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a b s t r a c t 

Mobile biometrics represent the new frontier of authentication. The most appealing feature of mobile 

devices is the wide availability and the presence of more and more reliable sensors for capturing bio- 

metric traits, e.g., cameras and accelerometers. Moreover, they more and more often store personal and 

sensitive data, that need to be protected. Doing this on the same device using biometrics to enforce secu- 

rity seems a natural solution. This makes this research topic attracting and generally promising. However, 

the growing interest for related applications is counterbalanced by still present limitations, especially for 

some traits. Acquisition and computation resources are nowadays widely available, but they are not al- 

ways sufficient to allow a reliable recognition result. Most of all, the way capture is expected to be carried 

out, i.e., by the user him/herself in uncontrolled conditions and without an expert assistance, can heavily 

affect the quality of samples and, as a consequence, the accuracy of recognition. Among the biometric 

traits raising the interest of researchers, iris plays an important role. Mobile Iris CHallenge Evaluation 

II (MICHE II) competition provided a testbed to assess the progress of mobile iris recognition, as well 

as its limitations still to overcome. This paper presents the results of the competition and the analysis 

of achieved performance, that takes into account both proposals submitted for the competition section 

launched at the 2016 edition of the International Conference on Pattern Recognition (ICPR), as well as 

proposals submitted for this special issue. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Mobile equipment is ubiquitous nowadays. Smartphones are in-

xorably substituting “old” cellular phones, that in turn had re-

laced traditional landlines at a significant extent. As a matter of

act, it is not very frequent to find a public telephone, that was in

he past a characteristic element in the urban scenario. The possi-

ility to communicate almost wherever and whenever represents

 significant sociological phenomenon. Notwithstanding this, the

whatever” option offered by the new communication devices and

rotocols can be seen as the actual revolution. The use of smart

obile devices for mere communication, in its traditional meaning

f “speaking with somebody” has become quite marginal with re-

pect to more advanced communication modalities. These include

ending in real time almost any kind of multimedia information,

herefore dramatically decreasing the time needed for dissemina-

ion of ideas and event accounts. One of the aspects related to this

ew technological scenario is the possibility to store personal, and

ften sensitive data directly on the mobile devices, and remotely
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onnecting to either social platforms or to personal services. The

atter often entail the exchange of sensitive information, and re-

uires a twofold approach to address an increased security need:

rom one side, it is necessary to reliably identify the owner before

he use of the device, while from the other side it is necessary to

eliably identify the user of a remote service at the moment the de-

ice is used to connect to it. It is well accepted that biometrics can

oth enforce and make authentication simpler. In simple cases, the

resentation of a robust biometric trait for recognition can substi-

ute complex passwords or cards. The next step on which research

s focusing is to move biometrics on mobile. Mobile biometric

ecognition is the new advanced frontier for secure use of data and

ervices, either locally or remotely. It provides a further application

or user mobile equipment, which are ubiquitous nowadays. These

nclude both by personal devices, e.g., smartphones and tablets,

ut also the incoming wearable devices, e.g., smart watches, given

hat they are equipped with suitable sensors. Capture of biomet-

ic traits in any place is both the strength of this new approach.

aptured information (sample) can be compared with that stored

ither on the device itself, or even within RFID tags, smartcards or

achine readable identification documents (IDs), to verify owner’s

dentity by a 1:1 match operation. As an alternative, the possibly
– Mobile Iris CHallenge Evaluation II, Pattern Recognition Letters 
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pre-processed sample can be sent to a remote server, for identifica-

tion in a set of relevant subjects by a 1: N matching operation. Mo-

bile devices used for biometric recognition must therefore embed

suitable hardware equipment and software applications, allowing

to capture and possibly process data from one or more biometric

traits. However, the any-time, any-place option is also one of the

weak points of this new authentication paradigm. 

Applications must be designed for intuitive operation, especially

if it is not planned to assist users during sample capture. The

environmental conditions might be adverse and cause a number

of artifacts, e.g., shadows, reflections, or acoustic noise, hindering

an accurate recognition. Moreover, the user might not be able to

evaluate the sufficient quality of the obtained capture, able to al-

low a reliable processing. The captured data must be suitably con-

verted by software into digital templates for storage and matching

against other records. Feature extraction, storing and processing,

might require non negligible resources. Therefore, notwithstand-

ing the continuous advances in technology and resources, trans-

ferring all the phases of biometric processing on a mobile device

calls for faster and lighter procedures (e.g., see De Marsico et al.

[12] ), and for more efficient storage, that might not be universally

available yet. Techniques targeted at mobile devices must still be

suitably adapted. It is interesting therefore to assess the level of

performance that we can realistically expect from a mobile bio-

metric application. 

