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aRank Group, Data Science Lab, UK
biCub Facility, Istituto Italiano di Tecnologia, Italy
cDepartment of Computing and Communication Technologies, Oxford Brookes University, UK
dDipartimento di Informatica, Università degli Studi di Milano, Italy

ABSTRACT

Recognising human activities from streaming sources poses unique challenges to learning algorithms.
Predictive models need to be scalable, incrementally trainable, and must remain bounded in size even
when the data stream is arbitrarily long. In order to achieve high accuracy even in complex and
dynamic environments methods should be also nonparametric, i.e., their structure should adapt in
response to the incoming data. Furthermore, as tuning is problematic in a streaming setting, suitable
approaches should be parameterless (as initially tuned parameter values may not prove optimal for
future streams). Here, we present an approach to the recognition of human actions from streaming
data which meets all these requirements by: (1) incrementally learning a model which adaptively
covers the feature space with simple and local classifiers; (2) employing an active learning strategy to
reduce annotation requests; (3) achieving good accuracy within a fixed model size. Although in this
work we focus on human activity recognition, our approach is completely independent from the feature
extraction and can deal with any supervised matrix (set of feature vectors). Hence, it can be adapted
to a wide range of applications (e.g., speech recognition, image classification, object recognition,
pose recognition, and image matching). Extensive experiments on standard benchmarks show that
our approach is competitive with state-of-the-art non-incremental methods, while outperforming the
existing active incremental baselines.

1. Introduction

The pervasive presence of cameras and mobile devices in our
everyday lives has created a strong demand for automated meth-
ods able to analyse data streams in real time. This is especially
challenging in the case of videos capturing human activities, as
in TV footages and videos from surveillance cameras. Another
natural application is human robot interaction, which requires
the machine to learn and recognise human behavioural patterns
in real time. Nevertheless, the mainstream approaches to action
and activity recognition are typically based on an offline train-
ing phase (for a review of previous work in activity recognition
we refer the reader to Sec. 2). Such a setting leads to several
critical issues when dealing with streaming videos:
How to incrementally learn activities from the incoming data?
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The dynamic nature of the streaming video setting implies that,
at each time instant, new data is made available to the sys-
tem, which needs to incrementally learn from it. This implies
both refining the current models of known human activities and
adding on the fly new models of previously unseen activities.

How to minimise the required annotation effort? The issue
of how many video fragments should be annotated is strictly
related to the ability of learning new activities. While for
newly observed activities one might assume that all video
frames should be —at least initially— manually annotated,
when analysing footage of known action classes only a frac-
tion of the video input will likely bring in new information.
In this context, the system should automatically select which
video fragments are the most informative, and asks human an-
notators for help only in those cases.

How to optimise the algorithm heuristics dynamically? System
components, such as the chosen feature representation and the
learning algorithm parameters, have a crucial impact on the fi-



nal performance of any framework. In a continuous learning
setting, however, design choices and parameter tuning are —if
possible at all— more difficult than in offline settings, as we just
cannot anticipate what new activities the system will be asked
to learn.

The main contribution of this paper is an approach for deal-
ing with human activity recognition in a streaming context. To
the best of our knowledge, our approach is the first one to ad-
dress all the challenges listed above in a principled manner. Our
starting point is a recently proposed local algorithm for classifi-
cation of data streams (De Rosa et al., 2015) which is incremen-
tally trainable and nonparametric (i.e., the model structure is
not specified a priori, but determined by the data in such a way
that the number of parameters is not fixed in advance), while
exhibiting theoretical guarantees on its performance. Here we
leverage on this result, and extend it to the active learning set-
ting. This leads to a framework that meets all the above re-
quirements: (1) it incrementally and efficiently learns the in-
coming data stream while being robust to the addition of new
classes; (2) the active learning component evaluates the infor-
mative content of the incoming data items with respect to the
current level of confidence, thus allowing to decide when the
cost of manual annotation is worthwhile; (3) the nonparametric
nature of the approach allows for fully data-driven learning.

Next, we illustrate the workflow of our approach in the spe-
cific case of activity recognition from streaming videos:

1. Each video is associated with a variable number of feature
vectors in a given feature space.

2. The feature space gets sequentially covered with balls cen-
tered on samples selected from the stream.

3. Each ball is associated with an estimate of the conditional
class probabilities obtained by collecting statistics around
its centre; a new unlabeled sample is predicted using the
estimate of the closest ball.

4. A sample falling outside its closest ball becomes the center
of a new ball.

5. The radius of each ball is adjusted according to how well
each ball predicts the class label of the new samples that
fall close to it.

6. Ball centres are incrementally adjusted to fit the actual data
distribution.

7. The set of balls is organized in a tree-like struc-
ture (Krauthgamer and Lee, 2004), so that the ball nearest
to the current sample can be found in time logarithmic in
the number of balls.

