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ABSTRACT

Most fingerprint recognition systems use Level 1 characteristics (ridge flow, orientation, and fre-
quency) and Level 2 features (minutiae points) to recognize individuals. Level 3 features (sweat
pores, incipient ridges and ultra-thin characteristics of the ridges) are less frequently adopted because
they can be extracted only from high resolution images, but they have the potential of improving
all the steps of the biometric recognition process. In particular, sweat pores can be used for qual-
ity assessment, liveness detection, biometric matching in live applications, and matching of partial
latent fingerprints in forensic applications. Currently, each type of fingerprint acquisition technique
(touch-based, touchless, or latent) requires a different algorithm for pore extraction. In this paper, we
propose the first method in the literature able to extract the coordinates of the pores from touch-based,
touchless, and latent fingerprint images. Our method uses specifically designed and trained Convo-
lutional Neural Networks (CNN) to estimate and refine the centroid of each pore. Results show that
our method is feasible and achieved satisfactory accuracy for all the types of evaluated images, with a
better performance with respect to the compared state-of-the-art methods.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Current biometric systems evaluate different kinds of fea-
tures of fingerprint images for each step of the recognition pro-
cess. It is possible to classify the fingerprint features into three
categories [12, 35]: Level 1 features are characteristics related
to the overall ridge flow pattern; Level 2 features consist of the
type and coordinates of distinctive points of the ridges, called
minutiae points; and Level 3 features are ultra-thin details, such
as sweat pores, incipient ridges, and local peculiarities of the
ridge edges.

Most automatic fingerprint recognition systems use Level
1 and Level 2 features because they are discernible in images
captured with a resolution of at least 500DPI, which is the stan-
dard resolution of most of the current fingerprint recognition
systems [9, 35]. Differently, the computation of Level 3 fea-
tures requires images with higher resolution, captured with at
least 800 − 1000 DPI [48].
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Recent studies proved that Level 3 features can greatly in-
crease the accuracy of current fingerprint recognition technolo-
gies [49–51]. In particular, the number and coordinates of the
sweat pores demonstrated to be highly discriminative features
[19, 53], also in the case of partial fingerprints [2, 3, 34]. These
features are particularly suitable for recognition methods deal-
ing with touch-based and touchless samples because the pores
are visible in most of the regions of the fingerprint images and
their analysis can increase the accuracy of systems with high
security requirements such as automated border controls [8].
Differently, the pores are identifiable only in limited regions of
good quality latent fingerprint acquisitions. Nevertheless, pore
features can be particularly useful for forensic evaluations of la-
tent images, especially in case of partial fingerprints that present
a limited number of corresponding minutiae [49]. Moreover, re-
cent liveness detection methods use pore characteristics to dis-
tinguish between real and fake fingerprints because most of the
fakes do not properly reproduce the real position of all the pores
[26]. Another important application that can use pore charac-
teristics is the quality assessment of fingerprint samples [47].

In the literature, there are several studies on the extraction of
pore features from specific types of fingerprint samples, cap-
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Fig. 1. An example of fingerprint images acquired using different devices
and procedures: (a) image acquired using a touch-based optical device; (b)
image acquired using a touchless device; (c) image acquired from a lifted
latent impression. The images present different non-idealities that can af-
fect the visibility of the pores: latent fingerprints present a higher level
of noise and artifacts with respect to touch-based images, and touchless
fingerprint images present a complex background due to the non-uniform
color of the skin.

tured live using touch-based optical sensors [19, 53], using
touchless devices [15], or lifted from rolled ink impressions
[50]. To the best of our knowledge, only one work deals with
the extraction of pores from latent impressions [49].

Touch-based fingerprint images, touchless samples, and la-
tent fingerprints present different characteristics. Typically, la-
tent fingerprints present a higher level of noise and artifacts
with respect to touch-based images [18]. Touchless fingerprint
images present a complex background due to the non-uniform
color of the skin [10, 11] (Fig. 1). Therefore, methods de-
signed for extracting the pores from a specific type of image
can achieve poor results for different kinds of fingerprint sam-
ples. Currently, no approach in the literature can extract pores
from fingerprint images acquired using different devices.

