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a b s t r a c t 

Several re-ranking algorithms have been proposed recently. Some effective approaches are based on com- 

plex graph-based diffusion processes, which usually are time consuming and therefore inappropriate for 

real-world large scale shape collections. In this paper, we introduce a novel graph-based approach for 

iterative distance learning in shape retrieval tasks. The proposed method is based on the combination of 

graphs defined in terms of multiple ranked lists. The efficiency of the method is guaranteed by the use of 

only top positions of ranked lists in the definition of graphs that encode reciprocal references. Effective- 

ness analysis performed in three widely used shape datasets demonstrate that the proposed graph-based 

ranked-list model yields significant gains (up to +55.52%) when compared with the use of shape de- 

scriptors in isolation. Furthermore, the proposed method also yields comparable or superior effectiveness 

scores when compared with several state-of-the-art approaches. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Shape matching plays a central role in computer vision and

ontent-based image retrieval systems, as it is one of the most

mportant visual properties in human perception [1–3] . In many

ecognition applications, for example, the object classes are more

asily distinguished using shape features – in opposition to other

ommon properties such as color or texture [4] . 

Therefore, accurately measuring the similarity between two

iven shapes represents a fundamental task in many computer vi-

ion systems and often depends on an effective shape descriptor,

sually defined in terms of a feature extraction function and a sim-

larity measure [5] . During the past decades, several features have

een proposed, employing distinct approaches [6] . 

The contour is a common exploited property, since the ob-

ect’s closed boundary curve contains rich information about the

hape complexity [7] . In fact, the contour complexity has been

nalyzed from different perspectives by different descriptors. The

ontour saliences, for example, characterizes the influence areas of

igher curvature points along a contour [8] . Another strategy re-
✩ This paper has been recommended for acceptance by Xiang Bai. 
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ies on the computation of the angle between lines connecting a

oint with the rest of the points on the boundary [9] . Contour

oints are also used to compute geometric representations (e.g.,

riangles) [10] . 

In addition to contour, another common representation is based

n skeletons, which aim at capturing a structural representation of

 shape by modeling it in terms of a set of axial curves [11] . Based

n the observation that contour-based representations are often ef-

ective at representing detailed shape information, and skeleton-

ased description approaches can cope well with non-rigid defor-

ations, combined approaches also have been proposed [12] . 

Despite the significant advances achieved by shape descriptors,

esigning an effective similarity measure has proven to be a chal-

enging task, still considered as a largely unsolved problem [5] .

mong the difficulties, we can point out non-linear transforma-

ions [13] and the inherent subjectivity associated with the defi-

ition of the similarity itself [5] . 

An innovative perspective to the problem is based on the anal-

sis of the similarity measures in a graph structure [14] . Different

rom previous advances, which have been mostly driven by design-

ng better shape features, this family of methods learns a new met-

ic through graph transduction by propagation. The Locally Con-

trained Diffusion Process [1] , for example, proposes that shapes

o influence the similarity measure of other pairs of shapes, where

he influence is propagated as a diffusion process on a graph.

ther graph-based initiatives include the Shortest Path Propagation

http://dx.doi.org/10.1016/j.patrec.2016.05.021
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[15] , the Tensor Product Graph [16] , and the Self-Smoothing

Operator [17] . 

These graph-based methods present similar objectives: post-

processing the distance/similarity measures for improving the ef-

fectiveness of retrieval tasks. In general, such methods compute

“global” measures capable of taking into account the relationships

among images and the structure of the dataset manifold. Some of

these methods are represented as specific instances of a generic

framework [18] for diffusion processes on an affinity graph. Other

variations consider the use of various similarity measures [19,20] . 

Although indispensable for improving the retrieval effective-

ness, the wide use of post-processing methods on large-scale real-

world applications also depends on efficiency and scalability as-

pects [21] . More recently, due to the high computational costs

associated with diffusion-based approaches, other efficient post-

processing methods have emerged [21–23] , mainly based on rank-

ing analysis [24–26] . 

In these methods, the similarity among ranked lists [24] and

the ranking consistency [25] are considered. The reciprocal refer-

ences also have been attracted a lot of attention [23,26] , including

fusion tasks [27] . One important advantage of rank-based methods

consists in the possibility of processing only a sub-set of ranked

lists, reducing the computational costs. 

In this paper, we present a novel rank-based algorithm for im-

proving the effectiveness of shape retrieval tasks. The algorithm

models each ranked list as a graph, establishing similarity connec-

tions among all top- k images. Next, a graph fusion approach is em-

ployed for obtaining a single graph representing the whole collec-

tion and exploiting the relationships encoded in the dataset man-

ifold. Based on the fused graph, a new distance is learned and a

new set of ranked lists is computed. 

In summary, the main contribution consists in the proposal

of a graph-based model for representing ranked lists. The pro-

posed Ranked List Graph considers only the k -neighborhood infor-

mation, exploiting a recent rank correlation measure [28] . In this

way, computational costs are restricted only to the top- k posi-

tions, providing, at the same time, an effective and efficient rep-

resentation for search tasks. Additionally, the method requires a

very small number of iterations to obtain the best effectiveness

results. 

Extensive experiments were conducted on a three public

datasets and considering different descriptors. Experimental results

demonstrate that the proposed method can obtain significant ef-

fectiveness gains (up to +55.52% in terms of relative gains). Our ap-

proach was also evaluated in comparison with other state-of-the-

art approaches, yielding effectiveness results superior and com-

parable to various post-processing algorithms recently proposed

in the literature. For example, we have achieved 100% accuracy

(P@20) on the well-known MPEG-7 shape dataset. 

