this experimental analysis, the followingenénces are made for any dataset:

e 1: The cut-df frequency for Lp-Gf at which the focus value of the origini#fhguette always reduces to below 50% can be
used for Hp-Gf to obtain the boundary of the silhouette. Ttaguency is chosen as the upper-bound of the ideal range of

the cut-df frequencies.

e 2: The cut-df frequency for Lp-Gf below which the focus value becomes itégimally small can be used as the ctit-o
frequency for Hp-Gf at which the silhouette is perfectlyaestructed. This frequency is chosen as the lower-bounkeof t

ideal range of cut-h frequencies.

e 3: For clothing and carrying condition invariance in low qmutational complexity, the upper-bound, lower-bound dreirt
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mid-value are used.

3.2. Module 2: subject classification using rotation forest
3.2.1. Training

Let x = [x1,....Xn]" be a gallery subject described hyfeatures, wher@=30 corresponds to the five AGKIs filtered using
Lp-Gf and Hp-Gf, each at 3 cutfidfrequencies (i.e., & 3+3=30), and N be the total number of subjects in the gallery. Tdikery
dataset, i.e.X, is thus represented by x n matrix. LetY = [y1,...,yn]' be the class labeld,...c} for the dataset, andbe the
total number of gallery classes of subjects. Dgf ..., D, denote the classifiers in the ensemble, Bnthe feature set. The steps to

train the classifieD; for i=1,...L are:
e F is randomly split intaK disjoint subsets, and each subset contddas/K features.

e Let F;j be thejth subset of features fdd; containingX; ; features fromX, wherej=1,...K. A new training set, i.e.xi'yj,

is selected fronX; ; randomly with 75% size using bootstrap algorithihq:j is subjected to principal component analysis

(PCA) to obtain the principal components, mfl) ai(M")

¥ each of sizeM x 1. PCA is used as the transformation algorithm

due to its superiority to independent component analysésjmum noise fraction and local Fisher discriminant analfer

the case of rotation forest ensemble classifier, as expetaiyydemonstrated in [28].

e The codficients are organised in a sparse rotation ma&yiaf dimensionalityn x 3.; M; as follows:
@ (M)
ay “"31,11 " 0 " 0
0 Qg Qp 0
: : . . : y
0 0 TR PO U8

The columns oR, are rearranged B8 with respect to the original feature set to construct thiaimg setXR® for the classifier
D;.
3.2.2. Classification

For a given test samplg let d; j(xR?) be the probability assigned by the classifigtthatx belongs to clase/;. The confidence

for each class, i.ew;, is calculated by the average combination method as

[l Y

L
pi0) == di (xR, j = 1,...., )
i=1

whereL is the ensemble size.is assigned to the class with the largest confidence. Thepege of correct classification rate is
CCR= s/s * 100, wheres; ands are respectively the number of correctly identified sulsjectd the total number of subjects in
the dataset. To increase the statistical significance afethgts, CCR is obtained as the average of 10 runs for spetediees of

L and the number of featurel|. The CCR at rank-r implies that the correctly identified sgkg are among the topconfidence
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values with their matching gallery classes. Thus, CCR dt-faimplies that the probe subjects result in the highesfidence
values with their matching gallery classes, similarly CQRaak-5 implies that the correctly identified probe sulgeste within
the top 5 highest confidence values.
3.2.3. Sensitivity of Parameters

The key parameters of rotation forest &randM. Since the aim of the paper is to demonstrate theacy of the application of
Gaussian filtering at multiple cutfifrequencies to achieve robustness to unpredictable i@ariatclothing and carrying conditions
rather than achieve higher W-Avgl through intensive patamealibration, we fixM=5 for all values of L used in the proposed

method, as very high value & causes overlearning.

4. Experiments

The proposed method is evaluated using two public datad&s:HumanlID gait challenge dataset [22] and OU-ISIR treddmi
gait dataset B [18].

The HumanlD gait challenge problem in [22] has three aspectiataset, 12 challenge experiments and a baseline &igorit
The large version of USF HumanlID gait challenge dataset cizegp 1870 sequences of 122 subjects walking along aniedlipt
path in an outdoor environment in front of two cameras. Thagkt provides up to 32 possible testing conditions by comgi
the following five covariates: (a) walking surface (gras$ ¢&concrete (C)); (b) shoe type (A or B); (c) viewpoint (ridR) or
left (L)); (d) carrying conditions (carrying a briefcaseRBor not carrying a briefcase (NB)); and (e) elapsed timevbenh the
acquisition of the sequences (May (M) or November (N)). TBeHallenge experiments, i.e., probe sets (A to L), are desidor
investigating the #ects of five covariates on gait recognition. The structurthefprobe sets as standardized in [22] is shown in
Table 1. All probe sets do not contain the same number of stihjend there are no common gait sequences between theygalle
set and any of the probe sets.