In this paper, we propose a novel method for extracting the
coordinates of the pores from heterogeneous fingerprint im-
ages captured using different kinds of devices. Specifically, our
method deals with touch-based, touchless, and latent images.
To achieve robustness to different kinds of noise, we propose
a technique based on Convolutional Neural Networks (CNN).
Our method can be divided into several steps: i) highlight of the
position of the pores using a CNN; ii) estimation of the coordi-
nates of the pores; iii) feature extraction from the area around
the estimated pores; iv) discarding of incorrectly detected pores
using a CNN.

We performed experiments using more than 23, 000 classi-
fied pores from three datasets of fingerprint images acquired
using high-resolution touch-based sensors, touchless devices,
and fingerprints lifted from latent impressions. We acquired
the considered touch-based images using an optical sensor with
a resolution of 1200 DPI. We captured the touchless samples
using a digital single-lens reflex camera and a 100 mm macro
lens, obtaining images captured with a resolution of around
1000 DPI. Among the possible techniques for acquiring latent
fingerprints (photographed, lifted, with/without enhancement
of substances such as powders, cyanoacrylate or silver nitrate),
in this first study we considered images lifted without enhanc-
ing substances and acquired using a document scanner with a
resolution of 1200 DPI.

We evaluated the performance of our method by analyz-
ing the accuracy of the pore estimation, without applying the
pore extraction method in a complete biometric recognition sys-
tem. An important motivation is that the recognition accuracy
is greatly influenced by the used matcher. In fact, different
matchers can present a different robustness to falsely estimated
pores and falsely non-estimated pores. Furthermore, liveness
detection and quality estimation methods also require an accu-
rate pore estimation, without the need for biometric matching.
We analyzed the accuracy of the pore estimation by compar-
ing the coordinates of the pores extracted by our approach with
those labeled by human operators. Results showed the valid-
ity of the proposed methodology, with the majority of the pores
correctly extracted. We also compared our method with other
well-known methods in the literature, achieving higher accu-
racy for all the considered types of fingerprint images.

The contributions of the paper are three-fold: i) first, we
propose a novel pore extraction technique designed to work
with heterogeneous kinds of fingerprint samples; ii) second,
we present the first pore extraction method based on CNN; iii)
third, we introduce a method that can achieve greater accuracy
in extracting the pores with respect to the compared state-of-
the-art techniques.

This paper is organized as follows. Section 2 presents the
studies in the literature on the extraction of pores from finger-
print images and briefly overviews CNNs. Section 3 describes
the proposed method, while Section 4 presents the experimen-
tal protocol and the achieved results. Section 5 concludes the
work.

2. Related work

This section introduces the pore extraction methods in the
literature and briefly overviews CNNs.

2.1. Extraction of pores from fingerprint images

Several methods deal with the extraction of Level 3 features,
in particular, of the coordinates of sweat pores. There are dif-
ferent pore extraction methods specifically designed for each
kind of image, i.e., touch-based images, touchless samples, and
latent impressions. These methods aim to increase the accuracy
of current techniques for liveness detection, quality assessment,
image reconstruction, or biometric recognition.

Liveness detection methods based on characteristics of the
pores are attracting the attention of the academic and industrial
communities, since it is more difficult to create fake fingers
simulating the position of the pores of a real fingerprint, with
respect to counterfeiting only the minutia points [26]. Liveness
detection methods in the literature evaluate the number of pores
[14, 36, 45], statistical features [21, 31, 45], Euclidean distance
[36], and quality indexes [36, 45].

There also quality assessment methods that analyze pore-
based features [44, 47] and image reconstruction methods based
on the pores extracted from fingerprint images presenting low
contrast between the ridges and valleys [41].