The paper is organized as follows: in Section 2 , a formal defini-

tion of the addressed problem is discussed. Section 3 presents the

proposed graph-based distance learning approach. Section 4 dis-

cusses the experimental evaluation and, finally, Section 5 draws

our conclusions and presents future work. 

2. Problem formulation 

A formal definition of the image retrieval model considered is

presented in this section. Let C= { img 1 , img 2 , . . . , img n } be an image

collection. Let n = |C| be the size of the collection C. Let D be an

image descriptor, which can be defined according to [29] as a tuple

( ε, ρ), where 

• ε: ˆ I → R 

n is a function, which extracts a feature vector v ˆ I from

an image ˆ I ; and 
• ρ: R 

n × R 

n → R 

+ is a distance function that computes the dis-

tance between two images according to the distance between

their corresponding feature vectors. 

The distance between two images img i and img j is defined by

he value of ρ( ε( img i ), ε( img j )). However, the notation ρ( i , j ) is

sed along the paper for readability purposes. 

Based on the distance function ρ , a ranked list τ q can be com-

uted in response to a query image img q . The ranked list τ q = ( img 1 ,

mg 2 , . . . , img n ) can be defined as a permutation of the collec-

ion C. A permutation τ q is a bijection from the set C onto the set

 N] = { 1 , 2 , . . . , n } . The value of τ q ( i ) can be interpreted as the po-

ition (or rank) of image img i in the ranked list τ q . In other words,

f img i is ranked before img j in the ranked list of img q (that is, τ q ( i )

 τ q ( j )), then ρ( q , i ) ≤ ρ( q , j ). 

Every image img q ∈ C can be taken as a query image in order

o compute a ranked list for each image of the collection. In this

ay, a set of ranked lists R = { τ 1 , τ 2 , . . . ,τ n } can be obtained. The

nsupervised distance learning aims at exploiting the information

ncoded in the set of ranked lists R for computing a more effec-

ive distance function ρc . Subsequently, a new set of ranked lists

 c can be computed based on distance ρc . More formally, we can

efine the unsupervised distance learning algorithm as a function

 r : 

 c = f r (R ) . (1)

Additionally to the objective of improving the effectiveness of

he retrieval results, efficiency aspects are also considered. In this

ay, the algorithm processes only sub-sets of the ranked lists, with

xed sizes denoted by constants k and L . The most relevant infor-

ation are expected to be at the top- k positions of ranked lists,

ut useful information can be obtained until position L , such k ≤
 � n . 

. Ranked-list graph model 

In this section, we present the Ranked-List Graph Distance al-

orithm for distance learning and distance fusion tasks. 

.1. Distance learning 

The main contribution of the proposed algorithm consists in

odeling each ranked list as a graph, considering its top- k posi-

ions. Different from pairwise distances, which consider the query

mage and each image in isolation, the proposed ranked list graph

stablishes relationships among the query and all its neighbors. 

Once each collection image and its respective ranked list is rep-

esented by a graph, a fusion approach is employed to combine

hem into a single graph representing the whole collection. Finally,

he learned distance is computed based on this graph. 

The graph-based approach can be roughly divided into four

teps: 

1. Rank normalization: this step is in charge of recomputing the

distances among images by considering their mutual reference

defined by their respective ranked lists; 

2. Ranked-List Graph Computation: this step constructs a graph

for representing top- k positions of ranked lists; 

3. Graph fusion: this step combines all ranked-list graphs into a

single collection graph; 

4. Ranked-List Graph Distance Computation: this step computes

the Ranked-List Graph Distance among images based on the

edges of the collection graph. 

Fig. 1 illustrates in a simplified form the graph-based approach

or modeling the ranked lists. Given two images img i , img j , their

espective ranked lists τ i , τ j are represented as two graphs. 
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Fig. 1. Overview of the proposed Ranked-List Graph model. 
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Observe the ranked list τ i , for example: beyond the edges

mong the query image ( img i ) and the top retrieved results ( img a ,

mg b , img j , img c ), the graph also connects the top retrieved results

hemselves. In the following, the fusion of graphs defined by dis-

inct ranked lists reinforces recurring edges, as occurs for edges

mong img i , img j , img a (in colors). 

Next, a formal definition of each step of the algorithm is pre-

ented. 

.1.1. Rank normalization 

While most of similarity/dissimilarity pairwise measures are

ymmetric, the same does not occur for rank analysis. In this way,

n image img i well ranked for a query img j , does not imply that

mg j is well ranked for query img i . The benefits from improving

he symmetry of the k -neighborhood relationship are well known

30] for image retrieval. 

In this work, a simple approach, which considers the mutual

eference among ranked lists, is employed. Only the images at the

op- L positions of the ranked lists are considered, aiming at keep-

ng the low computational costs. A rank normalized distance ρn is

omputed as: 

n (i, j) = τi ( j) + τ j (i ) , (2)

here τ i ( j ) ≤ L . In the following, all the ranked lists are updated

ccording to the rank normalized distance ρc , defining a new set of

anked lists R n , which is used in the next steps of the algorithm. 

.1.2. Ranked-List Graph Computation 

The Ranked-List Graph is defined in terms of the k -

eighborhood of collection images. 