We call our algorithm Fast active Incremental Visual covER-
ing (FIVER). Extensive experiments on several publicly avail-
able databases show that our approach outperforms all exist-
ing algorithms for activity recognition from streaming data.
Furthermore, we show that by combining FIVER with the ro-
bust temporal segmentation algorithm presented in (Fanello
et al., 2013), we obtain a system able to deal, in a straight-
forward manner, with a realistic continuous active recognition
scenario. A significant contribution of this work is the exten-
sion of (De Rosa et al., 2015) to an active learning setting. This
is key to the practical application of incremental learning in

streaming settings for at least two reasons. Firstly, active learn-
ing systems allow to substantially save on costly ground truth
annotations. Secondly, the confidence score plays a crucial
role in continuous activity recognition tasks in domains such
as surveillance and human-robot interaction (see Sec. 4.5).

2. Related Work

Within the vast literature related to action recognition —
see (Poppe, 2010) and references therein— research focus-
ing on the streaming setting has gained momentum only re-
cently (Gaber et al., 2007). Desirable features in this context
are: (1) Incremental Updating: typically, a large amount of
data is sequentially presented in a stream, and so it is desirable
for algorithms to incrementally update the model rather than
re-training it from scratch. (2) Incremental Learning of New
Classes (activities): algorithms should be able to accommodate
on the fly any new class. (3) Bounded Size Models: as the data
stream may be very large, models should keep a bounded mem-
ory footprint, allowing for real-time prediction while avoiding
storage issues. This implies the ability of discarding useless
or old data, and is critical to the tracking of drifting concepts
(i.e., settings where the optimal decision surface changes over
time, requiring repeated adjustments of the model (Tsymbal,
2004)). (4) Data-Driven behaviour: because parameter tuning
is problematic in streaming settings, systems with few or no
parameters are preferable. (5) Nonparametric behaviour: since
the true structure of the data is progressively revealed as more
examples from the stream are observed, nonparametric algo-
rithms (Györfi et al., 2002), which are not committed to any
specific family of decision surfaces, are preferable. (6) Active
Learning: in a streaming setting, the system needs to learn from
each incoming data point. However, training labels are pro-
vided by human annotators, who should be invoked only when
the system has low confidence in its own prediction for the cur-
rent label. (7) Bounded Request rate: since querying human
annotators is expensive, any practical active learning system for
streaming settings should impose a bound on the query rate.

Table 1 lists the previous efforts in human activity recogni-
tion involving incremental and/or active learning components
which, due to their features, are the closest alternatives to our
approach.
A feature tree-based incremental recognition approach was pro-
posed in (Reddy et al., 2009), where the tree is free to grow
without bounds as more examples are fed to the learner. As
this requires to store all the presented instances, the method
is infeasible for continuous recognition from streaming videos,
where the number of activities can get very large over time.
A human tracking-based incremental activity learning frame-
work was proposed in (Minhas et al., 2012) which, however,
requires annotation on the location of the human body in the
initial frame, heavily restricting its applicability. For these rea-
sons (Reddy et al., 2009) and (Minhas et al., 2012) are not listed
in Table 1. Our work shares similarities with the incremental al-
gorithm in (De Rosa et al., 2014) upon which, to some extent,
we build our proposal. Both methods adopt a nonparametric,
incremental ball covering of the feature space strategy. FIVER,



Table 1. Features required or desirable in human action recognition from streaming data. To the best of our knowledge, FIVER is the only algorithm that
addresses all these challenges. LEGEND:

√
: exhibits the feature; ≈: partially exhibits the feature;

⊗
: does not possess the feature.

STREAMING CONTEXT REQS. Incr. Upd. New Cls. Bound. Size Data Driv. Nonpar. Active Bound. Rate

De Rosa et al. (2014)
√ √ ⊗ ≈

(one param.)
√ ⊗ ⊗

Hasan and Roy-Chowdhury (2014a)
≈

(minibatch)
⊗ √ ⊗ ⊗ √ ⊗

Hasan and Roy-Chowdhury (2014b)
≈

(minibatch)
⊗ ⊗ ⊗ ⊗ √ ⊗

Hasan and Roy-Chowdhury (2015)
≈

(minibatch)
⊗ ⊗ ⊗ ⊗ √ ⊗

FIVER
√ √ √ √ √ √ √

however, brings to the table crucial new features that makes it
uniquely suitable for dealing with streaming data. Firstly, it
does not rely on any input parameters, which are inconvenient
to tune in streaming settings. Secondly, it limits the model size,
thus allowing the tracking of drifting concepts. More precisely,
when the number of allocated balls exceeds a given budget,
FIVER discards each ball with a probability proportional to its
error rate. Thirdly, it dynamically adjusts the ball centres, thus
yielding very compact models while improving performance.
The resulting covering resembles a visual dictionary, learned in-
crementally and directly usable for predictions, where the balls
play the role of visual codewords. Finally, the active learning
module defines the interaction between the learning system and
the labeler agent, limiting the number of annotations requested.

