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a b s t r a c t 

A weighted minimum variance distortionless response (WMVDR) algorithm for near-field sound localiza- 

tion in a reverberant environment is presented. The steered response power computation of the WMVDR 

is based on a machine learning component which improves the incoherent frequency fusion of the nar- 

rowband power maps. A support vector machine (SVM) classifier is adopted to select the components 

of the fusion. The skewness measure of the narrowband power map marginal distribution is showed to 

be an effective feature for the supervised learning of the power map selection. Experiments with both 

simulated and real data demonstrate the improvement of the WMVDR beamformer localization accuracy 

with respect to other state-of-the-art techniques. 

© 2016 Published by Elsevier B.V. 

1. Introduction 1 

Sound source localization using microphone arrays is of consid- 2 

erable interest in an increasing number of applications: telecon- 3 

ferencing systems [23] , audio surveillance [26] , autonomous robots 4 

[5] , animal ecology [19] , musical control interfaces [25] , hearing aid 5 

[11] , volcanology research [24] , and medical intervention [18] . 6 

The steered response power (SRP) algorithms, which are based 7 

on maximizing the power output of a beamformer, are a robust 8 

class of methods used to estimate the sound source position in 9 

space. Typically, broadband SRP is computed in the frequency- 10 

domain by calculating the response power on each frequency bin 11 

and by fusing the narrowband SRP with incoherent [1,10,27] or co- 12 

herent [9,31,32] averaging with respect to frequency. 13 

For increasing the spatial resolution of the broadband SRP, 14 

usually a normalization of narrowband power maps is computed 15 

before the fusion of the maps. The well-studied SRP algorithm 16 

based of phase transform (PHAT) [10] considers only the phase 17 

information for computing the normalization. In [27] , it is shown 18 

that a post-filter normalization of each narrowband power map 19 

substantially improves the spatial resolution of the minimum 20 

variance distortionless response (MVDR) [3] beamformer, which is 21 

more robust against noise if compared to other algorithms. Hence, 22 

the normalization provides significant advantages in reverberant 23 

s This paper has been recommended for acceptance by Egon L. van den Broek. 
∗ Corresponding author. 

E-mail address: daniele.salvati@uniud.it (D. Salvati). 

environments since it allows a better identification of direct path 24 

and reflections. Unfortunately, the normalization has the disad- 25 

vantage of emphasizing the noise in those frequencies in which 26 

the signal-to-noise ratio (SNR) is low, resulting in large errors that 27 

may provide an inaccurate final frequency data combination. 28 

In this paper, we consider the near-field sound localization 29 

problem of a single source in reverberant environments. This sce- 30 

nario can be of interest in videoconferencing applications [23] , in 31 

which the estimation of sound coordinates can be used to au- 32 

tomatically steer a videocamera towards an active speaker; or in 33 

human-computer interaction systems, in which the localization is 34 

used in a signal enhancement beamformer for speech recognition 35 

or dictation system; or even in multimedia interactive systems for 36 

performing arts, in which a performer can interact with a com- 37 

puter by using the space-time information of an acoustic source 38 

including voice, a musical instrument, or a sounding object to con- 39 

trol a creative expressive domain [25] . 40 

We present a weighted MVDR (WMVDR) broadband beam- 41 

former, which is based on a normalized MVDR (NMVDR) [27] and 42 

on a support vector machine (SVM) [6] classifier, which is trained 43 

to classify the narrowband power maps into two classes: construc- 44 

tively contributing maps vs . disruptively contributing ones. The 45 

idea of a weighted MVDR was proposed in [28] , in which a ma- 46 

chine learning approach for selecting narrowband power maps was 47 

introduced, using a radial basis function network (RBFN) classifier 48 

and the marginal distribution of the narrowband power maps as 49 

input. In contrast to [28] , we propose the use of a SVM learning 50 

component and of statistical features of the marginal distributions 51 

of the narrowband power maps as input, in order to remove the 52 
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dependency from the size of the analysis region and to drastically 53 