Let N (i, k ) be the neighborhood set, which is formally defined

s follows: 

 k (i ) = {R ⊆ C, |R| = k ∧ ∀ x ∈ R , y ∈ C − R : ρn (i, x ) � ρn (i, y ) } 
(3) 

The Ranked-List Graph computed for an image img i is defined

s a weighted undirected graph G i = (V i , E i , w i ) , where the set of

ertices V i is defined by the set N k (i ) . Each image is represented

y a node and V i = N k (i ) . The edge set E i is defined considering the

orrelation among images at the top n s positions of each ranked

ist, as follows: 

 i = { (img j , img l ) | img j , img l ∈ N k (i ) } . (4)

The edge weight w i is defined by a recently proposed rank

easure [28] , based on a probabilistic user model employed for

erforming rank correlation analysis. The Rank-Biased Overlap
28] (RBO) compares the overlap of two ranked lists at incremen-

ally increasing depths. The measure takes a parameter p that spec-

fies the probability of considering the overlap at the next level.

he RBO measure is formally defined as follows: 

BO ( j, l) = (1 − p) 
k ∑ 

d=1 

p d−1 × |N k ( j) ∩ N k (l) | 
d 

, (5)

here p is a constant, which determines the strength of the

eighting to top ranks. The edge weight w i is defined by the RBO

easure, such that w i ( j, a ) = RBO ( j, a ) . 

.1.3. Graph fusion 

Recently, graph fusion approaches have been proposed for com-

ining different retrieval methods [27] . In this work, we employ a

usion method for combining the graphs of different ranked lists

nto a novel representation named Collection Graph. The Collec-

ion Graph represents the relationships among all images in a col-

ection, through the fusion of Ranked-List Graphs. 

Despite the use of a graph-based model, the proposed method

iffers from [27] in many aspects: the graph defined by Zhang

t al. [27] has an edge only if two images are reciprocal neighbors.

n the proposed Ranked-List Graph, the edges connect the query

mage and all their neighbors, defining a fully connected graph for

ach ranked list. Such methods also differ regarding the weight of

he edges: the Jaccard and a decay coefficient related to the num-

er of hops to the query is used in [27] , while our approach uses

he RBO [28] measure. Additionally, while [27] performs a ranking

tep using a transition matrix based on PageRank or a greedy algo-

ithm, the proposed approach does not require any analogous step.

The proposed Collection Graph G c is defined as a weighted

ndirected graph G c = (V c , E c , w c ) , where the set of vertices V c is

efined by the image collection C, such that V c = C. The edge set E c 
s defined as the union of edges defined for all ranked list graphs.

ormally, we have E c = 

⋃ 

i E i for each image img i ∈ C. 

The edge weights w c are also defined in terms of the sum of all

eights defined in the ranked-list graphs, as: 

 c ( j, l) = 

∑ 

img i ∈C 
w i ( j, l) . (6)

Notice that the edge weight, which defines the strength of con-

ection (and the similarity) between images img j and img l , is com-

uted based on information encoded in the weights of all ranked

ists ( w i , with each img i ∈ C). 

.1.4. Ranked-List Graph Distance 

Based on the weights of the Collection Graph, a new distance

c can be computed. Given two images img i , img j , the distance be-

ween them ρc ( i , j ) is defined as follows: 

c (i, j) = 

1 

1 + w c (i, j) 
, (7) 

here w c (i, j) > 0 . For images without edges, the ranked lists re-

ain the same. More formally, for img i , img l such (img i , img l ) ∩
 c = {∅} , we have ρc (i, l) = τi (l) . 

A new set of ranked lists R c is computed based on the new

istance ρc . Once the input for the ranked list graphs consists in

he set of ranked lists, the process can iteratively be repeated along

terations. Let ( t ) denotes the current iteration, an iterative distance

unction ρ(t) 
c (i, j) can be defined, and consequently, a set of ranked

ists R 

(t) 
c . 

The final set of ranked lists R 

(T ) 
c is obtained after T iterations of

he algorithm. As discussed in the experimental section, the num-

er of required iterations is very small. In fact, the most significant

ains are obtained at the first iteration. 
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Algorithm 1 Rank normalization algorithm. 

Require: Set of ranked lists R , parameter L 
Ensure: Rank Normalized Set of Ranked Lists R n 

1: for all img i ∈ C do 

2: for all img j ∈ N L (i ) do 

3: ρn (i, j) ← τi ( j) + τ j (i ) 
4: end for 
5: end for 
6: R n = sort(R , ρn ) 

Algorithm 2 Rank List Graph Distance algorithm. 

Require: Rank Normalized Set of Ranked Lists R n , parame- 
ters k, T 

Ensure: Updated set of Ranked Lists R c 

1: t ← 0 

2: R 

(0) 
c ← R n 

3: while t < T do 

4: for all img i ∈ C do 

5: for all img j ∈ N k (i ) do 

6: for all img l ∈ N k (i ) do 

7: w c ( j, l) ← RBO ( j, l) 
8: end for 
9: end for 

10: end for 
11: for all img i ∈ C do 

12: for all img j ∈ C do 

13: ρ(t) 
c ← 1 / (1 + w c (i, j)) 

14: end for 
15: end for 
16: R 

(t+1) 
c = sort(R 

(t) 
c , ρ(t) 

c ) 
17: t ← t + 1 

18: end while 
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1 https://sites.google.com/site/xiangbai/animaldataset (As of November 2015). 
3.1.5. Rank-List Graph algorithm 

This section discusses an algorithmic solution for the proposed

method. Algorithm 1 presents an approach for computing the rank

normalization step. The distance ρn is updated (Line 3) according

to the top- L positions defined by the set N L (Line 2). 

Algorithm 2 outlines the method for updating the set of ranked

lists according to the Ranked-List Graph Distance. For each im-

age img i (Line 4) and its neighbors img j and img l (Lines 5–6), the

weights of edges from Ranked-List Graph are added to the Collec-

tion Graph weights w c (Line 7). The new distance is computed in

Lines 11-15, leading to an updated set of ranked lists (Line 16). 