Among possible biometric traits that can be processed in a mo-

bile setting, iris plays a relevant role. Iris acquisition is little in-

trusive, since it can be carried out at a reasonable distance from

the eye to avoid user discomfort. In addition, iris codes are among

the lighter templates to store. Related research achieved a quick

performance increase. The pioneering works by Daugman [11] and

Wildes [25] , as it happened for other biometric traits, mostly per-

tain controlled settings. More recent challenges address iris recog-

nition in less controlled and/or mobile settings [13,22] . Among the

most advanced approaches, it is worth mentioning the use of deep

learning [18] . At present, iris recognition systems operating in con-

trolled conditions still require a distance of about 1m or less be-

tween the subject and the capture device. Moreover, the user has

to look towards the device for about 3s. The first iris biometric

competitions have relied on images acquired in these conditions.

Among the most well-known, we can mention the Iris Challenge

Evaluation (ICE) [20] . Proença and Alexandre [21] have rather tack-

led the problem of noisy iris recognition. A further difference is

that they aimed at assessing performance over images captured

in visible light (VL) instead of near-infrared (NIR). This point is

still debated in the research community. VL images usually con-

tain more features and, in some cases, more details than the NIR

images. However, they are also more seriously affected by prob-

lems due to uneven illumination and may present many noisy ar-

tifacts, especially reflections of light sources and/or objects present

in the environment. Moreover, their processing suffers from dark

pigmentation [17] . This raises an apparent contradiction: more de-

tail does not necessarily mean more information. The work by

Hollingsworth et al. [17] demonstrated that humans can better rec-

ognize images of the periocular region, including skin patches and

other elements like eyebrows, if acquired in visible light. As a mat-

ter of fact, these images show melanin-related differences that do

not appear in NIR images. However, the situation is often reversed,

when the recognition operation regards the iris alone. IR images

contain cleaner and more easily distinguishable features, and this

makes iris recognition in IR generally more feasible than in visible

light. In addition, dark pigmentation represents a hard condition in

VL, since it may hide details that are otherwise well detectable in

lighter colors irises. According to a balance between pros and cons

of the different approaches, commercial iris recognition uses NIR

acquisition. Since mobile biometrics are becoming quite popular,
Please cite this article as: M. De Marsico et al., Results from MICHE II 
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he market also started to offer NIR attachments made for mobile

evices. However, in everyday devices, both NIR sensors and NIR

ttachments are still quite rare, and it is difficult to anticipate if

hey will reach a sufficient diffusion, if no largely shared user re-

uirement arises. The aim of Mobile Iris CHallenge Evaluation II

MICHE-II) competition, was to assess which level of performance

an be achieved without special equipment. The aim of the con-

est, was to collect relevant contributions to the field of mobile iris

ecognition in both academy and industry. A section of the contest

as launched in conjunction with ICPR 2016, while further propos-

ls were submitted for this Special Issue. This paper presents the

omparison of the eight best performing algorithms. In the follow-

ng, Section 2 will present the benchmark used for the competi-

ion. Section 3 describes the competition setup, by presenting the

ommon segmentation algorithm provided to competitors and the

erformance measures used for the evaluation. Section 4 briefly

resents the best eight algorithms participating in MICHE-II chal-

enge. Section 5 presents and discusses the competition results. Fi-

ally, Section 6 draws some conclusions. 

. MICHE-II database 

In biometrics research, the advancements in recognition tech-

iques, and in particular the progressive loosening of constraints

n acquisition conditions, usually calls for increasingly challeng-

ng benchmarks. This happened for iris too. The Chinese Academy

f Sciences collected and made available to the scientific commu-

ity the first group of publicly available datasets of significant size

ealing with iris images, namely CASIA-Iris. since 2002, the orig-

nal dataset has been updated from CASIA-IrisV1 to CASIA-IrisV4.

n all dataset versions, images are collected under NIR illumination

r contain synthesized parts (CASIA-IrisV1). For these reasons, they

annot be used for a general assessment of methods entailing mo-

ile acquisition, where NIR sensors are not sufficiently widespread

n mobile devices. The mentioned ICE competitions used images

cquired with the same class of sensors. UBIRIS datasets were col-

ected in order to rather assess proposals of iris recognition in VL.

heir images were acquired and made available from SOCIA Lab at

niversity of Beira Interior (Portugal), that organized the two NICE

hallenges that will be discussed in the next section. The images

ere captured in visible light and uncontrolled conditions. Such

onditions are similar to those that MICHE-II competition wanted

o address. However, acquisition exploited cameras with a better

esolution than average ones embedded in mobile devices. 