reduce the dimensionality of the input vector. We investigate the 54 

use of three statistical features related to the marginal distribution: 55 

skewness, kurtosis, and crest factor. We show that the best perfor- 56 

mance is obtained with the skewness measure and that the use of 57 

the SVM outperforms the RBFN. In the experimental section, we 58 

provide extensive acoustic source localization experiments based 59 

on both synthetic and real data. 60 

If compared to other supervised learning approaches 61 

[2,8,15,16,20] , in which classifiers are used to directly map 62 

the acoustic cues onto a position in the search space, in the 63 

proposed scheme the machine learning component complements 64 

the SRP method, thus providing an incremental contribution to 65 

the performance of the SRP-based approaches. 66 

2. The n ormalized MVDR b eamformer 67 

In this paper, we will make use of standard notational conven- 68 

tions. Vectors and matrices are written in boldface with matrices 69 

in capitals. 70 

We consider an unknown sound source that is active at time k 71 

in a reverberant room of dimension G = G x × G y × G z with Carte- 72 

sian coordinates r s (k ) = [ x s (k ) , y s (k ) , z s (k )] 
T , and we assume the 73 

source to be in the near-field. We can write the positions of the 74 

m th microphones as r m = [ x m , y m , z m ] 
T , m = 1 , 2 , . . . , M, where M 75 

is the number of microphones. In the short-time Fourier transform 76 

domain the m th reverberant signal can be expressed as 77 

X m ( f, k ) = H m ( f ) S( f, k ) + V m ( f, k ) (1) 

where f is the frequency bin index, S ( f , k ) is the source signal at 78 

frequency f and time k , V m ( f , k ) is the uncorrelated noise signal, 79 

and H m ( f ) is the time-invariant acoustic transfer function from the 80 

source to the microphone m . We assume that the analysis window 81 

L is sufficiently long to capture most of the room impulse response 82 

such that the multiplicative transfer function approximation holds. 83 

The output of a beamformer at time k is given by a linear com- 84 

bination of the data 85 

Y ( f, k, r g ) = w 
H ( f, k, r g ) x ( f, k ) (2) 

where the superscript H represents the Hermitian (com- 86 

plex conjugate) transpose, the signal vector is x ( f, k ) = 87 

[ X 1 ( f, k ) , X 2 ( f, k ) , . . . , X M ( f, k )] 
T , and the weight vector for steer- 88 

ing and filtering the data on a position r g = [ x g , y g , z g ] 
T ∈ G, 89 

which is a candidate position for searching the source, is 90 

w ( f, k, r g ) = [ W 1 ( f, k, r g ) , W 2 ( f, k, r g ) , . . . , W M ( f, k, r g )] 
T . 91 

The power spectral density (PSD) of the beamformer output is 92 

given by 93 

P ( f, k, r g ) = E[ | Y ( f, k, r g ) | 
2 ] 

= w 
H ( f, k, r g ) 8( f, k, r g ) w ( f, k, r g ) (3) 

where 8( f, k ) = E[ x ( f , k ) x H ( f , k )] is the cross-spectral density ma- 94 

trix and E [ · ] denotes mathematical expectation. 95 

The MVDR beamformer [3] is a well-known beamforming tech- 96 

nique which is aimed at minimizing the energy of noise and 97 

sources coming from different directions, while keeping a fixed 98 

gain on the desired position. The MVDR filter relies on the solu- 99 

tion of the following minimization problem 100 

w c ( f, k, r g ) = argmin 
w ( f,k, r g ) 

w H ( f, k, r g ) 8( f, k ) w ( f, k, r g ) 

subject to w H ( f, k, r g ) a ( f, r g ) = 1 
(4) 

where a ( f , r g ) is the steering vector corresponding to a space 101 

position r g . The steering vector depends on the time difference of 102 

arrival (TDOA) of the spherical wavefront between microphones 103 

taking into account the signal attenuation. We can write the TDOA 104 

between microphone i and j as 105 

τ
r g 
i, j 

= 
|| r i − r g || − || r j − r g || 

c 
(5) 

where || · || denotes Euclidean norm and c is the speed of sound. 106 

In the near-field, the steering vector takes the form 107 

a ( f, r g ) = [1 , χ2 e 
j2 π fτ

r g 
1 , 2 

L , . . . , χM e 
j2 π fτ

r g 
1 ,M 

L ] T (6) 

where χm = || r 1 − r g || / || r m − r g || . Solving (4) using the method of 108 

Lagrange multipliers, we obtain 109 

w c ( f, k, r g ) = 
8−1 ( f, k ) a ( f, r g ) 

a H ( f, r g ) 8−1 ( f, k ) a ( f, r g ) 
. (7) 