The biometric matchers in the literature based on Level 3 fea-
tures for touch-based images use different techniques to search
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corresponding pairs of points in sets of pore coordinates, such
as: Iterative Closest Point (ICP) [19], RANdom SAmple Con-
sensus (RANSAC) [27, 53], Delaunay triangulation [1], or the
analysis of Local Binary Patterns (LBP) [33] and other local
features [4, 53]. Some matching strategies use the coordinates
and number of pores in conjunction to minutiae features [49–
51]. There are also methods designed for matching partial fin-
gerprint images [2, 3, 34], rolled acquisitions [50], or latent fin-
gerprint impressions [49].

The majority of methods for extracting the coordinates of the
pores deal with touch-based fingerprint images. These methods
use different techniques to estimate the shape of the pores from
the samples, such as: Gabor filters [19], watershed segmenta-
tion [32], wavelet transforms [1, 19], or morphological opera-
tors [5]. To the best of our knowledge, the study presented in
[49] is the only attempt of automatic estimation of the pores
from latent images. A recent study [15] proposes a pore extrac-
tion method for touchless fingerprint images.

All the methods in the literature can only cope with specific
kinds of fingerprint images. Differently, the proposed approach
can adapt itself to different acquisition scenarios by using com-
putational intelligence techniques, such as CNNs, and achieve
better accuracy with respect to other techniques in the literature.

2.2. Convolutional Neural Networks

Most of the artificial neural networks in the literature (e.g.,
feedforward neural networks) consist of layers of neurons that
process data in the form of one-dimensional signals. Examples
of one-dimensional signals include feature vectors, time series,
measurements, and spatial coordinates. Supervised learning
procedures allow neural networks to learn from examples and
adapt their inner structure to acquire the capability of general-
ization, with which the neural network is able to approximate
the function also in the case of an unknown input signal [17].

In the majority of the cases, a feature extraction step com-
putes the one-dimensional input signals [7] from data with
higher dimensionality (e.g., an image). The feature extraction
step requires a priori knowledge of the problem to efficiently
reduce the dimensionality of the input data, while maintaining
the most significant information [25].

CNNs are a particular form of artificial neural networks
whose layers have a structure that permits to process data in
the form of multi-dimensional arrays, such as images [25]. In
particular, the foremost layers of a CNN are multi-dimensional
filter banks that process the input image by convoluting it with
the corresponding filter. The convolutional layers can use sev-
eral types of filters to extract the most significant visual fea-
tures. The subsequent layers convert and aggregate these fea-
tures into a more abstract representation [24]. Among the ad-
vantages of CNNs with respect to neural networks able to pro-
cess only one-dimensional input signals, there is the fact that
CNNs require less prior knowledge of the problem. In fact,
CNNs do not require a preliminary feature extraction step be-
cause a generic convolutional layer can extract the salient visual
features from images depicting a great range of objects and sit-
uations. For this reason, researchers use CNNs in different ap-
plication scenarios, such as object classification [24] or natural

language processing [22]. In biometrics, there are recognition
methods based on CNNs for different traits, such as: face [6],
iris [28, 29], and fingerprint [20]. There are also liveness de-
tection methods bases on CNNs and designed for a wide set of
biometric characteristics [37, 39, 46].

3. The proposed method

The proposed method can extract Level 3 features from het-
erogeneous kinds of high-resolution fingerprint images includ-
ing: images obtained using an optical touch-based scanner, a
touchless setup, and latent fingerprints. Taking as input an im-
age with resolution of at least 1000 DPI, our method estimates
the coordinates of the centroids of the pores and returns a matrix
P of their Cartesian coordinates (x, y).

Fig. 1 shows examples of the heterogeneous kinds of images
that can be processed by our method, which present strong dif-
ferences. Touch-based images, in general, present a good con-
trast between pores and ridges. Touchless images present areas
with different illumination characteristics due to the curvature
of the finger. Depending on the illumination, pores may ap-
pear as dark blobs in the regions in which the finger is directly
illuminated, or bright blobs in the other regions of the finger.
Latent images usually have superimposed particles and dust,
and therefore have a higher degree of noise, including many
artifacts and smooth edges.