The aim of MICHE-I dataset, which is publicly available to the

cientific community and represents the core of the still unpub-

ished MICHE-II dataset, is to represent the starting core of a wider

ataset to be collected using different mobile devices, in uncon-

rolled conditions, with different illumination, and without the as-

istance of an operator. This should better allow unbiased assess-

ent of cross-device and cross-setting interoperability of recogni-

ion procedures. In fact, the dataset allows a twofold assessment.

t allows to measure the ability to match samples of the same sub-

ect from different devices, and in different environments. In ad-

ition, more in general, it allows to measure the ability to han-

le samples acquired by devices with different characteristics and

n different settings, without a significant degradation of recogni-

ion performance. MICHE-I, the core of MICHE-II, is a dataset of

ris images acquired in visible light by different mobile devices. Its

ey features are: (1) a sufficient population of users; (2) the use

f different mobile devices embedding sensors with different char-

cteristics; (3) the acquisition process including different sources

f noise; and (4) more acquisition sessions in different times. The

mages in the dataset are further fully annotated, as detailed in the

ollowing. Three kinds of devices were used for iris image capture:
– Mobile Iris CHallenge Evaluation II, Pattern Recognition Letters 
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1 http://biplab.unisa.it . 
2 http://nice1.di.ubi.pt . 
3 http://nice2.di.ubi.pt/ . 
• Galaxy Samsung IV (GS4) smartphone: Google Android Oper-

ating System, two cameras: CMOS posterior camera with 13

Megapixel (72 dpi) and 2322 × 4128 resolution, and CMOS an-

terior camera with 2 Megapixel (72 dpi) and 1080 × 1920 res-

olution; 
• iPhone5 (IP5) smartphone: Apple iOS Operating System, two

cameras: iSight posterior camera with 8 Megapixels (72 dpi)

and 1536 × 2048 resolution, and anterior FaceTime HD Cam-

era with 1.2 Megapixels (72 dpi) and 960 × 1280 resolution; 
• Galaxy Tablet II (GT2): Google Android Operating System, no

posterior camera, 0.3 Megapixels anterior camera with 640 ×
480 resolution. 

In order to have images with the same characteristics of those

xpected in a mobile operation, the subjects participating in data

ollection were instructed to behave as they would do in a nor-

al situation, e.g., subjects wearing eyeglasses could either choose

o remove or keep them, and take a different choice in different

essions. They captured self-images of one of their irises only, by

olding the mobile device at the distance they considered to be

uitable, with a minimum of four shots for each camera and acqui-

ition mode (indoor, outdoor). Indoor acquisition set up included

arious sources of artificial light, sometimes combined with nat-

ral light sources. Outdoor acquisition was carried out using nat-

ral light only. As a consequence of the different sensor charac-

eristics, the different groups of images, for each device and for

ach camera, have different levels of resolution, which is one of

he factors that possibly negatively affect cross-device recognition.

ICHE-I dataset images are affected by different sources of noise:

a) reflections caused by artificial/natural light sources, people or

bjects in the scene; (b) out of focus; (c) blur, due either to an

nvoluntary movement of the hand holding the device, or to an

nvoluntary movement of the head/eye; (d) occlusions, due to eye-

ids, eyelashes, hair, eyeglasses, or shadows; (e) device-specific ar-

ifacts, due to the low resolution and/or to the specific noise pat-

ern of the device; (f) off-axis gaze; (g) variable illumination; and

h) different color dominants. The lack of precise framing and of

xed distance in the capture, result in variable sizes of the region

seful for recognition. As a matter of fact, both images containing

ell centered eyes and images containing half faces are present

n dataset. This can be considered as typical of mobile captures

erformed by the users, which usually hold the device neither too

lose nor at arm-length. As a consequence, eye localization, that

ust be performed in a pre-processing step, may result more dif-

cult. In some cases, it is possible to exploit the extended perioc-

lar region for recognition, if this is included in the captured im-

ge, but this cannot be taken for granted. The dataset has been

ollected during different acquisition sessions, of course separated

n time. The time elapsed between the first and second acquisi-

ion of a same subject varies from two to nine months. At present,

ICHE-I contains images from 75 different subjects, with 1297 by

S4, 1262 images from IP5, and 632 images from GT2. 

As already mentioned, MICHE-I images are annotated to main-

ain a number of useful information. The XML annotations include

he following tags: 

• filename : the name of the image to which the XML file refers;

it is composed according to a convention allowing a quick re-

trieval of the desired image(s); 
• img type : the trait captured in the image, since face images will

be included soon in the dataset; 
• iris : the iris that was acquired (right, left or both when the im-

age contains both irises); 
• distance from the device : distance of the user from the acqui-

sition camera, measured to provide a further assessment infor-

mation; 
• session number : the number of the image acquisition session; 
Please cite this article as: M. De Marsico et al., Results from MICHE II 

(2017), http://dx.doi.org/10.1016/j.patrec.2016.12.013 
• image number : image ordinal number; 
• user : identification number of the subject, together with age,

gender and ethnicity; 
• device : all information about the capture device: type, name,

camera position (front or rear), resolution and dpi; 
• condition : information about capture conditions: location, illu-

mination; 
• author : the XML file also contains the name of the labora-

tory/institution who made that acquisition. 

MICHE-I was the dataset provided to participants to MICHE-

I challenge for training. Further sequestered images with simi-

ar characteristics were captured and used to evaluate the final

anking. These will be added to MICHE-I to obtain the complete

ICHE-II dataset, that will be soon available to the research com-

unity. 1 

Figs. 1 and 2 in Section 3.2 below show some examples of im-

ges in MICHE-I. 