In real applications, the inverse of the cross-spectral density 110 

matrix can be calculated using the Moore –Penrose pseudoinverse 111 

8+ [21] . Moreover, if 8 is ill-conditioned, the spatial spectrum 112 

might be deteriorated by steering vector errors and discrete sam- 113 

pling effects [4] . Diagonal loading (DL) [7] is a regularization tech- 114 

nique that mitigates the performance degradations of the MVDR 115 

beamformer. The SRP of the beamformer output with MVDR filter 116 

and DL becomes 117 

P ( f, k, r g ) = w 
H 
c ( f, k, r g )(8( f, k ) + ξ I ) w c ( f, k, r g ) 

= 
1 

a H ( f, r g )(8( f, k ) + ξ I ) + a ( f, r g ) 
(8) 

where I is the identity matrix, and the data-dependent DL factor is 118 

given by ξ = tr [ 8( f, k )]1/M, where 1 is the loading constant, and 119 

tr [ ·] denotes the sum of the elements on the main diagonal of the 120 

cross-spectral density matrix. 121 

The power output of the broadband SRP using the NMVDR 122 

[27] is given by 123 

N(k, r g ) = 

L −1 ∑ 

f=0 

P ( f, k, r g ) 

max 
r ′ g 

[ p r ′ g ( f, k )] 
(9) 

where p r ′ g 
( f, k ) = [ P ( f, k, r ′ 

1 ) , . . . , P ( f, k, r 
′ 
g ) , . . . ] is the narrowband 124 

power map for all candidate positions r ′ g ∈ G and max [ ·] denotes 125 

the maximum value. 126 

3. The w eighted MVDR b eamformer 127 

Both MVDR and NMVDR have the disadvantage that in noisy 128 

or reverberant conditions some of the narrowband power maps in 129 

the fusion may exhibit an energy peak corresponding to a wrong 130 

position in the search space, thus providing a misleading contri- 131 

bution to the fusion map. To avoid using this disruptive informa- 132 

tion, we introduce the WMVDR, in which the weighting factors are 133 

here modeled by an SVM classifier. An important advantage of the 134 

SVM with respect to some comparable previous techniques [29,30] , 135 

is that it requires the identification of a smaller number of pa- 136 

rameters and does not relies on any prior information or heuristic 137 

assumptions. 138 

The power output of the WMVDR is expressed as 139 

U(k, r g ) = 

L −1 ∑ 

f=0 

γ f 
P ( f, k, r g ) 

max 
r ′ g 

[ p r ′ g ( f, k )] 
(10) 

where γ f are binary variables, which take values 0 or 1. The SVM 140 

classifier is trained on known source positions G t . Given a refer- 141 

ence source that is fixed in a training position r t ( k ) ∈ G t , the esti- 142 

mated source position using the NMVDR beamformer and only the 143 

information related to frequency f is 144 

̂ r t (k, f ) = argmax 
r ′ g 

[ n r ′ g 
( f, k )] (11) 
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where n r ′ g 
( f, k ) = [ N( f, k, r ′ 

1 ) , . . . , N( f, k, r ′ g ) , . . . ] is the normalized 145 

narrowband power map for all the desired positions r ′ g ∈ G . The 146 

contribution to the localization error related to frequency f is 147 

Ä( f, k, r t ) = || r t (k ) −̂ r t ( f, k ) || . (12) 

The SVM classifier is trained to remove those narrowband compo- 148 

nents which contribute negatively to the localization. Namely, the 149 

i th training set output γ i of the SVM is set as 150 

γ i = 

{
0 , if Ä( f, k, r t ) > η

1 , if Ä( f, k, r t ) ≤ η
(13) 

where η is a given threshold. 151 

We consider three statistical measures of the marginal distribu- 152 

tion as possible input features of the classifier: the skewness, the 153 

kurtosis, and the crest factor. The use of the proposed statistical 154 

features allows the use of a small input vector size, which is di- 155 

mensionally independent from the analysis area and from the spa- 156 

tial resolution. Theoretically, in free-noise and anechoic conditions 157 

the narrowband power map is characterized by a strong impulse 158 

peak in the position where the source is active. In real applications, 159 

the noise and reverberation modify the response power, hence we 160 

use the statistics of the input features along x, y, and z axes for a 161 

more robust learning. The marginal distribution of a narrowband 162 

power map with the NMVDR along the x-axis is 163 

I f (x ) = 

∫ 

y 

∫ 

z 
N( f, k, r g ) d yd z, ∀ x ∈ G x . (14) 