The dataset provides centre-aligned and scale-normalifexiettes of fixed size 128 88 which could be downloaded from
httpy/figment.csee.usf.ed@aitBaseling As explained in the baseline algorithm, the silhouettertling boxes of the first, last
and the middle frames of a gait sequence are computed mgrarad the bounding boxes of the intermediate frames arergeske
using linear interpolation. After the semi-automated psscof bounding box estimation, the iterative expectat@ximisation
process of background subtraction is used to extract tlegfound, i.e., the silhouette. The silhouette is normdlisea height of
128 pixels, and centralised by coinciding its centre-osmaith the centre of the frame.

Table 1 shows the classification rates of the proposed metsiod L= 10, 50 at ranks 1 and 5 for comparison with the state-
of-the-art methods that outperform Baseline on the USFsaataAll methods in Table 1 use the same gallery set (G, A, R, NB

M/N) to report the identification rates for the 12 challengeegipents as specified by the USF dataset (see the first threseofo
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Table 1. Classification rates (%) at rank-1 and rank-5 of the @it recognition methods on full version of USF HumanlID gait dhallenge dataset using the
gallery set (G, A, R, NB, M/N) of 122 subjects. Keys for covariates: V - view; H - shoe; S usface; B - briefcase; T - time; and C - clothes.

Probe Set A B C D E F G H | J K L W-Avgl
Probe Size 122 | 54 | 54 121 | 60 | 121 | 60 120 | 60 120 | 33 33 -
Covariate \ H VH | S SH | SV | SHV | B BH | BV | THC | STHC | -
Rank-1 Identification Rate
GEI [11] 20 91 | 81 56 64 | 25 36 64 60 60 6 15 57.66
GTDA-GF [24] 91 93 | 86 32 47 | 21 32 95 920 68 16 19 60.58
CGl [26] 91 93 | 78 51 53 | 35 38 84 78 64 3 9 61.69
DNGR [16] 85 89 | 72 57 66 | 46 41 83 79 52 15 24 62.81
STS-DM [4] 93 96 | 86 70 69 | 39 37 78 71 66 27 22 66.68
GPDF-NN [29] 20 91 | 85 53 52 | 32 28 92 86 64 12 15 62.99
GPDF-LGSR [29] 95 93 | 89 62 62 | 39 38 94 91 78 21 21 70.07
VI-MGR [5] 95 96 | 86 54 57 | 34 36 91 20 78 31 28 68.13
Proposed method £10) | 96 96 | 89 60 62 | 35 36 93 92 78 33 29 70.10
Proposed methodE50) | 96 96 | 90 62 63 | 37 39 94 93 80 41 32 71.74
Rank-5 Identification Rate

GEI [11] 94 94 | 93 78 81 | 56 53 90 83 82 27 21 76.23
GTDA-GF [24] 98 99 | 97 68 68 | 50 56 95 99 84 40 40 77.58
CGl [26] 97 96 | 94 77 77 | 56 58 98 97 86 27 24 79.12
DNGR [16] 96 94 | 89 85 81 | 68 69 96 95 79 46 39 82.05
STS-DM [4] 97 98 | 96 82 83 | 61 60 95 89 83 39 28 80.48
GPDF-NN [29] 98 94 | 94 82 79 | 57 53 99 98 88 33 36 80.84
GPDF-LGSR [29] 99 94 | 96 89 91 | 64 64 99 98 92 39 45 85.31
VI-MGR [5] 100 | 98 | 96 80 79 | 66 65 97 95 89 50 48 83.75
Proposed method €10) | 100 | 98 | 96 84 81 | 66 65 97 95 | 89 54 52 84.66
Proposed methotdE50) | 100 | 98 | 97 88 85 | 68 68 98 95 91 57 54 86.46

Table 1). Since there areftirent number of probe subjects in the challenge experimétsveighted average classification rate

(W-Avgl) is obtained using [4, 29]
T WX

g .
Yicg Wi

whereg denotes the number of challenge experiments, i.e., 12,Xpr B-L, x denotes the CCR of th¢h challenge experiment

W-Avgl = , (8)

andw; denotes the number of probe subjects participating in ttment. Table 1 shows the final W-Avgl of VI-MGR computed
by averaging the identification rates obtained by weightéeiom subspace learning for eighty randomly chosen vafuasnober

of subspaces in the range [100,500]. The table shows thahetitod achieves W-AvgE71.74% at rank-1 and 86.46% at rank-5
for L=50, thus outperforming all other methods. The performafoepmethod is analyzed using cumulative match charatieris
(CMC) curve for the 12 challenge experiments (see Fig. 6f¢ording to this curve, W-Avgl at rankimplies that the percentage

of correctly identified subjects is among the tolargest confidence values.