. MICHE-II competition setup 

This section presents the setup that was chosen for MICHE-II

ompetition, starting from the elements that distinguish it with re-

pect to preceding challenges, and then presenting the details of

he common framework provided to participants. 

.1. The goal of MICHE-II competition 

The previous section has already mentioned the first wide chal-

enges in iris recognition, namely ICE. Since those competitions

sed NIR images of the iris, acquired in controlled conditions, it is

lear how they differ from MICHE-II. A more similar context in en-

ailed bu NICE contests. The Noisy Iris Challenge Evaluation (NICE

), 2 organized by SOCIA Lab at University of Beira Interior (Portu-

al), exploited images captured in unconstrained imaging environ-

ents to evaluate at which extent noise can affects iris segmenta-

ion. To this aim, the proposed iris dataset UBIRIS.v2 [23] contains

ata captured in the visible light (VL), at-a-distance, namely be-

ween 4 and 8m, and on the move. The results achieved by partic-

pant methods confirm the major impact that uncontrolled condi-

ions have on recognition performance. Recognition of visible light

VL) iris images captured at-a-distance and on the move with less

ontrolled protocols was the target of the further NICE II contest 3 

21] . While NICE I contest was focused on iris segmentation, NICE

I rather addressed iris recognition. The segmentation masks ob-

ained by the best algorithm from NICE I were provided to par-

icipants, that used them to select the relevant region for feature

xtraction and matching. The pair of competitions MICHE-I and

ICHE-II has been conceived along a similar line. 

MICHE-I challenge [13] addressed issues related to iris acqui-

ition and segmentation by mobile devices. In this new context,

he basic assumption is that the subject to be recognized au-

onomously operates the capturing device. MICHE-I provided to

articipants the dataset with the same name, to be used as a com-

on benchmark, and suitable to assess the performance of biomet-

ic applications related to this specific setup. Two opposite consid-

rations hold. The usually short distance (the length of a human

rm at maximum) can increase capturing accuracy/ quality. A fur-

her element to consider is the natural tendency of the user tends

o assume a frontal pose in selfies. The reverse of the medal is

hat the quality of the captured image can suffer from both pos-

ible lower resolution, due to the capture device, and from out of
– Mobile Iris CHallenge Evaluation II, Pattern Recognition Letters 
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Fig. 1. Examples of segmentation of “good” images with the algorithm proposed by Haindl and Krupi ̌cka for MICHE-I. 

Fig. 2. Examples of segmentation of “problematic” images with the algorithm proposed by Haindl and Krupi ̌cka for MICHE-I. 
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focus/motion blur, incorrect framing, and illumination distortions,

caused by both the kind of device and by the lack of experience

of the user in controlling the capture operation. Due to these dis-

tortion factors, the robustness of detection/segmentation and en-

coding procedures must be suitably improved in order to achieve

good results in this context. Obviously the accuracy of the encod-

ing, i.e., the ability to correctly extract relevant and discriminative

features, and the following recognition, are heavily affected by the

quality of the segmentation. As mentioned above, the composition
Please cite this article as: M. De Marsico et al., Results from MICHE II 

(2017), http://dx.doi.org/10.1016/j.patrec.2016.12.013 
f the dataset used for MICHE-II challenge is basically the same of

ICHE-I, with the addition of new unpublished images to be used

n the competitors ranking process. 

.2. The common segmentation algorithm 

According to the policy established by NICE-I and NICE-II com-

etitions, the problem of iris recognition was tackled by the two

eparate challenges: MICHE-I addressing segmentation, and the
– Mobile Iris CHallenge Evaluation II, Pattern Recognition Letters 
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fi  
ollowing MICHE-II addressing recognition. In order to ensure a

air and unbiased evaluation focused on recognition only, all com-

eting groups registered for the challenge had to use a common

egmentation algorithm, namely the best segmentation algorithm

rom MICHE-I. This algorithm, proposed by Haindl and Krupi ̌cka

16] , is focused on the detection of the non-iris components in-

ide the parametrized iris ring. The segmentation procedure starts

rom a reflection detection step. After this, form-fitting techniques

roduce a parametrization of the pupil. Next, as it often happens

n iris-related methods, data is converted into the polar domain,

here texture analysis identifies the regions of the normalized

ata according to a Bayesian paradigm separating iris from non-

ris. All the MICHE-II competitor methods start from the segmenta-

ion produced. Fig. 1 shows some examples of “ideal” images cap-

ured both indoor and outdoor, with the corresponding segmenta-

ion mask obtained by the algorithm by Haindl and Krupi ̌cka. 

It is interesting to notice that, though reflections are more ev-

dent outdoor, a more diffused and uniform illumination creates

avorable conditions for localization and segmentation. 

Fig. 2 shows some examples of problematic images. They sum-

arize a number of problems that can be found in MICHE-I

ataset, that can be generically classified as “occlusions”. For in-

tance, they can depend from the presence of glasses, that can cre-

te sharp shadows in the region of interest, especially indoor, and

n general to a scarcely visible iris region, so that the number of

ixels that can be used for recognition is reduced. 