The marginal distributions along y and z can be derived analo- 164 

gously. The skewness is a measure of the symmetry of a distri- 165 

bution, and it is defined for a generic distribution I f ( i ) as 166 

ς i = 
E[(I f (i ) − µi ) 

3 ] 

(E[(I f (i ) − µi ) 2 ]) 
3 
2 
, i = x, y, z (15) 

where µi is the mean of I f ( i ). The kurtosis is a descriptor of the 167 

shape of a distribution, and is defined as 168 

κi = 
E[(I f (i ) − µi ) 

4 ] 

(E[(I f (i ) − µi ) 2 ]) 2 
, i = x, y, z. (16) 

The skewness and kurtosis are related respectively to the peak po- 169 

sition and to the peakedness of a distribution. The crest factor is 170 

the ratio of the largest absolute value to the root mean square 171 

value of a distribution, and is defined as 172 

ιi = 
| I f (i ) | ∞ √ 

1 
R i 

∑ R i 
j=1 

| I f (i j ) | 2 
, i = x, y, z (17) 

where R i is the dimension of I f ( i ). The crest factor indicates how 173 

extreme the peak is in the narrowband power map. The input vec- 174 

tors for the three features are i sk = [ ς x , ς y , ς z ] 
T , i ku = [ κx , κy , κz ] T , 175 

and i cf = [ ιx , ιy , ιz ] T . The input vector for each feature has 3 and 176 

2 components for 3D and 2D localization respectively. When all 177 

features are considered the input vector takes the following form 178 

i a = [ i T 
sk 

, i T 
ku 

, i T 
cf 
] T . 179 

The SVM produces a non-linear classification boundary in the 180 

input space by constructing a linear hyperplane in a transformed 181 

version of the input space [6] . The SVM supervised model is then 182 

defined as 183 

γ ′ 
f = sgn 

( Q ∑ 

i =0 

αi γ
′ 
i ψ ( i i , i ( f )) + b 

)
(18) 

where γ ′ 
f 
takes values { 1 , −1 } , Q is the training sample size, 184 

ψ ( i i , i ( f )) is the inner-product kernel for the i th training input 185 

vector i i and the input vector i ( f ) for the narrowband power map 186 

at frequency f , γ ′ 
i is the i th target value, computed as γ

′ 
i = γ i ( γ i + 187 

1) − 1 so that it takes values { 1 , −1 } , αi ≥ 0, and b is a real con- 188 

stant. The weighting factors are transformed with γ f = (γ ′ 
f 
+ 1) / 2 189 

to obtain values {1, 0}. The inner-product is used to construct the 190 

optimal hyperplane in the feature space. Common types of inner- 191 

product kernels are: linear, quadratic, polynomial, radial basis func- 192 

tion (RBF), multilayer perceptron (MLP). The parameter αi can be 193 

found by solving the following convex maximization quadratic pro- 194 

gramming problem 195 

max 

Q ∑ 

i =0 

αi −
1 

2 

Q ∑ 

i, j=0 

αi α j γ i γ j ψ ( i i , i j ) 

subject to 

Q ∑ 

i =0 

αi γ i = 0 , 0 ≤ αi ≤ λ, i = 1 , 2 , . . . , Q (19) 

where λ is a user specified parameter and provides a trade-off 196 

between the distance of the support vectors from the separating 197 

margin and the training error. In this paper, we use the sequential 198 

minimal optimization [22] algorithm for solving Eq. (19) . By taking 199 

any support vector i j with αi < λ, the parameter b can be calcu- 200 

lated by 201 

b = γ j −

Q ∑ 

i =0 

αi γ i ψ ( i i , i j ) . (20) 

Finally, the SRP with the WMVDR-SVM filter can be written as 202 

203 

U(k, r g ) = 

L −1 ∑ 

f=0 

(
γ ′ 
f 
+ 1 

2 

)
P ( f, k, r g ) 

max 
r ′ g 

[ p r ′ g ( f, k )] 
(21) 

where γ ′ 
f 
is estimated using Eq. (18) . The sound source localization 204 

is estimated using the WMVDR beamformer by picking the maxi- 205 

mum value on the fusion map 206 

̂ r s (k ) = argmax 
r ′ g 

[ u r ′ g 
(k )] (22) 

where u r ′ g 
(k ) = [ U(k, r ′ 1 ) , U(k, r ′ 2 ) , . . . , U(k, r ′ g ) , . . . ] is the power 207 