For a given image collection with n images, the most impor-

tant steps of the proposed method are restricted to the top- k or

top- L positions of the n ranked lists. Algorithm 2 (Lines 11–14) re-

defines the distance among all images, but it can be easily adapted

to recompute only the distances until the top- L positions of each

ranked list, similarly to Algorithm 1 . The same can be considered

for the sorting step. In this way, with all operations restricted to

top- L positions, the overall algorithm presents a complexity of only

O ( n ). 

3.2. Descriptor combination 

Different image descriptors may focus on diverse and comple-

mentary aspects of the shape, like contour, curvature, and skele-

ton. Therefore, it is intuitive that the combination of the distances

computed according to different features can improve the retrieval

accuracy [31] . 
In this work, we exploit the Ranked-List Graph Distance in con-

unction with a multiplicative approach inspired on recent positive

esults [23,32] for combining image descriptors. First, the Ranked-

ist Graph Distance is computed in isolation for each feature, con-

idering one iteration. Subsequently, the results are multiplied and

ombined into a single distance. Besides being unsupervised, the

roposed method does not perform any normalization steps as re-

uired by other fusion approaches [31] . 

Let ρ(1) 
c d 

be the Ranked-List Graph Distance at first iteration of

 given descriptor d and let m be the number of descriptors con-

idered, the fused distance can be defined as: 

(1) 
f 

(i, j) = 

m ∏ 

d=1 

(1 + ρ(1) 
c d 

(i, j)) . (8)

Once a combined distance is computed, a set of ranked lists

 

(1) 
f 

can be obtained and other iterations of the algorithm can

e processed. After T iterations of the algorithm, the final set of

anked lists R 

(T ) 
f 

is obtained. As discussed in experimental section,

or distance fusion tasks only one iteration ( T = 1 ) is needed for

he combined distance. 

. Experimental evaluation 

In this section, we present the results of experimental eval-

ation conducted for assessing the effectiveness of the proposed

ethod. A rigorous experimental protocol was employed, involving

hree different datasets and various descriptors. Our objective is to

valuate the proposed method in diverse scenarios. We also per-

ormed statistical tests to confirm if the use of the proposed post-

rocessing approach yields significant results, when compared to

he use of the shape descriptors in isolation. 

.1. Datasets and descriptors 

The datasets and descriptors considered in the experimental

valuation are briefly described in this section. 

.1.1. MPEG-7 

The MPEG-7 [35] dataset is a well-known shape dataset, com-

osed of 1,400 shapes which are grouped into 70 classes, with 20

bjects per class. The dataset is widely used for shape retrieval and

ost-processing methods evaluation. 

Six different shape descriptors are considered: Segment

aliences (SS) [3] , Beam Angle Statistics (BAS) [9] , Inner Distance

hape Context (IDSC) [13] , Contour Features Descriptor (CFD) [33] ,

spect Shape Context (ASC) [36] , and Articulation-Invariant Repre-

entation (AIR) [34] . 

Two effectiveness measures were considered the for the MPEG-

 [35] dataset: the MAP and the Bull’s Eye Score, commonly used

or this dataset. The score counts all matching shapes within the

op-40 ranked images. The retrieved score is normalized, since

ach class consists of 20 shapes which defines highest possible

umber of hits, being equivalent to Recall@40. For data fusion, the

ccuracy score which is a more strict measure equivalent to the

@20 is also considered. 

.1.2. Animal 

The Animal 1 [12] dataset is composed of 2,0 0 0 animal shapes

rom 20 different classes. This dataset is equally divided into two

arts labeled A and B, and each part comprises 10 classes of ani-

als. Each class contains 100 shape images from different animal

https://sites.google.com/site/xiangbai/animaldataset
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Fig. 2. Impact of parameters k and T for the CFD [33] descritor. 
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Fig. 3. Impact of parameters k and T for the AIR [34] descritor. 
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The descriptors used for encoding shape properties are: Fourier

escriptor (FD) [37] , Curvature Scale Space (CSS) [38] , Tensor Scale

escriptor (TSD) [39] , Segment Saliences (SS) [3] , Beam Angle

tatistics (BAS) [9] , and Triangle Area Representation (TAR) [40] .

he effectiveness of each descriptor was assessed using three met-

ics: MAP, P@10, and P@20. 

.1.3. ETH-80 

The ETH-80 2 [41] dataset is composed of 3,280 images, and

ach image comprises one single object at its center and a known

ackground. This dataset consists of 80 objects from 8 different

lasses. Each class contains 10 objects with 41 view per object. 

For each object, there is provided a color image and a binary

mage of its contour, which we used in our shape experiments. All

he images are cropped and rescaled to a size of 128 × 128 pixels.

he shape descriptors and effectiveness measures considered for

he ETH-80 dataset were the same used for the Animal dataset. 

.2. Impact of parameters 

This section aims at assessing the robustness of the method

o different parameter settings, evaluating the impact different pa-

ameter values on the effectiveness results. We conducted various

xperiments considering the MPEG-7 collection [35] . 

The first experiment evaluates the impact of the parameters k

size of the neighborhood set) and T (number of iterations). Figs. 2

nd 3 illustrate the effectiveness scores given by the Mean Average

recision (MAP) according to variations of k and T , for descriptors

FD [33] and AIR [34] , respectively. A large and stable red region

an be observed for both surfaces, demonstrating the robustness

f the method in achieving high effectiveness gains for different

arameters settings. The best effectiveness results are obtained by

alues near to k = 20 and T = 2 . In most of remaining experiments,

e used k = 20 as the neighborhood size, except for the Animal

ataset, in which we used k = 40 due to the larger number of im-

ges within each class. 