It is possible to underline that in some cases the eye is framed

uite well in the captured image, while in other cases a half face

s captured. 

.3. Performance evaluation 

Different feature extraction procedures can produce different

inds of templates, that may require specific approaches to similar-

ty/distance evaluation. For this reason, the competitors were left

ree to choose any suitable distance measure for the produced iris

emplates, with the only constraint to be a semi-metric at least.

he dissimilarity score chosen by each competitor was meant to

epresent the probability that two irises are from two different

ubjects. The higher is the dissimilarity, the higher is the proba-

ility that the two irises are not from the same person. According

o this, given I the set of images from MICHE-II database, and I a 
nd I b ∈ I , the dissimilarity function D had to be defined as: 

 : I a × I b → [0 , 1] ⊂ R (1)

nd had to satisfy the following properties: 

1. D (I a , I a ) = 0 

2. D (I a , I b ) = 0 → I a = I b 
3. D (I a , I b ) = D (I b , I a ) 

The final result returned by each algorithm had to be a full dis-

imilarity matrix among probe and gallery sets provided in. The

ompetition procedure avoided a possible bias implied by em-

edding special processing into the algorithms to improve perfor-

ance, since new images were added and new distance matrices

ere computed in order to create the final rank. Distance matri-

es produced by each methods were used to compute the usual

igures Of Merit (FoM) to rank them, namely Recognition Rate

RR) for identification, and Receiver Operating Characteristic (ROC)

urves, in particular the Area Under Curve (AUC), for verification. 

. Competitor algorithms at a glance 

This section briefly presents the best eight algorithms submit-

ed for MICHE-II challenge. Algorithms are listed according to the

nal ranking achieved. The given information is sufficient to give a
Please cite this article as: M. De Marsico et al., Results from MICHE II 
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elf-contained account for results. More details can be found in the

apers in this Special Issue. Each algorithm is labeled in order to

dentify it in the tables in the section presenting the experiments. 

The best recognition results were achieved by the algorithm de-

oted by the label tiger_miche and described in [6] (extended

n [7] ), with the algorithm that in the following will be . This algo-

ithms carries out iris matching by a combination of a popular iris

oding approaches and a periocular biometric processing based on

he Multi-Block Transitional Local Binary Patterns (LBP). The algo-

ithm computes iris code Hamming distance and periocular match-

ng scores separately, and then combines the results by a score-

evel fusion to improve the system accuracy. Since the matchers

roduce values in different ranges and with very different score

istributions, z-score normalization is used. 

The following algorithm is labeled karanahujax and is de-

cribed in [8] (extended in [9] ). The paper first presents a baseline

odel, based on Root Scale-Invariant Feature Transform (SIFT). The

egmented iris image is overlaid with the binary mask to get the

ris image rid of occlusions. Then Dense color Root SIFT descriptors

10] are computed, giving keypoints with identical size and orien- 

ation. Then two stacked convolution-based deep learning models

Convolutional Neural Networks – CNNs) are designed to identify

 given subject from a periocular image. The CNNs are trained on

 set of periocular images as part of the learning phase. The two

onvolution-based models for verifying a pair of periocular images

ontaining the iris are compared amongst each other as well as

ith the baseline model. In the first approach, deep learning is

mplemented in an unsupervised manner (Model 1). The method

ses a stacked convolutional architecture, after learning external

odels a-priori on external facial and periocular data, on top of

he baseline model applied on the provided data. Afterwards dif-

erent score fusion models are tested to get the final result. In the

econd approach, the authors still use a stacked convolution archi-

ecture, but the discriminative feature representations is learned in

 supervised manner (Model 2). 

The algorithm with label Raja is due to Raja et al. [24] . They

ropose multi-patch deep features using deep sparse filters, in or-

er to obtain robust features for iris recognition. The patch level

epresentation is obtained by dividing the iris image into a num-

er of patches, that are mapped onto a collaborative subspace to

erform classification via maximized likelihood. The approach is

esigned to work also with a single-sample gallery. Of course, the

dvantage entailed by the patch based approach is that the noise

rom external illumination and eyelids can be considered as local-

zed within individual blocks, so that other blocks are relatively

oise free and can be reliably used for extracting robust features.

n order to avoid missing relevant global information, the features

re extracted from the holistic image which is jointly represented

ith the patches. The information corresponding to red, green and

lue color channels separately. The images obtained for each chan-

el from segmentation and normalization are divided into a num-

er of blocks. Along with the number of blocks, the whole image

s also processed to obtain deep sparse histograms using the set

f deep sparse filters. The set of histograms obtained from differ-

nt channels and blocks are concatenated to form the final feature

ector. In order to in order to demonstrate the robust feature rep-

esentation provided by the proposed scheme, the authors employ

imple distance measures using χ2 and Cosine distance. 