map for all the searching positions r ′ g ∈ G . 208 

The major computational demand of MVDR comes from the 209 

matrix inversion operation of the Hermitian matrix 8, which 210 

requires O(M 3 ) flops for each narrowband beamforming. Our 211 

WMVDR requires an additional cost for the SVM classification, 212 

which depends on the kernel function used. A SVM with the RBF 213 

kernel has O(Q SV d) complexity, where Q SV is the number of sup- 214 

port vectors and d is the dimension of the input vector, while a 215 

SVM with the linear kernel complexity is O(d) . The complexity of 216 

WMVDR with the SVM-RBF is thus O(LM 3 + Q SV d) , and hence the 217 

additional cost is related to the number of support vectors Q SV . In 218 

our experiments, in which the audio buffer size was L = 2048, the 219 

array had 8 microphones and the Q SV was on average of around 220 

60 0 0 kernels, the localization algorithm was run in real time on 221 

standard computer systems equipped with a i5-i7 CPU and 8GB 222 

RAM. 223 

4. Experiments 224 

In this section, a performance analysis of 2D sound source 225 

localization in simulated and real reverberant rooms is reported. 226 

In all experiments, the SVM was trained with an USASI noise 227 

signal, which roughly simulates the energy distribution of speech 228 

and music. We compare the localization performance of sound 229 

signals using the root mean square error (RMSE) of the proposed 230 

WMVDR-SVM, the WMDR-RBFN [28] , the NMVDR [27] , the MVDR 231 

[3] , and the SRP-PHAT [10] . The SVM and RBFN have been imple- 232 

mented using the Matlab Statistics and Machine Learning Toolbox, 233 
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Fig. 1. The simulated room setup with the G t and G p positions for the training and 

the testing phase respectively. 

Table 1 

Percentage (%) of rejected maps at variation of RT 60 using an USASI noise signal 

during the training phase. 

RT 60 (s) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

(%) 48.19 52.14 58.47 63.11 65.35 67.89 68.11 

whereas for the MVDR filter we used our own implementation. 234 

The RMSE is calculated in the following way 235 

RMSE = 

√ ∑ B 
i =1 [(x s − ̂ x s (i )] 2 + [ y s − ̂ y s (i )] 2 

B 
(23) 

where B is the total number of analysis blocks, and [ ̂  x s (i ) , ̂  y s (i )] are 236 

the estimated Cartesian coordinates of the source for the analysis 237 

block i . 238 

4.1. Synthetic d ata 239 

A reverberant room of 5 m × 4 m × 3 m simulated with the 240 

image-source model [17] was used. Several Monte Carlo experi- 241 

ments were performed. The room setup is shown in Fig. 1 con- 242 

sidering a uniform linear array (ULA) of 8 microphones and two 243 

set of source positions: the training set positions ( G t ) and the test 244 

set positions ( G p ). The distance between microphones in the ULA 245 

was 0.2 m and the spatial resolution of the 2D grid for searching 246 

the source was 0.1 m. The sampling frequency was 44.1 kHz and 247 

the window size L was 2048 samples. Thus, the bandwidth of each 248 

narrowband frequency bin was 21.53 Hz. For all MVDR-based al- 249 

gorithms the loading constant 1 was set to 0.001. The tests were 250 

conducted with different averaging SNR levels, obtained by adding 251 

mutually independent white Gaussian noise (WGN) to each chan- 252 

nel. 253 

4.1.1. Training p hase 254 

An USASI noise signal was used as source for the SVM learn- 255 

ing in the training set positions with a reverberation time (RT 60 ) 256 

of 0.5 s, a SNR of 20 dB, and a parameter η of 0.5 m. This choice is 257 

motivated by the analysis, during the training phase, of the num- 258 

ber of constructively and disruptively contributing maps depicted 259 

in Table 1 , since the goal is to have the same number of correct 260 

and reject maps as much as possible, but considering however a 261 

significant level of reverberation. A RT 60 of 0.5 s is a good compro- 262 

mise. This room condition was used in all simulated experiments 263 

for the SVM learning. 264 

Table 2 

Classification error (%) when performing the validation on the training data set with 

different inner-product kernels. 