The use of incremental active learning for activity recog-
nition tasks was recently investigated in (Hasan and Roy-
Chowdhury, 2014a,b), where an ensemble of linear SVM clas-
sifiers is incrementally created in a sequence of mini-batch
learning phases. These methods, however, are not designed to
operate on individual data elements in streams, as it is required
in our setting. A confidence measure over the SVM outputs is
defined, where each individual classifier output is weighted by
the training error. Two user-defined thresholds control the query
rate of labeled videos. Non-confident instances, which are close
to a class boundary, are forwarded to the annotator, while the
others are discarded. Note that the set of ensemble classifiers
can become very large, as an arbitrary number of SVMs can be
added in each batch phase. Furthermore, the method requires
model initialisation, and several parameters need to be tuned at
validation time, thus making the approach unsuitable to a truly
streaming context. The method in (Hasan and Roy-Chowdhury,
2014a) initially learns features in an unsupervised manner us-
ing a deep neural network. Then, a multinomial logistic re-
gression classifier is learned incrementally. The posterior class
probability output is used —as in (Hasan and Roy-Chowdhury,
2014b)— to select what videos need supervised information.
This method also depends on several parameters, cannot deal
with new classes, and requires initialisation. The same au-
thors have recently presented in (Hasan and Roy-Chowdhury,
2015) a further extension which attempts to mine information
from scene context. However, the core learning system suffers
from the same drawbacks discussed above. Moreover, the ac-

tive module used there cannot explicitly limit the query rate,
a crucial feature for real-world applications where the cost of
human annotation has to be controlled.

3. Fast Active Incremental Visual Covering

This section describes the FIVER algorithm at the heart of
our framework. Although in this work we mainly focus on
the problem of activity recognition from streaming videos, our
framework is general-purpose, and can accept any type of input
data (i.e, videos, sounds, depth maps, and so on).
The rest of the section is structured as follows: Sec. 3.1
describes our incremental visual covering approach based
on (De Rosa et al., 2014), Sec. 3.2 shows how to keep the mem-
ory footprint bounded via a technique introduced in (De Rosa
et al., 2015). Sec. 3.3 introduces a mechanism that performs
active learning on the input stream, while Sec. 3.4 summarizes
the FIVER algorithm.

3.1. (Passive) Incremental Learning

We assume that the learner is trained on a stream of (pre-
segmented) labeled videos (V1, y1), (V2, y2), . . . . Each video Vi

is associated with a set of Ti local descriptors {x(i)
t }

Ti
t=1, where

each descriptor x(i)
t ∈ Rd belongs to a d-dimensional feature

space. Each video label yi denotes an activity class that belongs
to a setY = {1, . . . ,C} of possible classes. Notably, this set may
change over time. The classifier is trained incrementally: every
time a new labeled video is acquired, the current model is ad-
justed. In the following, we drop the superscript i and re-index
the local features, assuming that the learner is fed a sequence
(x1, y1), (x2, y2), . . . of labeled local feature examples, where
(xt, yt) =

(
x(i)

t , yi
)
∈ Rd × Y for some t and 1 ≤ t < Ti. The

feature space is then adaptively covered by a set S of balls. The
number of balls is dependent on the complexity of the classifi-
cation problem. Unlike (De Rosa et al., 2014), where the balls
were always centered on input samples, we extend the AUTO-
ADJ version of ABACOC described in (De Rosa et al., 2015).
In particular, a K-means-like update step makes the centre of
each ball shift towards the average of the training samples that
were correctly predicted by the local classifier; in other words,
the balls track the feature clusters. Similarly to (De Rosa et al.,
2015), we initialize the radius of any new ball as the distance



Algorithm 1. ABACOC (De Rosa et al. (2015), adapted)

Input: feature space metric ρ
1: Ball centres S = ∅ and set of labels Y = ∅ initialised
2: for i = 1, 2, . . . do
3: Input labeled video (Vi, yi)
4: if yi < Y then
5: Set Y = Y ∪ {yi} // add class on the fly
6: end if
7: for t = 1, . . . ,Ti do
8: if S ≡ ∅ then
9: if t = 1 then

10: save x1;
11: else
12: S = {x2}, set ε2 = R2 = ρ

(
x1, x2)

13: Use yi to initialize estimates p2
14: end if
15: else
16: Let cs ∈ S be the nearest neighbour of xt in S
17: if ρ(cs, xt) ≤ εs (xt belongs to ball at cs) then
18: if yi , argmax

y∈Y
ps(y) then

19: Set ms = ms +1, εs = Rs m−1/4
s // shrink on errs

20: else
21: Set ∆ = xt − cs, ns = ns + 1
22: Set cs = cs + ∆/ns

23: end if
24: Use yi to update ps

25: else
26: S = S ∪ {xt}, εt = Rt = ρ(cs, xt), nt = 1, mt = 0
27: use yi to initialize estimates pt

28: end if
29: end if
30: end for
31: end for

from the closest ball. These settings result in a parameterless al-
gorithm. Unlike (De Rosa et al., 2014), we set the feature space
intrinsic dimension parameter to 2, as we empirically found that
it does not affect performance significantly. A low value of in-
trinsic dimension corresponds to a “flat” data manifold when
viewed in feature space. As this flatness is an intrinsic property
of the data, we expect it to remain valid, at least to some extent,
even when more complex features are added.

Incremental updates. The sequence of observed training ex-
amples (xt, yt) is used to build a set S of balls that cover the
region of the feature space they span. For each ball, we store
an empirical distribution of the predicted classes. Furthermore,
for each ball centre cs ∈ S we keep updated the number ns(y)
of data points xt of each class y ∈ Y that at time t belong to
the ball. These counts are used to compute the class probabil-
ity estimates (activity scores) for each ball centre cs ∈ S as
ps(y) =

ns(y)
ns

for all y ∈ Y, where ns = ns(1) + · · · + ns(C).
This estimate could be unstable, but using stabilizers such as
the Laplace correction did not affect the results in practice.