The next algorithm is labeled irisom and details can be found

n [1] (extended in [19] ). Simple image processing techniques,

ike contrast enhancement and histogram adjustment, are used to-

ether with unsupervised learning by Self Organizing Maps (SOM).

he algorithm first matches the original image in polar coordinates

ith the segmentation mask, in order to discard all non-significant

ixels in the surrounding of the iris. A SOM network is then con-

gured and trained with pixels of the pre-processed image, thus
– Mobile Iris CHallenge Evaluation II, Pattern Recognition Letters 
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building the feature matrix that clusters the iris pixels. The SOM

network is fed with RGB triples together with local statistical de-

scriptors. These are kurtosis and skewness, which are computed

at pixel level in a neighborhood window of 3 × 3 size. The out-

put of the network is a feature map with the activation status of

the neurons for each pixel. In practice, such a map represents the

cluster decomposition of the image, which projects the problem of

iris recognition onto a lower dimensional space. On the obtained

feature maps, the algorithm computes the Histogram of Gradients

(HOG) over the obtained feature maps, and the result is used as a

feature vector representing the iris. To verify the subject identity,

the Pearson coefficient in the [0,1] real interval is used, to mea-

sure the correlation between two images. The Pearson correlation

is used as the probability that the two irises are from the same

subject. Results reported here refer to 5 × 5 and 10 × 10 SOM. 

The algorithm proposed by Galdi and Dugelay has label

FICO_matcher [14] (extended in [15] ). It uses of a combination

of classifiers exploiting the iris color and texture information.

Moreover cluster information is coded, where “clusters” are the

small color spots that often characterize the human iris. For

each cluster, centroid coordinates, orientation, and eccentricity

are concatenated in a feature vector. A multi-layer approach

is proposed, where layers are derived for each color channel

of the color space at hand. The best performances are ob-

tained using the a ∗ and b ∗ channels of the CIE 1976 L ∗a ∗b ∗

color space. Color values are first normalized between 0 and

255, then dividing the resulting grey values into 8 intervals of

size 32(32 ∗ 8 = 256) , i.e. 8 layers (images) are obtained from

each color channel. Two versions of the algorithm were pro-

posed for the competition, differing in the fusion formula for

the DIST(ances) computed over the different descriptors (color,

texture and cluster). As for Version 1 (V1), DIST _ V 1 f inal =
DIST _ color ∗ 0 . 2 + DIST _ texture ∗ 0 . 4 + DIST _ cluster ∗ 0 . 4 ; as for

Version 2 (V2), DI ST _ V 2 f inal = DI ST _ color ∗ 0 . 2 + DIST _ cluster ∗ 0 . 8

(texture descriptor is not used). An interesting characteristic is

represented by its limited computational time, particularly suitable

for fast identity checking on mobile devices. In addition, the code

is highly parallel, so that this approach is also appropriate for

identity verification on large database. 

Aginako-Bengoa et al. [4] (extended in [5] ) propose the al-

gorithm labeled otsedom . It exploits both Machine Learning

paradigms, and Computer Vision techniques. Well known descrip-

tors are computed, such as LBP, LPQ, and WLD. They are used indi-

vidually in order to construct a classifier, and then subsets of them

are combined to outperform the obtained accuracy. The final algo-

rithm combines the best five descriptors to obtain a robust dissim-

ilarity measure of two given iris images. Machine Learning classi-

fiers are used to perform the individual classifications, and hence

to obtain the a-posteriori probability distribution for each of the

two iris images. Histogram distance between the two distributions

is used to compute the dissimilarity. To perform the final classifier

combination, five different classifiers are used, each one giving a

different a-posteriori distribution for each image. The mode of each

a-posteriory probability for each class value is used to combine the

five classifiers, and the distance of the two mode histograms (one

for each iris) is used as dissimilarity measure. 

Finally, a different group of participants submitted the algo-

rithm with label ccpsiarb [2] (extended in [3] ). Even in this

case, the proposed approach is a combination of techniques from

Machine Learning and Computer Vision. First, an image classifi-

cation process is carried out to classify the images as belong-

ing to one of a given set of classes. This step involves both Ma-

chine Learning paradigms, to perform the classification itself, and

image transformations to improve the accuracies of the obtained

models. Regarding the latter, different modifications over the orig-

inal pictures provide different views of the images. Examples of
Please cite this article as: M. De Marsico et al., Results from MICHE II 

(2017), http://dx.doi.org/10.1016/j.patrec.2016.12.013 
he transformations considered are Equalization, Gaussian, Median,

tc. The main goal of this phase is to have variability in the as-

ect the picture offers, so to obtain different values for the same

ixel positions. The classifiers derive from some well known ML

upervised classification algorithms, with completely different ap-

roaches to learning, and a long tradition in different classification

asks: IB1, NaiveBayes, Random Forest and C4.5. Experiments took

nto account the 19 image collections obtained by applying sin-

le transformations and the four different classifiers, giving a to-

al 76 experiments. After testing these combinations of different

mage transformations and Machine Learning algorithms, the Edge

ransformation followed by IB1 classification (identified as com-

ination ccpsiarb _ 17 ) is identified as the combination provid-

ng the best results. Following this combination, very close results

ere achieved by ccpsiarb _ 2 and ccpsiarb _ 42 , obtained by

qualize + IB1, and by Gaussian filter + IB1 respectively. As a nov-

lty, the dissimilarity computation between two images has been

omputed as an a-posteriori histogram difference of the classes

istribution returned by the Machine Learning algorithm. 