The proposed technique has to be robust enough to adapt its
parameters to all these possible variations. CNNs are great can-
didates to deal with such a problem because they can learn the
salient features of the pores without needing any assumption on
the image characteristics. In our approach, CNNs are used in
two steps: first, in a pore detection step, we use CNNs as adap-
tive filters to enhance the visibility of the pores and remove
the ridge-valley pattern of fingerprint images; second, we apply
a different kind of CNNs to perform an intelligent refinement
to discard the erroneously estimated pores. Fig. 2 shows the
schema of the proposed approach, which can be divided into
the following steps: i) CNN pore detection; ii) estimation of
the coordinates of the candidate pores; iii) filtering and feature
extraction; iv) CNN refinement.

3.1. CNN for pore detection (CNND)

This section presents the CNN used to detect the pores,
named CNND, and the related training process.

CNND takes as input a gray-scale image I and returns the im-
age ICNN , in which the pores are enhanced and the ridge pattern
is removed. The goal of the network is to compute an image
ICNN in which the intensity of the centers of the pores is equal
to 1 and that of the other pixels is equal to −1.

To speed up the convergence of the learning process, we ap-
ply a simple preprocessing to I before using CNND. We per-
form a min-max normalization followed by the subtraction of
the mean intensity of the image.

3.1.1. Architecture
Differently from the CNN configurations most commonly

used in the literature for classification problems, the proposed
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Fig. 2. Schema of the proposed method. First, a CNN performs pore detec-
tion, enhancing the visibility of the pores and removing the ridge pattern
and the background. Then, the coordinates of the centers of the pores are
estimated. Later, for each found pore, different features are extracted. In
the last step, a CNN refines the results discarding the incorrectly detected
pores.

method does not use a final fully connected Softmax layer. In
most of the CNNs used in classification problems, the size of
the images decreases after each layer and the last layer provides
the class of the image. In contrast, our approach uses CNNs as
adaptive filters to enhance the pores and remove the ridge pat-
tern. As a result, CNND keeps the size of the image constant
from layer to layer and the final layer returns an image ICNN

with the same size of the input image I.
The proposed CNN architecture uses only convolutional lay-

ers and pooling layers. Each convolutional layer computes an
output y by taking as input a map x and convolving it with a
bank of K two-dimensional filters f , using biases b. Here

x ∈ R
H×W , f ∈ R

H′×W′

, y ∈ R
H′′×W′′

, (1)

where H and W are the height and width dimensions, respec-
tively. In the basic configuration of the convolutional layer, for
each coordinate (i, j), the output is computed as follows:

yi′ j′ = b +
H′∑

i′=1

W′∑

j′=1

fi′ j′ × xi′′+i′−1, j′′+ j′−1. (2)

In this layer, we perform a padding of constant step (Ph, Pw)
of the input x along the H and W axes, respectively. Specifi-
cally, we perform top-bottom-left-right padding. We also use
subsampling strides (S h, S w), as follows:

yi′ j′ = b +
H′∑

i′=1

W′∑

j′=1

fi′ j′ × xS h(i′′−1)+i′−Ph,S w( j′′−1)+ j′−Pw . (3)

The pooling layers utilize the max-pooling operator, which
reduces the feature space by computing the maximum response
of each feature in a H′ × W ′ patch, as follows:

yi′ j′ = max
1≤i′≤H′,1≤ j′≤W′

xi′′+i′−1, j′′+ j′−1, (4)

resulting in an output of size y ∈ R
H′′×W′′

.
Fig. 3 shows the architecture of CNND. The network has

5 layers, including 3 convolutional layers and 2 max pooling

layers. The first convolutional layer consists of 5 filters with
size a1 × a1 pixels, striding equal to (1, 1), and padding equal
to ( a−1

2 ,
a−1

2 ). This convolutional layer is followed by a max-
pooling with a kernel of 3 × 3 pixels. The second convolution
layer contains 15 filters of size a2 × a2 pixels, striding equal to
(1, 1), and padding equal to ( a−2

2 ,
a−2

2 ). This convolutional layer
is followed by a max-pooling with a kernel of 3× 3 pixels. The
last convolutional layer includes a single filter of size a3 × a3

pixels, striding equal to (1, 1), and padding equal to ( a−3
2 ,

a−3
2 ).