4.1. OU-ISIR Treadmill Gait Dataset

The OU-ISIR gait dataset [18] consists of four componergs, dataset A, dataset B, dataset C and dataset D to resgbgcti
facilitate the evaluation of gait recognition methods ia firesence of variations in speed, clothing, view, and gaitdhtion. Our
method is evaluated on the dataset B which comprises 68ctsyéh up to 32 combinations offierent types of clothing. Table 2
shows these clothing combinations based on the fiBréint types of clothes used in constructing the dataset [IB¢ dataset

defines the combination of regular pant and full shirt as thedard clothing type (type 9). The dataset is divided ia)a@(training
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Table 2. Different clothing combinations used in the OU-ISIR B dataset. I€ys for different types of clothes: RP-Regular pants; BP-Baggy pants;’SShort
pants; Sk-Skirt; CP: Casual pants; HS-Half shirt; FS- Full shirt; LC-Long coat; Pk-Parker; DJ-Down jacket; CW-Casual w ear; RC-Rain coat; Ht-Hat;
Cs-Casquette cap; Mf-Mufler.

Type | S1 | Sz | Sg | Type | S1 | S2 | Type | S1 | S2
3 RP | HS | Ht 0 CP| CW | F CP | FS
4 RP | HS | Cs 2 RP | HS G CP Pk
6 RP | LC | Mf 5 RP | LC H CP | DJ
7 RP | LC Ht 9 RP | FS | BP HS
8 RP | LC | Cs | A RP | Pk J BP LC
C RP | DJ Mf B RP | Dj K BP FS
X RP | FS Ht D CP | HS L BP Pk
Y RP| FS | Cs | E CP | LC M BP DJ
N SP | HS | - P SP | Pk R RC | -

S Sk HS | - T Sk FS U Sk PK
\Y Sk DJ - Z SP | FS - - -

100
iy

20

—@—VI-MGR
~%=-Proposed Method

Rank-1 Classification Rate (%)

-0-GEI

0
023456789ABCDEFGHI JKLMNPRSTUVXYZ
Probe Clothing Combination

(b)

Fig. 6. (a) Performance analysis using CMC curve on 12 chaltge experiments of USF gait data set. Keys:>'- Exp. A (Probe: G, A, L, NB, M/N); ' &'-
Exp. B (Probe: G, B, R, NB, M/N); ' x’- Exp. C (Probe: G, B, L, NB, M/N); 'O’- Exp. D (Probe: C, A, R, NB, M/N); ' x’- Exp. E (Probe: C, B, R, NB,
M/N); "o'- Exp. F (Probe: C, A, L, NB, M/N); ' a’- Exp. G (Probe: C, B, L, NB, M/N); '«- Exp. H (Probe: G, A, R, BF, M/N); 'o’- Exp. | (Probe: G, B,
R, BF, M/N); ' ¢'- Exp. J (Probe: G, A, L, BF, M/N); 'W'- Exp. K (Probe: G, A/B, R, NB, N); and 'v'- Exp. L (Probe: C, A/B, R, NB, N); (b) Rank 1
classification rate for 32 probe items of OU-ISIR dataset B wh different clothing combinations using gallery set of subjects ith RP+FS.

set comprising 446 sequences of 20 subjects with all typetoties; (b) a gallery set comprising sequences of the r@ntpi48
subjects with standard clothes (type 9); and (c) a probem@apdsing 856 sequences for these 48 subjects with othestgp
clothes excluding the standard clothes.

Unlike the method in [13], the goal of our method is to demmatstrobustness against unpredictable variation in aigthi
Hence, unlike [13], we do not use the training dataset tm toair system with all possible types of clothing combinagiokVe
evaluated GEI on OU-ISIR dataset B using gallery and prole egch comprising 48 subjects to compare with the proposed
method. Fig. 6(b) shows the results of comparisons with GEIN-MGR (available from [5]). The figure shows that our nmadh

significantly outperforms GEIl and VI-MGR at rank-1 CCR.
5. Conclusion and future work
The paper introduces a gait representation, AGKI, by awegeeach of the five key frames of a gait period over a gait secgle

The AGKIs are subjected to Lp-Gf and Hp-Gf affdrent cut-éf frequencies to achieve invariance to unpredictable iarian

clothing and carrying conditions. The paper also introdube application of rotation forest ensemble classifiegihmgcognition.
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Experimental analyses on two public datasets demonskaiicacy of the method.
Future studies will include: (a) taking into consideratafrview-invariant gait characteristics while forming AGKd achieve
robustness to variation in view by developing a view transfation model; (b) detailed experimental analyses on tlvécelnfL

andM to achieve improved identification rate.
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