The training algorithm operates as follows (see Alg. 1): ini-
tially, the set of balls S is empty. For each training example

Algorithm 2. Variable Uncertainty Strategy

Input: video Vi, model, threshold τ ∈ (0, 1] (default is 0.01)
Output: labeling ∈ {true, f alse}

1: Init: Θ = 1 and store the latest value during operation
2: Calculate the confidence of the majority class Ci (̂yi)
3: if Ci (̂yi) < Θ then
4: decrease the confidence threshold Θ = (1 − τ)Θ
5: return true
6: else
7: increase the confidence threshold Θ = (1 + τ)Θ
8: return f alse
9: end if

xt, we efficiently1 compute its nearest ball centre cπ(t) ∈ S,
where π(t) denotes the index s of ball cs ∈ S nearest to the
input sample xt. If xt does not belong to its closest ball, i.e.,
the distance ρ(cπ(t), xt) between xt and cπ(t) is greater than the
ball’s radius επ(t), a new ball with centre xt and initial radius
Rt equal to ρ(cπ(t), xt) is created and added to S. The label
yt is used to initialise the empirical class distribution for the
new ball. If xt belongs to the nearest ball, its label yt is used
to update the error count mπ(t) for that ball. The local classi-
fier centred at cπ(t) makes a mistake on (xt, yt) if and only if
yt , argmaxy∈Y pπ(t)(y). Whenever this happens, the radius is
set back to its initial value Rπ(t), scaled by a polynomial function
that depends on the current error count: επ(t) = Rπ(t) m−1/4

π(t) . This
formula comes from the decay function defined in (De Rosa
et al., 2014) with intrinsic dimension equal to 2. By doing that,
the algorithm makes room for new balls in the feature space,
allowing for a finer description of the classification function in
the zones that are difficult to model.

If the prediction is correct, the ball centre is set to the average
of the correctly classified instances within the ball, so that the
centre moves towards the majority class centroid. Finally, the
class probability estimates pπ(t)(y) for the local classifier centred
in cπ(t) are updated. Notably, a-priori knowledge of the full set
of classesY is not needed, as our incremental learning approach
can add new labels to Y on the fly, as soon as they first appear
in the stream.
Prediction. In the prediction phase, we proceed in a similar
fashion: for each xt associated with an unlabelled video Vi,
its nearest neighbour cπ(t) ∈ S is efficiently computed. Then,
assuming that the local features are i.i.d., the label of the test
video Vi is predicted using the following maximum likelihood
estimate

ŷi = argmax
y∈Y

Ti∏
t=1

pπ(t)(y) (1)

which integrates over all the local features of the video. In our
experiments we used the log-likelihood in order to avoid numer-
ical problems (note that, as the logarithm is a monotonically in-
creasing function, replacing probabilities with log-probabilities

1For example, (Krauthgamer and Lee, 2004) embed S in a tree structure in
which nearest neighbour queries and updates can be performed in time O(ln |S|)
—see also (Kpotufe and Orabona, 2013).



in (1) does not change the argmax).

3.2. Constant Model Size

In order to curb the system’s memory footprint, we adopt the
simple approach proposed in (De Rosa et al., 2015), which is
based on deleting existing balls whenever a given budget pa-
rameter on the label query rate is attained. This is crucial for
real-time applications, as NN search, used in both training and
prediction, takes time logarithmic in the number of balls. The
probability of deleting any given ball is proportional to the num-
ber of mistakes made so far by the associated classifier. In fact,
if a ball is making many mistakes, its class probability esti-
mate should not be used for computing class scores during the
prediction phase. So, if the budget is reached and a new ball
has to be added, an existing ball s is deleted with probability
Pdisc(s) =

ms+1∑
r∈S mr+|S|

, where ms is the number of mistakes made
by ball s ∈ S.
This also helps addressing concept drifts: ball classifiers that
accumulate a large number of mistakes are removed to make
room for a more up-to-date description of the data.

3.3. Streaming Active Learning

We now introduce an active learning system for streaming
settings, which bounds the rate of queries to human annotators.
The technique we propose is inspired from (Zliobaite et al.,
2014). Whenever a new segmented video is presented to the
model, the system makes a prediction and then invokes the ac-
tive learning module in order to determine whether the label
should be requested to the human annotator. In particular, if the
confidence of the prediction is below a certain threshold —i.e.,
the prediction is ambiguous— then a query is issued to the an-
notator unless the query rate budget is violated. When the label
is not requested, the model is not updated. Instead of selecting
a fixed confidence threshold on the query instances, we use the
so-called Variable Uncertainty Strategy (Zliobaite et al., 2014)
(VarUnStr), which queries the least certain instances within
a time interval.