The number of layers, the size of the convolution kernels and
max-pooling kernels and the stride have been tuned empirically.

3.1.2. Training
The objective of the training process is to obtain a CNN that

provides an output of at least 1 for the pixels representing the
centroid of a pore, and at most −1 for the pixels far from any
pore. To achieve this goal, we use a training dataset composed
of multiple labeled images. Human experts labeled each pixel
of each image belonging to this dataset. The labels are equal
to: 1 for the pixels representing the centroid of a pore; 0 for the
pixels lying in a circle with radius rp and center in the centroid
of a pore (rp = 5 pixels for touch-based images, rp = 4 pixels
for touchless samples, and rp = 7 pixels for latent fingerprints);
and −1 for all the other pixels.

We train CNND using the well-known algorithm based on
stochastic gradient descent with momentum [16]. We initialize
the weights of the filters used by CNND by applying a random
sampling from a Gaussian distribution with zero mean and 0.01
standard deviation. CNND is trained for 500 epochs, using the
learning rates 5, 5 and 0.0005 for touch, touchless, and latent
fingerprints, respectively. The batch size is set to the number of
images in the learning database.

3.2. Estimation of the coordinates of the pores
This step estimates a matrix P of the Cartesian coordinates of

the centers of the pores from ICNN . First, we set to −1 the pixels
of the output image ICNN with negative intensity, because they
represent regions of the image far from the centers of the pores.
Second, we compute a binary map of the pores B by threshold-
ing ICNN with the Otsu’s algorithm [40]. Third, we compute the
coordinates of each pore Pi = (xi, yi) as the centroid (xi, yi) of
each white region i of B. We discard the white regions with area
equal or less than an empirically tuned threshold ta.

3.3. Filtering and feature extraction
For each pore Pi, we compute a four channel image Fi of

size 21 × 21 pixels, representing the values of 4 features com-
puted pixelwise from the local region centered in Pi. The four
channels are obtained as follows: i) the local intensity of I; ii)
the local intensity of ICNN ; iii) the local intensity of the binary
ridge map R; iv) the local intensity of the radial symmetry im-
age IC . R provides information on the ridge-valley pattern of
the fingerprint to the CNN. To compute R, we apply the algo-
rithm described in [23]. IC enhances the visibility of regions
with high radial symmetry of ICNN , thus providing information
on the presence of circular shapes to the CNN. We compute IC

by applying the fast RST method proposed in [30] to ICNN using
radii = [1, 2, . . . , 9] .
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Fig. 3. Schema of the proposed CNN used for pore detection (CNND). The goal of the network is to compute an image ICNN in which the intensity of the
pores is equal to 1 and all the other pixels are equal to 0. The network is composed of 5 layers, including three convolutional layers and two max-pooling
layers.

3.4. CNN for refinement (CNNR)

This step aims to remove possible errors from the matrix P
of candidate pores. To this end, we propose a CNN, named
CNNR, that searches erroneously estimated pores. For each
pore Pi, CNNR analyzes the local values of the feature image
Fi extracted from a local region of I surrounding Pi. CNNR

returns a binary value 1 for the coordinates considered as true
pores, and 0 for false pores.

Also in this case, to speed up the convergence of the learn-
ing process, we perform a simple preprocessing to each image
Fi before using CNNR. We perform a min-max normalization
followed by the subtraction of the mean intensity of the image.

3.4.1. Architecture
In contrast with CNND, CNNR uses a general architecture

for classification that decreases the size of the image after each
layer. Fig. 4 shows the architecture of CNNR.