. Competition results and discussion 

In order to ensure a fair comparison, all algorithms were

un from scratch at BipLab - University of Salerno, over an ex-

ended set of images (see Section 3.1 ) after segmenting them

ith the segmentation algorithm provided for the competition (see

ection 3.2 ). The final rank list in Table 1 reports the best per-

orming version among the ones submitted for each author (label).

he rank was obtained by averaging the Recognition Rate (RR) and

he Area Under Curve (AUC) achieved, and considering images cap-

ured by the two smartphones. We remind that authors could pro-

ose their own distance measure, given that it was a metric (see

ection 3.3 ). 

Table 1 shows that the better the ranking achieved, the more

table the method with respect to the test setting. The “hard-

st”one is of course ALLvsALL, entailing that gallery and probe im-

ges may come from different devices. All methods provide con-

istently lower performances in this condition. On the average, the

mages over which the best results are achieved in homogeneous

ettings (gallery and probes from the same device) come from IP5

mean value = 0,89), and the achieved results further present a

ower standard deviation (0,086). This might be unexpected, due

o the lower resolution of the camera, and seems to suggest that

igher resolution may also increase the way the noise typical of

ris images can affect recognition. A complementary observation

egards the way the different methods behave with respect to the

ifferent devices. Excluding tiger_miche , all the others present

etter results either with one camera or the other with significant

ifferences, except of otsedom . In particular, four of them work

etter with IP5 (lower resolution images). 

In order to evaluate the stability of the methods submitted in

ore versions, the extended ranking shown in Table 2 includes the

ifferent versions in the list of results. 

We can notice that some methods are more stable across

heir variants. For instance, karanahujax_Model1 and

aranahujax_Model1 achieve the same final score, but Model2

as preferred in the final ranking due to the better behavior in

LLvsALL. A similar constant behavior is observed for ccpsiarb ,
hile FICO_matcher_V2 achieves dramatically worse results

han FICO_matcher_V1 . 
Finally, Table 3 shows in detail the results in terms of RR and

UC achieved by the competing method, dividing them accord-

ng to the inter-device or intra-device setting, and also reports the

omputing time per matching operation in seconds. 

Due to the possible change in ranking among methods in dif-

erent settings, no specific ordering is provided for the values in
– Mobile Iris CHallenge Evaluation II, Pattern Recognition Letters 
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Table 1 

The final ranking of the best methods submitted to MICHE-II competition. 

Rank Algorithm ALLvsALL GS4vsGS4 Ip5vsIP5 Final Rank 

1 tiger_miche 0 ,99 1 ,00 1 ,00 1 ,00 

2 karanahujax_Model2 0 ,89 0 ,89 0 ,96 0 ,91 

3 Raja 0 ,82 0 ,95 0 ,83 0 ,86 

4 irisom_10_10 0 ,79 0 ,82 0 ,88 0 ,83 

5 FICO_matcher_V1 0 ,77 0 ,78 0 ,92 0 ,82 

6 otsedom 0 ,78 0 ,80 0 ,78 0 ,79 

7 ccpsiarb_17 0 ,75 0 ,72 0 ,77 0 ,75 

Table 2 

Results from different versions of the competing methods. 

Rank Algorithm ALLvsALL GS4vsGS4 Ip5vsIP5 Final Rank 

1 tiger_miche 0 ,99 1 ,00 1 ,00 1 ,00 

2 karanahujax_Model2 0 ,89 0 ,89 0 ,96 0 ,91 

3 karanahujax_Model1 0 ,82 0 ,90 1 ,00 0 ,91 

4 Raja 0 ,82 0 ,95 0 ,83 0 ,86 

5 irisom_10_10 0 ,79 0 ,82 0 ,88 0 ,83 

6 FICO_matcher_V1 0 ,77 0 ,78 0 ,92 0 ,82 

7 irisom_5_5 0 ,77 0 ,75 0 ,90 0 ,81 

8 otsedom 0 ,78 0 ,80 0 ,78 0 ,79 

9 ccpsiarb_17 0 ,75 0 ,72 0 ,77 0 ,75 

10 ccpsiarb_2 0 ,74 0 ,72 0 ,75 0 ,74 

11 ccpsiarb_42 0 ,73 0 ,72 0 ,72 0 ,73 

12 FICO_matcher_V2 0 ,61 0 ,65 0 ,75 0 ,67 

Table 3 

Detailed results in terms of RR, AUC and methods computing time per matching operation. 