Measuring prediction confidence. Eq. (1) shows that class
estimates pπ(t)(y), associated with ball centres near the current
input instance, should be considered more reliable than those
associated with faraway centres, as the corresponding region of
the feature space has already been explored —see Fig. 3-right.
We thus adapt the RBF kernel (Chang et al., 2010) to scale ball
estimates based on their distance from the input examples: wt =

exp
(
−

ρ(xt ,cπ(t))2

2ε2
π(t)

)
, where the variance is set to the current ball

radius επ(t). This confidence function is quite simple, and we are
aware that more complex measures do exist. However, we view
it as a plus that we manage to have good performance using a
simple method, as we show in the experimental section. The
local bandwidths of the RBF kernel are directly related to the
complexity of the problem in each neighborhood of the feature
space. Indeed, in more difficult areas (small radii) the kernel
penalizes distant samples from the current ball covering, when
compared to less troublesome ones (big radii).

Given a test video Vi, we thus define a confidence measure
Ci(y) on the estimate of the expected class conditional proba-
bility for any given class y as:

Ci(y) =
1
Ti

Ti∑
t=1

wt log pπ(t)(y) ∀y ∈ Y .

Updating the confidence threshold. The VarUnStr strategy
of Zliobaite et al. (2014) continuously updates the confidence
threshold Θ, which triggers requests for new labels (see Alg. 2).
If the prediction confidence is below the current threshold Θ

over the duration of the last observed video, Θ is decreased by
a fraction τ in order to query the most uncertain instances first.
Otherwise, the threshold is increased to avoid interruptions of
the learning process when the algorithm is not asking for la-
bels. As explained in (Zliobaite et al., 2014), the parameter τ
can be set to a default value of 0.01. In the experimental sec-
tion we follow this suggestion thus keeping our algorithm fully
parameterless.

Further research should be devoted to investigating whether
the confidence measure, coupled with our nonparametric
model, allows to discover new classes automatically at predic-
tion time. For instance, the confidence for input video frames
that fall far from those that make up the learned model vanishes.
These outlier frames may thus be associated with new activities
—e.g., see the low confidence input examples in Fig. 3 (right).
The resulting system can be viewed as performing a form of
semi-supervised clustering. A simple approach in this direction
is proposed in (De Rosa et al., 2016).

3.4. FIVER Algorithm
The FIVER algorithm (see Alg. 3) combines all the elements

described above. Namely, FIVER trains the model over the
video stream via Alg. 1, while controlling the memory foot-
print as described in Sec. 3.2. Alg. 2 is the active learning mod-
ule, which asks only for the most informative instances while
not exceeding the budget rate. Ignoring the cost of extract-

Algorithm 3. FIVER

Input: annotation budget B, maximum number of balls M,
video stream (V1, y1), (V2, y2), . . .

1: for i = 1, 2, . . . do
2: Receive video Vi

3: Predict ŷi (Eq. 1)
4: if query rate ≤ budget B then
5: if Query Strategy (Alg. 2) returns true then
6: Request true label yi and update query rate
7: Use (Vi, yi) to update model (Alg. 1)
8: if |S | > M (memory exceeded) then
9: Discard one ball (see Sec. 3.2)

10: end if
11: end if
12: end if
13: end for

ing features (see Sec. 4.1 for a discussion on this issue), the
prediction and update time of FIVER is dominated by the NN



search, whose cost is small (i.e., logarithmic in the number of
balls). The space requirement, instead, is clearly linear in the
same quantity. However, the experiments we report reveal that
a good classification accuracy can be achieved using a number
of balls which is quite a small fraction of the training set size.
This implies that, in practice, FIVER really runs in real time.

4. Experiments

To emphasize the versatility of our approach, we tested
FIVER in both batch and streaming learning settings.
In the batch setting, we followed the standard evaluation pro-
tocol for each dataset: specific train-test splits or K-fold cross-
validation with specific values of K —see below for details.
We then compared FIVER’s results to those of competing in-
cremental and offline methods.
In the streaming setting, instead, we assessed different variants
of FIVER using the online accuracy —or sequential risk (Gama
et al., 2013)— as evaluation measure. This measure cap-
tures the average error made by the sequence of incrementally
learned models in a procedure where we first predict the test
item on the current model, and then use the result to adjust the
model itself.

Note that the streaming setting used in our experiments is
very strict: we do not use seed training sets, mini-batch training,
cross-validation sets, or assume any preliminary knowledge on
the number of classes. As the other incremental methods rely
on much richer sources of information than those allowed in
our streaming setting, we could only evaluate them in the batch
and mini-batch setting.

Finally, since FIVER is oblivious to the actual number of
classes in the training data, in all our experiments the algorithm
is learning the classes truly on the fly.

4.1. Datasets and Feature Extraction
We assessed our method on the following datasets:

KTH (Schuldt et al., 2004) (all scenarios), UCF11 (Poppe,
2010) and VIRAT (Oh et al., 2011) for action recognition,
SKIG (Liu and Shao, 2013) and MSRGesture3D (Wang et al.,
2012) for gesture recognition, JAPVOW (M. Kudo and Shimbo,
1999) and AUSLAN (Kies, 1997) for sign language recognition
(UCI Repository (Lichman, 2007)). Table 2 shows the number
of videos and classes of our benchmark.