The proposed CNN architecture uses convolutional layers,
pooling layers, a ReLu (Rectified Linear Units) layer and a fi-
nal Softmax loss layer. Convolutional and pooling layers are
detailed in Section 3.1.1. The ReLu layer uses a non-saturating
activation fuction

yi = max(0, xi), (5)

while the Softmax classifier computes its output as

y j = exj/

⎛⎜⎜⎜⎜⎜⎝
n∑

i′=1

exi

⎞⎟⎟⎟⎟⎟⎠, (6)

where n is the number of inputs to the neuron.
CNNR is composed of 8 layers, including 4 convolutional

layers, 2 max-pooling layers, a ReLu layer, and a Softmax clas-
sification layer. The first convolutional layer consists of 10
filters of size a4 × a4 pixels, striding equal to (1, 1), and no
padding. This convolutional layer is followed by a max-pooling
layer with a kernel equal to 3 × 3 pixels. The second convolu-
tional layer consists of 25 filters of size a5 × a5 pixels, strid-
ing equal to (1, 1), and no padding. This convolutional layer is
followed by a max-pooling layer with a kernel equal to 3 × 3
pixels. The third convolutional layer consists of 250 filters of
size a6×a6 pixels, striding equal to (1, 1), and no padding. This
convolutional layer is followed by a ReLu layer. The last con-
volutional layer consists of two filters of size a7 × a7 pixels.

The last layer is a fully-connected Softmax classifier returning
a binary value representing if the pore Pi can be considered as
properly estimated. The number of layers, the size of the con-
volution kernels and max-pooling kernels, and the stride have
been tuned empirically.

3.4.2. Training
The training database consists of the images Fi obtained for

each candidate pore Pi computed from each image I used to
train CNND. The label of each image Fi is equal to 1 if it cor-
responds to a pore, and 0 otherwise.

We use the stochastic gradient descent with momentum algo-
rithm [16] to train CNNR. We initialize the weights of the fil-
ters using a random sampling from a Gaussian distribution with
zero mean and 0.01 standard deviation. Each CNN is trained
for 400 epochs, using the learning rate 0.0005 for touchless and
latent fingerprints. No refinement is necessary for touch-based
fingerprints. The batch size is set to 500.

4. Experiments and discussion

This section describes the experimental protocol, the used
datasets, the achieved results, and the computational time of
our approach. We evaluated the accuracy of the proposed ap-
proach on sets of touch-based images, samples acquired using
touchless sensors, and latent fingerprints. We tested our method
using more than 23, 000 classified pores, proving the validity
of the proposed methodology, with the majority of the pores
correctly extracted. We also compared the proposed approach
with other well-known methods in the literature. In all the con-
sidered types of fingerprint images, our approach obtained the
highest accuracy, with a reasonable computational cost.

4.1. Experimental protocol

4.1.1. Datasets
We used datasets of fingerprints acquired with different

modalities, specifically: sets of touch-based images, samples
acquired by means of a touchless sensor, and latent fingerprints.
For each dataset, human operators created a ground truth for
our experiments by estimating the center coordinates of all the
pores. Fig. 5 shows some examples of the used images.

Fig. 5 shows examples of images used to evaluate the ac-
curacy of our pore detection method. These images present a
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Fig. 4. Schema of the proposed CNN for refinement (CNNR). The goal of the network is to determine if a candidate pore is a real pore or not. The network
is composed of 8 layers, including four convolutional layers, two max-pooling layers, one ReLu layer and a Softmax classifier.

(a) (b) (c)

Fig. 5. Examples of used images: (a) touch-based image from DB Touch-
based; (b) touchless image from DB Touchless; (c) latent image from DB
Latent. It is possible to observe that, while the pores are visible in all three
images, the images present a great variability.

great variability: touch-based fingerprint images present high
contrast between the ridges and pores; touchless samples have
a complex background, reflections, and pores with darker or
brighter intensity with respect to the ridges; latent fingerprints
present artifacts due to the acquisition process and low contrast
between ridges and pores.

We tested our method using the following datasets:

• DB Touch-based: this dataset contains the 30 labeled im-
ages belonging to the PolyU High-Resolution-Fingerprint
(HRF) database [53]. The labels represent the Cartesian
coordinates of 12767 pores. The images have a resolution
of 1200 DPI, have size 320×240 pixels, and depict the cen-
tral region of the finger. The used acquisition device is the
optical touch-based sensor described in [48]. The finger-
print images as well as the labeled coordinates of the pores
are public and different methods in the literature [27, 53]
have used them to evaluate their performance.