Algorithm All vs ALL GS4 vs GS4 IP5 vs IP5 

RR AUC Global Time (s) RR AUC Global Time (s) RR AUC Global Time (s) 

ccpsiarb_17 0 ,68 0 ,83 0 ,75 57 ,64 0 ,63 0 ,81 0 ,72 61 ,43 0 ,70 0 ,85 0 ,77 54 ,30 

ccpsiarb_2 0 ,65 0 ,82 0 ,74 25927 0 ,63 0 ,81 0 ,72 26538 0 ,63 0 ,86 0 ,75 25284 

ccpsiarb_42 0 ,65 0 ,81 0 ,73 28620 0 ,63 0 ,81 0 ,72 28927 0 ,63 0 ,81 0 ,72 28339 

FICO_matcher_V1 0 ,73 0 ,80 0 ,77 1 ,00 0 ,67 0 ,89 0 ,78 1 ,00 0 ,87 0 ,98 0 ,92 1 ,01 

FICO_matcher_V2 0 ,48 0 ,73 0 ,61 0 ,57 0 ,50 0 ,79 0 ,65 0 ,57 0 ,57 0 ,93 0 ,75 0 ,57 

irisom_10_10 0 ,80 0 ,78 0 ,79 3 ,48 0 ,77 0 ,88 0 ,82 3 ,45 0 ,83 0 ,92 0 ,88 3 ,51 

Irisom_5_5 0 ,75 0 ,79 0 ,77 3 ,03 0 ,63 0 ,88 0 ,75 3 ,00 0 ,87 0 ,93 0 ,90 3 ,05 

karanahujax_Model1 0 ,88 0 ,76 0 ,82 5 ,68 0 ,83 0 ,97 0 ,90 5 ,72 1 ,00 1 ,00 1 ,00 5 ,63 

karanahujax_Model2 0 ,92 0 ,86 0 ,89 4 ,65 0 ,83 0 ,95 0 ,89 4 ,62 0 ,93 0 ,98 0 ,96 4 ,69 

otsedom 0 ,63 0 ,93 0 ,78 41 ,74 0 ,67 0 ,94 0 ,80 42 ,37 0 ,63 0 ,92 0 ,78 41 ,10 

tiger_miche 1 ,00 0 ,99 0 ,99 1 ,71 1 ,00 1 ,00 1 ,00 1 ,72 1 ,00 1 ,00 1 ,00 1 ,71 

Raja 0 ,82 0 ,81 0 ,82 12 ,91 0 ,93 0 ,96 0 ,95 12 ,78 0 ,77 0 ,89 0 ,83 12 ,80 
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able 3 . No dramatic differences appear among intra- and inter-

evice settings regarding the matching time, therefore we will

onsider the latter for the following discussion. It is interesting

o observe how the best method tiger_miche also achieves

he best result in terms of time required by the single matching

peration. Only FICO_matcher_V1 does better, and even more

ICO_matcher_V2 . However, the latter one provides much lower

ecognition accuracy. On the other extreme we find the methods

tsedom and the group of ccpsiarb variants, with a maximum

f about 286 seconds, i.e., about 5 minutes. This seems to testify

hat, overall, the presented ML techniques are not suited for a real

ime operational setting, even if this parameter was not evaluated

or the competition. 

. Conclusions 

Mobile devices are going to play a relant role in biometric

ecognition too. In this paper we discussed in detail the results

f MICHE-II contest, the follow-up of MICHE-II. They were the

rst international contests aiming at demonstrating the feasibility

f iris/ocular recognition using data acquired from different types

f mobile devices. After briefly summarizing the competition set-

ing and the participating algorithms, the paper compared their

erformance in the different experiments carried out on MICHE-
Please cite this article as: M. De Marsico et al., Results from MICHE II 
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I dataset. The level of performance achieved by the methods par-

icipating in MICHE-I were not comparable to those achieved by

ther investigation performed so far on iris recognition. However,

he best methods participating in MICHE-II, focusing on feature ex-

raction and recognition only, achieve extremely promising results.

he most interesting aspect is that images were acquired in uncon-

rolled conditions and in visible light, that are widely recognized

s extremely adverse conditions. On the other hand, most mobile

evices are equipped with high-resolution RGB cameras, and not

ith Near Infrared (NIR) sensors that would allow better results.

ICHE-II Evaluation Challenge aimed at testing the feasibility of

sing state-of-the-art methods for iris recognition on mobile de-

ices. The dataset provided for the competition contains images

rom indoor/outdoor, frontal/rear camera and acquired by the par-

icipants on their own by multiple devices and without any super-

ision. This created the opportunities to try the submitted methods

n very challenging images, in order to answer the question: “is it

easible to recognize human irises from mobile with sufficient level

f accuracy?”. The results achieved are encouraging and help iden-

ifying interesting research lines to follow. As a matter of fact, in

he best cases, they are comparable to state of the art in iris recog-

ition in more controlled conditions. The aim of the work was to

ssess the present state of the art in this specific field and high-

ight existing limitations. However, the same results suggest that it
– Mobile Iris CHallenge Evaluation II, Pattern Recognition Letters 
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is worth further exploring possible improvements of the available

techniques. 
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