The first five datasets contain mostly footage material: we
decided to extract efficient local features at frame level in order
to focus on truly real-time prediction. In particular, from KTH,
UCF11, and VIRAT sequences we computed improved dense
trajectories (Wang and Schmid, 2013), due to their outstanding
performance in action recognition tasks. For each video, three
types of features were extracted, namely Histogram of Oriented
Gradient (HOG), Histogram of Optical Flow (HOF) and Mo-
tion Boundary Histogram (MBH). We ran the code published
on the INRIA Website2, keeping all the default parameters ex-
cept for the trajectory length, set to 8 frames, and the number of

2lear.inrialpes.fr/people/wang/improved_
trajectories.

descriptor bins (16 BINs for HOG, MBHx and MBHy, and 18
BINs for HOF). Every 8 frames we obtained a variable number
of active trajectories. We then accumulated all the trajectories
for each descriptor, and concatenated all the descriptors, obtain-
ing a collection of vectors of 66 dimensions for each video. In
this setting, each vector is a summary of the three local descrip-
tors extracted from each video frame. For VIRAT, we initialised
the improved trajectory algorithm using the bounding boxes re-
leased along with the dataset. For the other datasets, we did not
rely on any initialisation.

From SKIG we extracted the same information as (Fanello
et al., 2013), which consists of 3DHOF on the RBG frames and
GHOG (Global Histogram of Oriented Gradient) on the depth
frames. In MSRGesture3D only depth information is available,
and we extracted two-level pyramidal HOG (PHOG) features
using 32 bins. For all the experiments, we used the Euclidean
distance as the metric ρ (see Alg. 1), since tests using an Lp

norm with varying p did not show any significant improvement
on these datasets.

4.2. Comparison with competitors in a batch setting

We ran a first set of experiments in a batch setting, i.e., run-
ning FIVER on a random permutation of the given training set
and then applying the resulting classifier on the test set. Here,
FIVER is evaluated without the active module.3 We compared
FIVER against incremental and batch approaches:
Incremental algorithms: (Hasan and Roy-Chowdhury,
2014b,a; De Rosa et al., 2014), which follow an incremental
learning approach similar to ours.
Batch algorithms: (Wang et al., 2011; Liu et al., 2009; Jiang
et al., 2007; Liu and Shao, 2013; Wang et al., 2012; Antonucci
et al., 2014), which have unrestricted access to training data for
learning, as opposed to incremental methods that can access the
data only sequentially. Note that the performance of incremen-
tal algorithms is typically poorer than that obtained using the
corresponding batch versions (Dekel and Singer, 2005).

We also tested these features with linear SVM and 1-NN
with Dynamic Time Warping, two standard approaches gener-
ally used for these kinds of problems. As these two methods
are highly inefficient, we did not calculate the performance on
the larger UCF11 and VIRAT datasets.

We used 5-fold cross-validation averaged on ten runs for
KTH, UCF11 and VIRAT, as the incremental competitors de-
scribed in Sec. 2. For SKIG and MSRGesture3D we carried out
a 3-fold cross-validation as in (Wang et al., 2012). The available
training and test sets were used for JAPVOW and AUSLAN. In
Table 3 we reported the results that have been published in the
referenced papers and the performance of our approach. Ta-
ble 3 shows that FIVER is among the best methods on all the
datasets, no matter whether the batch or incremental setting is
considered. This demonstrates that our algorithm, combined
with state-of-the-art features, provides an accurate and efficient
classification system across the board.

lear.inrialpes.fr/people/wang/improved_trajectories.
lear.inrialpes.fr/people/wang/improved_trajectories.


Table 2. Benchmark

DATASET Instances Number of Classes
KTH 600 6

UCF11 1160 11
VIRAT 1545 11
SKIG 1080 10

MSRG3D 336 12
JAPVOW 370(test)/270(train) 9
AUSLAN 1865(test)/600(train) 95

Table 3. Comparison among baselines using the same features.

DATASET FIVER Best Batch Method Best Incremental Method SVM NN-DTW
KTH 98.50% 95.00% Wang et al. (2011) 97.00% Hasan and Roy-Chowdhury (2014b) 96.70% 78.30%

UCF11 79.36% 76.10% Liu et al. (2009) 66.00% Hasan and Roy-Chowdhury (2014b) n.d. n.d.
VIRAT 57.20% 55.40% Jiang et al. (2007) 54.20% Hasan and Roy-Chowdhury (2014a) n.d. n.d.
SKIG 98.30% 88.70% Liu and Shao (2013) 97.50% De Rosa et al. (2014) 94.50% 95.74%

MSRG3D 91.25% 86.50% Wang et al. (2012) 90.33% De Rosa et al. (2014) 91.85% 50.65%
JAPVOW 96.75% 95.67% Antonucci et al. (2014) 98.01% De Rosa et al. (2014) 84.59% 69.72%
AUSLAN 72.60% 83.81% Antonucci et al. (2014) 72.32% De Rosa et al. (2014) 44.78% 82.58%
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Fig. 1. Evaluation performance for the complete incremental system. The x-axis represents the percentage of the train fold used during the test in each of
the four experiments (25%, 50%, 75% and 100% of the fold samples used for training). The y-axis indicates the final accuracy of the 5-fold cross validation.
We show the final percentage of requested samples by the active modules only for the last experiment (100%), where the whole fold was fed to the learning
module.