The impact of the size of subset of ranked lists ( L ) is also eval-

ated, considering three different shape descriptors: CFD [33] , ASC

36] , and AIR [34] . Fig. 4 shows the impact of this parameter on

he MAP scores. A fast growth of effectiveness scores can be ob-

erved for small values of L . The effectiveness gains stabilize for

he three descriptors for values between 100 and 200. For most of

xperiments, we used L = 100. 
2 http://www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/ 

th80-db.html (As of August 2007). 

r  

r  

e  

o

The last experiment evaluated the parameter p used for the

BO measure. Fig. 5 shows the variation of MAP scores accord-

ng to different values of p . The parameter p indicates the weight

iven to top positions of ranked lists. The descriptors CFD [33] , ASC

36] , and AIR [34] are considered. The results varied, according to

he effectiveness of the descriptors. For the AIR descriptor, which

resents higher effectiveness scores, greater values of p presented

etter results. We used p = 0 . 95 in the remaining experiments. 

.3. Evaluation of the proposed method 

Various experiments were conducted for evaluating the effec-

iveness of the proposed method, considering the three datasets

nd image descriptors discussed in Section 4.1 . A statistical analy-

is is also presented, using paired t-tests. The objective consists in

ssessing if the difference between the retrieval results before and

fter the use of the algorithm is statistically significant. 

.3.1. MPEG-7 dataset 

The first experiment considered the MPEG-7 dataset and the

ull’s Eye Score (Recall@40). Table 1 presents the effectiveness

esults and the relative gains for six image descriptors. The full

anked lists ( L = 1400) were considered and different values of it-

rations ( T = 1 and T = 2 ). Very significant positive gains can be

bserved, ranging from +6.81% to +35.24%. 

http://www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/eth80-db.html
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An analogous experiment was conducted aiming at evaluat-

ing the impact of considering only top positions of ranked lists

( L = 100 ). Table 2 presents the results. As we can observe, the ef-

fectiveness results are very similar to full ranked lists, demonstrat-

ing the capability of the method in achieving effectiveness gains

without neglecting efficiency aspects. All remaining experiments

considered L = 100 . 
Table 1 

Ranked List Graph Distance on the MPEG-7 dataset, considering th

Shape Original Ranked List Gain (%) 

descriptor Bull’s Graph Dist. 

Eye Score (%) T = 1 (%) 

SS [3] 43.99 57.61 +30 .94 

BAS [9] 75.20 86.14 +14 .53 

IDSC [13] 85.40 92.15 +7 .75 

CFD [33] 84.43 94.97 +12 .47 

ASC [36] 88.39 94.42 +6 .82 

AIR [34] 93.67 99.99 +6 .88 

Table 2 

Ranked List Graph Distance on the MPEG-7 dataset, considering th

Shape Original Ranked List Gain (%) 

descriptor Bull’s Graph Dist. 

Eye Score (%) T = 1 (%) 

SS [3] 43.99 57.51 +30 .71 

BAS [9] 75.20 85.83 +14 .12 

IDSC [13] 85.40 92.14 +7 .74 

CFD [33] 84.43 94.96 +12 .46 

ASC [36] 88.39 94.41 +6 .81 

AIR [34] 93.67 99.99 +6 .88 

Table 3 

Ranked List Graph Distance on the MPEG-7 dataset, considering th

Shape Original Ranked List Gain (%) 

descriptor MAP Graph Dist. 

score (%) T = 1 (%) 

SS [3] 37.67 49.97 +32 .65 

BAS [9] 71.52 81.15 +13 .46 

IDSC [13] 81.70 89.20 +9 .18 

CFD [33] 80.71 92.11 +14 .12 

ASC [36] 85.28 91.68 +7 .50 

AIR [34] 89.39 97.69 +9 .29 
The proposed algorithm is also evaluated on the MPEG-7

ataset considering the MAP scores. Table 3 presents the obtained

esults. We can observe that the relative gains obtained for MAP

re even greater than for Recall@40. For the SS [3] descriptor,

or example, the Ranked-List Graph distance improved the results

rom 37.67% to 52.51%, achieving a relative gain of +39.39%. Notice

lso that all the results for the MPEG-7 dataset are statistically sig-

ificant at a confidence of 99%. 

.3.2. Animal dataset 

The experimental results for the Animal dataset, Parts A and B,

re presented in Tables 4 and 5 , respectively. The MAP measure is

onsidered for this experiment. For the Part A of the dataset, only

ositive gains are obtained, ranging from +1.18% to 45.57%. For the

art B, the algorithm achieved even more impressive gains, reach-

ng +55.52% for the BAS [9] descriptor. 

The only exception is the FD descriptor, where no gains are ob-

erved. It is worth mentioning that the considered descriptors for

he Animal dataset (and also for the ETH-80 collection) achieved a

ower effectiveness scores, if compared with the MPEG-7 dataset.

his scenario is more challenging for unsupervised algorithms,

hich depends on the existence of relevant results in the top-

anked positions. 

.3.3. ETH-80 dataset 

Table 6 presents the MAP scores for the ETH-80 dataset. De-

pite the low initial effectiveness scores (which are even smaller

han the Animal dataset), the algorithm achieved significant gains,

xcept for the FD descriptor. For example, the algorithm improved
e Bull’s Eye Score (Recall@40) and L = 1400 . 