RBF Linear MLP Polynomial Quadratic 

Correct Map 33.07 37.67 50.99 71.43 77.68 

Reject Map 53.18 61.77 51.09 20.98 16.74 

Fig. 2. Cross-validation rate (%) of constructively contributing maps and disrup- 

tively contributing ones. 

4.1.2. Testing p hase 265 

In the first experiment, the SVM training using the skewness 266 

measure was performed on USASI sound sources positioned in the 267 

training set positions with different inner-product kernels. We can 268 

observe the results in Table 2 , which report the percentage of 269 

classification error for the positively ( γ f = 1) and for the nega- 270 

tively ( γ f = 0) contributing maps. The RBF kernel provides the 271 

best performance since it provides the lower error for the cor- 272 

rect maps, which is clearly the primary goal when attempting at 273 

selecting only the correct information, and this confirms the rea- 274 

sonable first choice of this kernel when the relation between class 275 

labels and features is nonlinear [14] . The scaling factor σ of RBF 276 

was set to 1 as in [28] . The RBF kernel was thus adopted for the 277 

SVM classifier in subsequent tests. Next, an analysis of the SVM 278 

and RBF parameters was conducted. The results of a grid-search 279 

procedure on λ and σ using a cross-validation [14] is shown in 280 

Fig. 2 . High cross-validation rate of positively contributing maps 281 

corresponds to low cross-validation rate of negatively contribut- 282 

ing ones, and vice versa. An optimal set of parameters is thus 283 

obtained by balancing the two contributes and by setting σ = 1 284 

and λ = [1 , 10 , 100 , 10 0 0] . Hence, a good choice is given by setting 285 

σ = 1 and λ = 1 with a cross-validation rate of 58,38% ( γ f = 1 ) 286 

and 48,94% ( γ f = 0 ). This setup set was used in the localization 287 

performance tests. Q2 
288 

A set of experiments were then conducted for evaluating dif- 289 

ferent operating conditions. The performance was evaluated with 290 

a male and a female speech signal from the TSP Speech Database 1 . 291 

An optimal frequency range between 80 Hz and 80 0 0 Hz, since it 292 

is a typical spectrum range of speech signals, was used. Table 3 293 

shows the localization performance using as input the skewness, 294 

the kurtosis, the crest factor, all the three features together, and 295 

the marginal distribution as in [28] . The WMVDR-RBFN using the 296 

skewness measure (WMVDR-RBFN-S) was also considered. We can 297 

see that the best performance is achieved by the WMVDR-SVM- 298 

RBF using the skewness measure, which was adopted in subse- 299 

quent tests. A localization evaluation for different reverberant con- 300 

ditions and a SNR of 20 dB is showed in Figs. 3 and 4 . As we can 301 

observe, the WMVDR-SVM-RBF outperforms all other algorithms. 302 

Then, Figs. 5 and 6 show the RMSE using spatially white noise con- 303 

ditions with a RT 60 of 0.3 s. We note the reduction of localization 304 

performance of the WMVDR-SVM-RBF in a low noise condition in 305 

which the RMSE tends to that of the NMVDR. Furthermore, we can 306 

1 http://www-mmsp.ece.mcgill.ca/Documents/Data. 
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Table 3 

RMSE (m) of localization performance with synthetic data and a RT 60 of 0.5 s, a SNR of 20 dB, and a η of 

0.5 m. 

WMVDR-SVM-RBF 

Crest Factor Kurtosis Skewness Cr. F.+Kurt.+Sk. Marg. Distr. 

Male Speech G t 1.751 0.886 0.559 0.718 0.613 

Female Speech G t 1.921 1,012 0.875 0.952 0.882 

Male Speech G p 1.587 0.583 0.404 0.487 0.470 

Female Speech G p 1.611 0.999 0.755 0.788 0.782 

WMVDR-RBFN WMVDR-RBFN-S NMVDR MVDR SRP-PHAT 

Male Speech G t 0.816 1.154 1.063 1.572 1.020 

Female Speech G t 0.988 1.342 1.533 1.836 1.530 

Male Speech G p 0.760 1.067 1.123 2.003 1.127 

Female Speech G p 0.869 1.286 1.483 1.729 1.508 

Fig. 3. Localization performance of a male speech in G p and SNR = 20 dB. 

Fig. 4. Localization performance of a female speech in G p and SNR = 20 dB. 