4.3. Comparison with active incremental baselines
In Fig. 1 we show the experimental results on the same

complete incremental setting as described in (Hasan and Roy-
Chowdhury, 2014a,b). In this setting, a 5-fold cross valida-
tion is performed, and the algorithms learn incrementally (or
in mini-batches, as the competitors do) on the training folds
only on the samples requested by the active learning modules.
The aim of these experiments is to show how to save annota-
tion costs while keeping good prediction performance. Differ-
ently from (Hasan and Roy-Chowdhury, 2014a,b), we can con-
trol the maximum percentage of requested sample (budget) on

3Base code from mloss.org/software/view/560/.

the stream. We run our method with three different budget rates
B = {1, .3, .1}, which we show in the plots. The competitors
reported the final percentage of requested labels only for KTH,
which is around 15%, and UCF11, which is around 25%. In
Fig. 1 the values Qs in the legend show the real percentage of
samples requested by our methods. We remark that the budget
rate parameter is just an upper bound on the possibly requested
labels. We show in the figure the values reported in (Hasan and
Roy-Chowdhury, 2014a,b).
We did not run any experiment using our competitors’ al-
gorithms, we simply report the results that have been made
public in the referenced works. Both the competitors that
we denote as ECCV (Hasan and Roy-Chowdhury, 2014a) and
CVPR (Hasan and Roy-Chowdhury, 2014b) (full and active ver-

mloss.org/software/view/560/


sion) are clearly outperformed on the accuracy and on the per-
centage of requested samples by FIVER.

4.4. FIVER performance on different scenarios

In a pure streaming setting the data come in sequentially, and
the number of activities depicted in each video is not known a
priori. In order to show the importance of all the modules pro-
posed in Sec. 3 for dealing with the hard constraints of such a
streaming context – see Sec. 2 – we conducted extensive testing
exploring the following scenarios, which correspond to differ-
ent variants of FIVER:

Full. This is the least realistic case, where we assume that all
the incoming instances are manually annotated, there are no
memory requirements, and we use each incoming training sam-
ple to incrementally update the model.
VarUn. In this case, we use the active learning component de-
scribed in Alg. 3, including the VarUnStr strategy described
in Alg. 2, to decide what instances require manual annotation.
The query rate, calculated as the fraction of videos for which
a label was requested among those observed so far (Zliobaite
et al., 2014), is upper bounded by an input budget parameter
B ∈ (0, 1].
Rnd. The Random strategy queries the labels of incoming in-
stances with probability equal to the query rate budget B. In
this case the algorithm does not use any information to decide
which samples are important to improve the performance.
VarUnFix. In this very realistic scenario we make the addi-
tional assumption that limited memory is available to store the
labeled training instances. We apply both the active module and
the method of Sec. 3.2 to limit the number of balls stored in the
model. In all our tests we set the model size to 5000 instances.
Note that in BoW methods, in opposition, a large amount of
codewords are generally necessary to successfully predict video
labels – see for instance (Wang and Schmid, 2013), where the
authors use four different visual dictionaries of 100,000 words
(one for each local descriptor).

Since the method in (De Rosa et al., 2015) is natively in-
cremental, it does not have a batch counterpart that we can
compare against in the experiments. We performed ten ran-
dom permutations of the videos in each dataset. The algo-
rithm had to predict the label of each new incoming video
—see Alg. 4. After each prediction, if the active learn-
ing system requested the true label, the video along with
its label were fed to the model as a new training example.
We ran all the competing algorithms with the same range
B ∈ {.05, .1, .15, .2, .25, .3, .35, .4, .45, .5, .75, 1} of budget val-
ues, and plotted the resulting online accuracy, averaged over
ten different streams, against the average query rate. Impor-
tantly, the budget is only an upper limit to the actual query rate:
algorithms generally ask for a smaller number of annotations.

Note that FIVER does not need any validation set as it has
no parameters to tune. This is very important in the streaming
context, where non-adaptive methods which tune their parame-
ters in an initial validation stage may perform suboptimally on
unseen data. Plots a to g in Fig. 2 illustrate the recorded per-
formance on the various benchmarks for all the presented sce-
narios. The figure shows that VarUn performs as well as Full

on most datasets, even though it queries only around 50% of all
the labels. On KTH, for example, VarUn achieves 90% online
accuracy while accessing only less than 20% of the labels. The
Rnd method performs typically worse and needs all the labels
to reach the performance of Full. VarUnFix works almost as
well as VarUn on the simplest datasets and slightly worse on
the complex ones; this is due to the fixed budget control that
has to discard information in order to keep the model size fixed.
For example, both VarUn and Rnd use 4% of the input data
around the 50% query rate for UCF11, whereas VarUnFix use
only 0.2% of the data – this is shown in the red and green boxes
in Fig. 2 as final percentage of input examples used as model
centres. Therefore, VarUnFix is extremely good at compress-
ing the data, and allows for efficient computation at the cost of
limited performance degradation. It is worth stressing that the
Rnd setting can be compared only against the VarUn setting as
they can freely grow the ball covering, as opposed to VarUnFix
which can use only a fixed amount of support centroids.

Algorithm 4. Active Stream Validation Protocol

Input: labeling budget B, Active Module, video stream
(V1, y1), (V2, y2), . . .