Statistic Ranked List Gain (%) Statistic 

signific. Graph Dist. signific. 

99% T = 2 (%) 99% 

• 59.55 +35 .35 •
• 87.35 +16 .15 •
• 92.90 +8 .62 •
• 95.66 +13 .29 •
• 95.19 +7 .71 •
• 99.59 +6 .45 •

e Bull’s Eye Score (Recall@40) and L = 100 . 

Statistic Ranked List Gain (%) Statistic 

signific. Graph Dist. signific. 

99% T = 2 (%) 99% 

• 59.51 +35 .24 •
• 87.19 +15 .93 •
• 92.89 +8 .61 •
• 95.66 +13 .29 •
• 95.19 +7 .71 •
• 99.59 +6 .45 •

e MAP scores and L = 100 . 

Statistic Ranked List Gain (%) Statistic 

signific. Graph Dist. signific. 

99% T = 2 (%) 99% 

• 52.51 +39 .39 •
• 82.58 +15 .46 •
• 90.17 +10 .37 •
• 93.25 +15 .54 •
• 92.69 +8 .69 •
• 97.36 +8 .92 •
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Table 4 

Ranked List Graph Distance on the Animal-A dataset, considering the MAP scores and L = 100 . 

Shape Original Ranked List Gain (%) Statistic Ranked List Gain (%) Statistic 

descriptor MAP Graph Dist. signific. Graph Dist. signific. 

score (%) T = 1 (%) 99% T = 2 (%) 99% 

FD 13.62 13.84 +1 .59 • 13.78 +1 .18 •
CSS 14.57 15.09 +3 .57 • 14.78 +1 .44 

TSD 20.66 21.90 +5 .96 • 21.80 +5 .50 •
SS 23.75 30.02 +26 .40 • 32.53 +36 .93 •
BAS 27.61 38.22 +38 .40 • 40.20 +45 .57 •
TAR 34.73 42.56 +22 .56 • 44.38 +27 .80 •

Table 5 

Ranked List Graph Distance on the Animal-B dataset, considering the MAP scores and L = 100 . 

Shape Original Ranked List Gain (%) Statistic Ranked List Gain (%) Statistic 

descriptor MAP Graph Dist. signific. Graph Dist. signific. 

score(%) T = 1 (%) 99% T = 2 (%) 99% 

FD 15.23 15.14 −0 .63 15.00 −1 .54 •
CSS 14.91 15.67 +5 .08 • 15.32 +2 .75 

TSD 17.18 17.60 +2 .42 • 17.60 +2 .42 •
SS 22.18 29.83 +34 .52 • 32.92 +48 .47 •
BAS 28.87 43.38 +50 .29 • 44.89 +55 .52 •
TAR 43.05 50.55 +17 .44 • 51.89 +20 .54 •

Table 6 

Ranked List Graph Distance on the ETH-80 dataset, considering the MAP scores and L = 100 . 

Shape Original Ranked List Gain (%) Statistic Ranked List Gain (%) Statistic 

descriptor MAP Graph Dist. signific. Graph Dist. signific. 

score (%) T = 1 (%) 99% T = 2 (%) 99% 

FD 7 .99 7 .81 −2 .29 • 7 .71 −3 .39 •
CSS 5 .90 7 .03 +19 .26 • 6 .72 +13 .90 •
SS 10 .98 14 .15 +28 .78 • 15 .04 +36 .89 •
BAS 12 .65 19 .21 +51 .89 • 19 .48 +54 .05 •
TSD 14 .82 16 .51 +11 .45 • 16 .63 +12 .23 •
TAR 19 .84 21 .01 +5 .83 • 20 .88 +5 .22 •

Fig. 6. Visual examples of retrieval results before and after the use of the Ranked-List Graph algorithm, considering the CFD descriptor: query image with green border and 

wrong images with red borders. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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he MAP score of the BAS descriptor from 12.65% to 19.48%, reach-

ng a relative gain of +54.05%. 

.4. Visual re-ranked results 

This section aims at illustrating the visual impact of the pro-

osed algorithm on retrieval results. Fig. 6 illustrates the returned

anked lists for the CFD [33] descriptor on MPEG-7. Three query

mages are illustrated before and after the execution of the al-
orithm. The first image of each row represents the query image

highlighted with a green border). Wrong (non-relevant) images in

he ranked lists are illustrated with red borders. 

The effectiveness of retrieval is greatly improved for all the

ueries, from 25% and 20% to 100% for the first and second queries,

nd from 5% to 95% for the third query. The third query is a re-

arkable example of the capacity of the algorithm in exploiting

he information encoded in the whole dataset. Despite the absence

f correct enough information in the ranked list, other ranked lists
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Fig. 7. Visual examples of retrieval results before and after the use of the Ranked-List Graph algorithm, considering the ASC descriptor: query image with green border and 

wrong images with red borders. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 7 

Distance fusion by Ranked-List Graph on the MPEG-7 

dataset, considering different retrieval scores: Bull’s Eye 

Score (Recall@40), MAP, and Accuracy (P@20). 

Descriptor Bull’s Eye MAP (%) Accuracy 

Score (%) (P@20) (%) 

SS [3] 43 .99 37 .67 35 .75 

BAS [9] 75 .20 71 .52 67 .22 

IDSC [13] 85 .40 81 .70 77 .21 

CFD [33] 84 .43 80 .71 75 .59 

ASC [36] 88 .39 85 .28 80 .66 

AIR [34] 93 .67 89 .39 88 .17 

SS+BAS 86 .41 81 .17 77 .14 

SS+IDSC 96 .15 94 .01 91 .98 

BAS+IDSC 96 .76 95 .27 93 .26 

CFD+ASC 99 .62 99 .06 98 .28 

CFD+AIR 100 100 100 

ASC+AIR 99 .92 99 .75 99 .47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Distance fusion by Ranked-List Graph on the Animals- 

A dataset. 