Fig. 5. Spatially white noise: localization performance of a male speech in G p and 

RT 60 = 0.3 s. 

observe in Figs. 7 and 8 a good performance of the WMVDR-SVM- 307 

RBF in a diffuse noise field [13] with a SNR range of 5–20 dB and 308 

a RT 60 of 0.3 s. The localization performance and a rejection map 309 

analysis during the training phase of the WMVDR-SVM-RBF with 310 

respect to parameter η is showed in Fig. 9 . We observe a similar 311 

RMSE performance for η in the range [0.3; 0.9]. 312 

Next two experiments were conducted to evaluate the impact 313 

of the room size and of the array geometry on the algorithm 314 

Fig. 6. Spatially white noise: localization performance of a female speech in G p and 

RT 60 = 0.3 s. 

Fig. 7. Diffuse noise: localization performance of a male speech in G p and RT 60 = 

0.3 s. 

Fig. 8. Diffuse noise: localization performance of a female speech in G p and RT 60 = 

0.3 s. 

performance. The SNR and the RT 60 were set to 20 dB and 0.5 s 315 

respectively. Specifically, a localization evaluation of a male speech 316 

signal in the test position with a smaller (3.5 m × 3 m × 2.5 m) 317 

and a larger (10 m × 8 m × 4 m) room, with respect to the 318 

trained room, is depicted in Table 4 . We can see that the pro- 319 

posed WMVDR-SVM-RBF can be used in different room sizes. In 320 

particular, when the size of a room is larger we have a better 321 
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Fig. 9. Round marker: localization performance of a male speech in G p with a 

SNR = 20 dB and a RT 60 = 0.5 s. Square marker: rejection map during the training 

phase. 

Table 4 

RMSE (m) of localization performance with synthetic data for different room sizes 

using a male speech signal in the test position G p . 

Room Size 

WMVDR- 

SVM-RBF 

WMVDR- 

RBFN-S NMVDR MVDR SRP-PHAT 

(3.5 m × 3 m ×

2.5 m) 

0.549 1.070 0.877 1.273 0.847 

(10 m × 8 m ×

4 m) 

0.317 1.556 1.458 0.909 1.598 

Table 5 

RMSE (m) of localization performance with synthetic data for randomly array ge- 

ometries using a male speech signal. 

WMVDR-SVM-RBF WMVDR-RBFN-S NMVDR MVDR SRP-PHAT 

1.466 2.195 1.342 1.715 1.401 

Table 6 

RMSE (m) of localization performance with different synthetic data in the test po- 

sition G p and a frequency range of analysis of 80–16 , 0 0 0 Hz. 

WMVDR-SVM-RBF WMVDR-RBFN-S NMVDR MVDR SRP-PHAT 

Male Speech 0.483 1.118 0.782 1.394 0.774 

Gunshot 0.018 1.077 0.265 2.371 0.265 

Flute 0.573 1.294 0.775 0.822 0.962 

performance due to the reduction of early reflection energy at 322 

microphones. This fact is also observable as a better localization 323 

of the MVDR if compared to that of NMVDR and of SRP-PHAT. In 324 

this case, the normalization that improves the SRP resolution pro- 325 

vides a smaller advantage in the identification of direct path and 326 

reflections. On the contrary, when the room size decreases, the 327 

energy of reflections at microphones is larger and the localization 328 

performance decreases as a consequence. Table 5 shows instead 329 

the results with different array geometries. In this experiment, 330 

the microphones and the source were randomly located with a 331 

uniform distribution in each trial so that the minimum distance 332 

between walls and microphones was 0.1 m. We have considered 333 

the same room of the training phase that is depicted in Fig. 1 . 334 

As we can observe in Table 5 , the SVM classifier is not able to 335 

improve the localization performance. 336 

Finally, an analysis of the generalization with respect to the 337 

acoustic characteristics of the source was conducted. In this ex- 338 

periment, a RT 60 of 0.3 s, a spatially white noise of 15 dB, and a 339 

frequency range between 80 Hz and 16 , 0 0 0 Hz for computing the 340 

beamforming were used. We have used a male speech signal, an 341 

impulsive gunshot signal, and a flute musical instrument signal 2 . 342 

Table 6 shows the improvement of localization performance with 343 

different tar get sound signals for the proposed WMVDR-SVM-RBF. 344 

2 http://theremin.music.uiowa.edu/ 

Fig. 10. Localization performance with variable bandwidth [ fl, fh ] of a WGN signal. 

The SNR was 10 dB, the RT 60 = 0.5 s, and fl was set to 80 Hz. 