1: Initialize online accuracy A0 = 0
2: for i = 1, 2, . . . do
3: Receive video Vi

4: Predict ŷi

5: Update Ai =
(
1 − 1

i
)
Ai−1 + 1

i I{ŷi = yi}

6: if FULL setting then
7: Receive true label yi

8: Update model using new example (Vi, yi)
9: else

10: // ACTIVE setting
11: if budget B not exceeded then
12: if ActiveModule(xi,model) then
13: Request true label yi

14: Update query rate (fraction of input samples)
15: Update model using new example (Vi, yi)
16: end if
17: end if
18: end if
19: end for

4.5. Active Continuous Activity Recognition
Although in Sec. 3 we assumed that the incoming videos

Vi are pre-segmented, whenever feature vectors {x(i)
t }

Ti
t=1 are

extracted on a frame-by-frame basis, we can exploit the ac-
tivity scores (1) computed over a short temporal window to
perform automated temporal segmentation. This segmentation
procedure is based on the evolution of class probabilities over
time (De Rosa et al., 2014) (Fig. 3, left), where transitions be-
tween action instances can be associated with local minima of
the standard deviation of class scores (pink curve) over the tem-
poral window (Fig. 3, middle-top). In addition, unlike what was
done in (De Rosa et al., 2014), we use here the confidence mea-
sure Ci(y) to discard or send to supervision any detected activ-
ity with confidence below a certain threshold (Fig. 3, middle-
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Fig. 2. Plots (a) to (g) show the active online performance of the Full, Rnd, VarUn and VarUnFix variants of FIVER on different benchmarks. The x-axis
is the percentage of label requested by the active learning module, while the y-axis is the average online accuracy over ten random permutations of the
videos. In the coloured boxes, we show the percentage of the input data selected as centres by VarUn(red) and VarUnFix(green) with budget B = 1. Plot h
represents the evolution of accuracy and model size over the sequentially fed videos on the KTH dataset. The blue (circle) curve shows the fraction of the
input data selected as centres, and the red (square) curve the online accuracy. Notably, the fraction of centers added diminishes over time as the accuracy
improves.

bottom), as discussed in Sec. 3.3. This is crucial in applications
such as human-robot interaction, where it is preferable for the
robot not to perform any action when prediction confidence is
low, as this may lead to safety issues or communication errors.
We tested this active approach to temporal segmentation on the
same dataset of ten manipulative actions used in (De Rosa et al.,
2014). Each action was recorded 60 times in two different il-
lumination settings and backgrounds, and 3DHOF and HOG
descriptors were extracted for each frame. We excluded four
out of ten gestures from the learning phase, and evaluated our
algorithm on sequences representing pick and place activities
formed by grasping, moving and releasing actions. The system
was evaluated on its ability to predict the correct class when a
known gesture was performed, and to request supervision when
an unknown gesture was observed. To compare the estimated
class sequence with the ground truth we employed the Leven-
shtein distance (Levenshtein, 1966): S +D+I

N . In this case, each
action is treated as a symbol in a sequence: S represents the
number of substitutions (misclassifications), D the number of
deletions (false negatives) and I the number of insertions (false
positives). Over 20 test sequences, we achieved a Levenshtein
distance error of 0.14, compared to the 0.36 reported in De Rosa
et al. (2014).

5. Conclusion and future work

We defined a truly streaming context for human activity
recognition. We presented an incremental active recognition
framework, well suited for streaming recognition problems, es-
pecially when the amount of data to process is large. Our ap-
proach is simple and exhibits a number of desirable features:
it deals with sets of local descriptors extracted from videos, it
learns in an incremental fashion, it embeds an active learning
module, it is capable of learning new classes on the fly, it limits
memory usage, and it predicts new data in real-time. In addi-
tion, the method is nonparametric and does not require expen-
sive validation sessions for training, as it has no parameters to
be tuned. Results demonstrate its competitiveness in terms of
accuracy with respect to traditional batch approaches, as well
as promising performance in a truly streaming scenario. The
main two time consuming procedures are: 1) the feature extrac-
tion and 2) the NN search for the ball centroids. As previously
mentioned, our method is independent from the feature extrac-
tor, that could be chosen based on the final application. In our
experiments, we used dense trajectories, which is a real time
feature extractor. On the other hand, the NN search could be
easily parallelized using modern Big Data technologies (such as
SPARK, Mahout, etc.). There are several possible directions for
improvement: defining more complex local learners, learning a
specific metric De Rosa et al. (2016) (e.g for high-dimension
features as for CNN-feature extractors), deriving a more so-



Fig. 3. Left: evolution of 10 action class probabilities over time for a test sequence containing three actions. Middle top: the pink line represents the
standard deviation of class probabilities for each frame of the same sequence. The cyan curve is their average standard deviation computed over a short
interval of frames. For each segmented activity, we computed a confidence measure Ci(y); the predicted activity label is discarded when confidence is below
an adaptive threshold Θ. Right: examples of three time series associated with low, medium and high confidence, respectively.

phisticated confidence measure, using an ensemble of our base
learner (like Random Forest for Decision Trees), to name a few.
Future research will explore the use of confidence measures to
automatically discover new activity classes by associating them
with low confidence trajectories (see Fig. 3, right), as we did
for images De Rosa et al. (2016).
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