Descriptor P@10 (%) P@20 (%) MAP (%) 

SS 47.77 39.45 23.75 

BAS 49.57 48.05 27.61 

TAR 69.46 60.43 34.72 

SS+BAS 66.30 60.79 42.80 

SS+TAR 69.73 64.54 45.86 

BAS+TAR 71.95 65.83 44.81 

Table 9 

Distance fusion by Ranked-List Graph on the Animals- 

B dataset. 

Descriptor P@10(%) P@20(%) MAP(%) 

SS 43.16 35.49 22.18 

BAS 45.20 47.17 28.87 

TAR 70.39 63.28 43.05 

SS+BAS 70.49 65.79 46.82 

SS+TAR 73.52 69.19 52.53 

BAS+TAR 72.99 68.45 51.64 

Table 10 

Distance fusion by Ranked-List Graph on the ETH-80 

dataset. 

Descriptor P@10 (%) P@20 (%) MAP (%) 

BAS 37.62 29.02 12.64 

TSD 35.28 26.20 14.82 

TAR 41.26 31.60 19.85 

BAS+TSD 41.15 32.13 21.68 

BAS+TAR 39.97 31.12 21.00 

TSD+TAR 42.35 33.28 22.64 

e  

f  

t  

c

 

t  
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s  
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are considered allowing the improvement of retrieval results. Fig. 7

presents ranked lists considering the ASC [36] descriptor. Again,

similar positive results are observed. 

4.5. Evaluation of the descriptor combination 

The experimental results of the Ranked-List Graph on distance

fusion tasks are discussed in this section. For the MPEG-7 dataset,

we considered two groups of descriptors, according to the effec-

tiveness achieved in distance learning tasks: SS, BAS, and IDSC, as

the first group; and CFD, ASC, and AIR as the second group. All the

combinations among descriptors in each group are evaluated. In

addition to the MAP and Bull’s Eye scores, the Accuracy measure

is also reported considering the precision of retrieval at top-20

positions. 

Table 7 presents the results obtained for the MPEG-7 dataset.

For all combinations and effectiveness measures, the combined re-

sult is better than the use of the best descriptor in isolation. The

BAS+IDSC combination, for instance, achieved an accuracy score

of 93.26%, while the scores of descriptors in isolation are only

67.22% and 77.21%, respectively. The CFD+AIR combination, in turn,

achieved 100% for the three measures, indicating perfect retrieval

results. 

The Ranked-List Graph also achieved similar positive results

for other datasets. Tables 8 and 9 present the results for Animal

dataset, parts A and B, respectively. The MAP and precision mea-

sures are evaluated considering the three descriptors with the best
ffectiveness scores on distance learning tasks. We may highlight,

or instance, the improvements obtained for the SS+BAS combina-

ion on part B, from initial MAP scores of 22.18% and 28.87% to a

ombined score of 46.82%. 

The results of ETH-80 dataset are presented in Table 10 . Again,

he combined results are better than the best descriptor in isola-

ion for all combinations. Despite the positive results, the gains are

maller than those obtained of other datasets, mainly due to the

ower initial effectiveness scores of this dataset. 
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Table 11 

Comparison with post-processing methods on the MPEG-7 dataset, 

considering the Bull’s Eye Score (Recall@40). 

Algorithm Descriptor(s) Bull’s eye 

Score (%) 

Shape descriptors 

DDGM [42] – 80 .03 

CFD [33] – 84 .43 

IDSC [13] – 85 .40 

SC [43] – 86 .80 

ASC [36] – 88 .39 

AIR [34] – 93 .67 

Unsupervised post-processing methods: distance learning 

Graph transduction [14] IDSC 91 .61 

LCDP [1] IDSC 93 .32 

Shortest Path Propagation [15] IDSC 93 .35 

Mutual kNN graph [44] IDSC 93 .40 

Pairwise recommendation [32] ASC 94 .66 

RL-Sim [24] ASC 94 .69 

Ranked List Graph Dist. ASC 95 .19 

Ranked List Graph Dist. CFD 95 .66 

LCDP [1] ASC 95 .96 

Tensor Product Graph [16] ASC 96 .47 

RL-Sim [24] AIR 99 .94 

Reciprocal kNN manifold [23] AIR 99 .94 

Tensor Product Graph [16] AIR 99 .99 

Ranked List Graph Dist. AIR 99 .99 

Generic diffusion process [18] AIR 100 

Neighbor set similarity [22] AIR 100 

Unsupervised post-processing methods: distance fusion 

Reciprocal rank fusion [45] CFD+IDSC 94 .98 

Graph fusion [27] CFD+ASC 96 .16 

Reciprocal rank fusion [45] CFD+ASC 96 .25 

Co-transduction [20] SC+DDGM 97 .45 

Self-smoothing operator [17] SC+IDSC 97 .64 

Co-transduction [20] 0 SC+IDSC 97 .72 

Self-smoothing operator [17] SC+IDSC+DDGM 99 .20 

Pairwise recommendation [32] CFD+IDSC 99 .52 

Ranked List Graph Dist. CFD+ASC 99 .62 

RL-Sim [24] CFD+ASC 99 .65 

Ranked List Graph Dist. CFD+AIR 100 

Table 12 

Comparison on the MPEG-7 dataset, considering Accuracy score 

(P@20). 