Fig. 11. Localization performance with variable FFT size L of a WGN signal with a 

bandwidth [80,10 0 0] Hz. The SNR was 5 dB and the RT 60 = 0.6 s. 

Fig. 12. The PSD of the NMVDR and the proposed WMVDR-SVM-RBF. 

We note a minor improvement for the flute signal, due to its har- 345 

monic spectrum. Next, Fig. 10 shows the performance in relation 346 

to signal bandwidth. The source signal in this case was obtained by 347 

processing a WGN with a bandpass filter H [ fl, fh ] , where fl and fh are 348 

the lower and upper frequency limit respectively. The experiments 349 

were conducted by using f l = 80 Hz as lower limit and different 350 

upper limit frequencies ranging from 81 Hz to 80 0 0 Hz. We note 351 

that when the signal becomes narrowband the WMVDR-SVM-RBF 352 

performance degrades to that of MVDR. We can observe also the 353 

noise emphatization problem due to the normalization with nar- 354 

rowband sources for the SRP-PHAT and the NMVDR [12,27] . Last, 355 

Fig. 11 shows the performance for a WGN signal with a frequency 356 

band of [80, 10 0 0] Hz, at variation of the block size L for com- 357 

puting the fast Fourier transform (FFT). The WMVDR-SVM-RBF per- 358 

forms better when the spectral resolution is increased, and when 359 

L < 1024 samples the SVM is ineffective due to the reduced num- 360 

ber of narrowband bins. Fig. 12 depicts a PSD along x and y axis 361 

of the proposed method and of the NMVDR for a speech signal in 362 

a free-noise anechoic condition. We can see the effect of removing 363 

the incorrect narrowband power maps keeping an high resolution 364 

on the source position and providing a larger attenuation of the 365 

power in the other directions. 366 
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Fig. 13. The real room setup and the loudspeaker used in experiments. 

Table 7 

RMSE (m) of localization performance with real data. 

L (sample) WMVDR-SVM-RBF WMVDR-RBFN-S NMVDR MVDR SRP-PHAT 

2048 0.896 1.208 1.279 1.610 1.169 

8192 0.087 0.354 0.323 1.436 0.242 

4.2. Real d ata 367 

The experiments were performed in a room with a RT 60 of 0.6 s 368 

and setup as in Fig. 13 . The distance between microphones was 369 

0.2 m, the sampling frequency was 44.1 kHz, and the window size 370 

L was 2048 and 8192 samples. Sixteen source positions have been 371 

considered. A speech signal from a male speaker was reproduced 372 

with a loudspeaker placed in each position. The loudspeaker, de- 373 

picted in Fig. 13 , has a small oval driver with a size of 9.5 cm ×374 

5 cm, a frequency response of 90–20 , 0 0 0 Hz, and a RMS power of 375 

1 W. In each test position, the loudspeaker was directed toward 376 

the center of the array. An USASI noise signal was used as source 377 

for the SVM learning in the training set positions of the simulated 378 

room setup depicted in Fig. 1 with a RT 60 of 0.5 s, a SNR of 20 dB, 379 

and the parameter η set to 0.5 m. Since the training room and 380 

the real testing room have different size, the WMVDR-RBFN-S was 381 

used. The results reported in Table 7 confirm the improvement of 382 

the localization accuracy for the proposed WMVDR-SVM using an 383 

USASI noise signal for a SVM training phase in a simulated rever- 384 

berant environment. 385 

5. Conclusions 386 

A WMVDR beamformer based on a SVM classifier with a RBF 387 

kernel has been presented. It improves the localization accuracy in 388 

a single source scenario without point-source interferences by us- 389 

ing the skewness measure of marginal distributions and by select- 390 

ing only the narrowband power maps that positively contribute to 391 

the broadband fusion. We showed that a training phase using an 392 

USASI noise signal in a simulated room allows the machine learn- 393 

ing to select the useful acoustic information and to discard the cor- 394 

rupted information with different sound signals, room sizes, and 395 

room conditions both with synthetic and real data. We showed 396 

that improved performance is achieved for different reverberant 397 

conditions and a SNR up to 5 dB. When using the SVM learning 398 

in the NMVDR algorithm, however, it is required that the geome- 399 

try of the array is kept similar in the training and in the testing or 400 

operating phase, and that a sufficiently high frequency resolution 401 

is used in the FFT analysis step. 402 
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