Unsupervised post-processing methods: distance fusion 

Algorithm Descriptor(s) Accuracy (%) 

Co-transduction [20] IDSC+DDGM 95 .12 

Co-transduction [20] SC+IDSC+DDGM 95 .24 

Cross diffusion process [19] IDSC+DDGM 99 .69 

Cross diffusion process [19] SC+IDSC 99 .86 

Cross diffusion process [19] SC+IDSC+DDGM 100 

Reciprocal kNN distance [23] CFD+AIR 100 

Ranked List Graph Dist. CFD+AIR 100 
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Table 13 

Ranked List Graph Distance on the Holidays dataset. 

Descriptor Original Ranked List Relative 

MAP (%) Graph Dist. (%) gain (%) 

JCD [49] 52.83 55.04 +4 .18 

SCD [48] 54.26 56.60 +4 .31 

ACC [47] 64.29 70.37 +9 .46 

CNN-Caffe [50] 64.09 70.78 +10 .44 

CNN-OverFeat [51] 82.59 85.33 +3 .32 

ACC + OverFeat – 82.71 +28 .65 

ACC + Caffe – 77.84 +21 .45 

ACC + Caffe + OverFeat – 84.33 +31 .58 

Table 14 

Comparison with state-of-the-art on the Holidays dataset. 

MAP scores for recent retrieval methods. 

Jégou et al. [46] Li et al. [52] Zheng et al. [53] Tolias et al. [54] 

75.07% 89.20% 85.80% 82.20% 

Qin et al. [55] Zheng et al. [56] Ranked List Graph Dist. 

84.40% 85.20% 85.33% 
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.6. Comparison with other approaches 

The Ranked List Graph Distance was also evaluated in compar-

son with various state-of-the-art methods. The MPEG-7 dataset

as considered due to its frequent use for evaluation and com-

arison among post-processing methods. An experimental proto-

ol commonly reported in the literature was followed, using the

ull’s Eye Score as effectiveness measure and all images as queries.

able 11 presents the best results of the proposed algorithm (in

old) in comparison with several other methods on distance learn-

ng and fusion tasks. Despite the small sub-set of ranked lists re-

uired, the proposed approach achieved high effectiveness scores,

omparable and better than various recently proposed methods. 

Due to the saturation of the Bull’s Eye Score, we also considered

he Accuracy score for evaluation on distance fusion tasks. Table 12
resents the results of proposed method in comparison with state-

f-the-art approaches. The Ranked List Graph distance achieved an

ccuracy score of 100% for fusion of CFD+AIR. The Accuracy score

s a stricter measure than the Bull’s Eye Score, and 100% indicates

erfect retrieval results, achieved only by few methods. 

.7. Extension to generic image retrieval tasks 

In fact, the Ranked-List Graph Distance and the retrieval model

ased on ranking information can be used in generic image re-

rieval tasks. Our technique was designed to be flexible and robust

nd, hence, the feature input is not limited to any one type. In-

tead, all possible data types can be used. The only requirement is

hat the dissimilarity between features must be numerically repre-

ented by an appropriate distance metric. 

An experiment was conducted for evaluating the effectiveness

f the proposed method in generic image retrieval tasks. The Hol-

days [46] dataset, a popular image retrieval benchmark was con-

idered. The dataset is composed of 1,491 personal holiday pictures

nd defines 500 queries. The MAP scores are used as effectiveness

easures. 

Five different image features are considered, including two

olor descriptors: Auto Color Correlogram (ACC) [47] and Scal-

ble Color Descriptor (SCD) [48] ; one color/texture descriptor: Joint

omposite Descriptor (JCD) [49] ; and two Convolutional Neural

etwork (CNN) features: Caffe [50] and OverFeat [51] . 

Table 13 presents the results for the Ranked List Graph Dis-

ance. Positive gains can be observed for all considered features,

eaching +10.44%. A comparison with state-of-the-art approaches is

resented in Table 14 , considering the best retrieval results of each

pproach. The proposed approach method also achieves very high

ffectiveness scores, comparable or superior to the state-of-the-art.

. Conclusions 

Re-ranking algorithms have been studied a lot recently with the

bjective of improving the effectiveness of content-based image re-

rieval tasks. In special for shape retrieval, several research groups

ave been validating approaches that learn iteratively the similar-

ty/distance among shape objects. One important class of methods

elies on the use of graphs and its combination with diffusion ap-

roaches for learning the similarity among shapes. Those methods

ave been demonstrated to be very effective, however, at the same

ime, computationally costly. 
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In this paper we addressed this issue, by introducing a novel

graph-based model that combines cross-references among shapes

in different ranked lists. A single collection graph is defined in

terms of the combination of the different available rank-list graphs

and then later is used to redefine the distance among shape ob-

jects. This process is repeated along iterations. 

The efficiency of the method relies on the use of only top-

ranked shapes in the ranked lists. The effectiveness, in turn, was

demonstrated by the performance of an extensive experimen-

tal protocol considering widely used shape collections. Effective-

ness experimental results demonstrated that the ranked-list graph

model is able to yield significant results when compared with the

use of shape descriptors in isolation, being comparable or superior

than several state-of-the-art approaches. 

Future work will be focused on the application of the proposed

method in other searching scenarios involving multimodal infor-

mation (e.g., multimedia geocoding tasks [57] ) or other types of

data (e.g., video [58] ). We also plan to investigate the use of the

ranked-list graph model integrated with indexing schemes [59] to

speed up the identification of top- k neighbors. 
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