• DB Touchless: we collected this dataset in our laboratory
[15]. It consists of 44 touchless fingerprint images cap-
tured from 22 fingers by using a Canon 6D camera with
a 100 mm macro lens. The images have a resolution of
≈ 1000 DPI, have size 250 × 250 pixels, and depict the
central region of the finger. We labeled the coordinates of
the pores of each image, for a total of 9, 143 pores. Fig. 6
(b) shows an example of a touchless sample with labeled
pores, comparing it with a touch-based image of the same
finger (Fig. 6 (a)). To the best of our knowledge, this is the
only dataset of touchless fingerprint images that present
sufficient resolution and sharpness for evaluating Level 3

features such as pores.

• DB Latent: we collected this dataset in our laboratory. It
consists of 36 latent fingerprints of 22 fingers. We acquired
the latent fingerprint using forensic procedures and digi-
talized the images using a document scanner. The images
have a resolution of 1200 DPI, with size 320 × 240 pixels.
We labeled the coordinates of the pores of each image, for
a total of 1, 785 pores. Fig. 6 (e) shows an example latent
fingerprint with labeled pores, comparing it with a touch-
based image of the same finger (Fig. 6 (d)). To the best
of our knowledge, there is only a study in the literature
that deals with pore extraction from latent samples [49].
This study used images from the ELFT-EFS Public Chal-
lenge Dataset [18] and a set of latent images pertaining to
the West Virginia University. However, these datasets are
not publicly available anymore. Another dataset of latent
fingerprint images with high resolution is the IIIT-D La-
tent Fingerprint Database [43]. Nevertheless, this dataset
is not suitable for our tests because it is composed of im-
ages of unknown and inconstant resolution, acquired using
a digital camera.

4.1.2. Evaluation procedure
For each image of the used datasets, we applied our method

for estimating of the coordinates of the sweat pores. We tested
the method using a k-fold validation strategy [13], with k = 5.
In particular, we used 3 folds for training, 1 fold for validation
and 1 fold for testing.

We used two figures of merit: the true detection rate (RT )
and the false detection rate (RF) [52]. RT represents the ratio
of the number of detected real pores to the number of all true
pores present in the image. RF indicates the ratio of the number
of falsely detected pores to the total number of detected pores.
The optimal values for RF and RT are zero and one, respectively.

We consider that a pore is correctly detected if its Euclidean
distance from the coordinates of a pore labeled by a human op-
erator is equal or less than d pixels. We define d = rw/2, where
rw is the average ridge width in the images of the considered
dataset.

To compare the performance of the proposed method with
other techniques in the literature, we implemented the following
algorithms:

• Inversion: this technique uses basic image processing op-
erators. First, it creates a binary image IB by binarizing
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(a) (b) (c) (d) (e) (f)

Fig. 6. An example of the ground truth extracted from an image of DB Touchless and DB Latent: (a,d) touch-based images; (b) touchless sample; (c)
registration of the extracted pores present in (a) and (b); (e) latent image; (f) registration of the extracted pores present in (d) and (e). The registration
is based on an ICP-based algorithm [38]. Many pores are visible in both images (only a subset of pores identified by the supervisor has been plotted to
make the plot chart more readable).

the input fingerprint image I, using a threshold obtained
with Otsu’s method [40]. The algorithm then computes
two binary images, IB1 and IB2, obtained by removing the
8-connected regions with area smaller or equal to 40 pixels
and an area equal to 1 pixels from IB, respectively. It then
creates a binary image IP, which represents the pores, as
IP = XOR(IB1, IB2). Finally, the algorithm computes the
matrix of the coordinates of the pores P by estimating the
centroids of the 8-connected regions of IP.

• Gabor filters: the technique is the pore extraction algo-
rithm described in [19], which fuses the information ob-
tained by applying Gabor filters and Mexican Hat filters.

• Neural classifiers: the method is described in [15], is
based on neural classifiers, and is specifically designed for
touchless images.

4.2. Performance of the proposed method

4.2.1. Results for DB Touch-based
In touch-based images the pores are clearly visible, the con-

trast between ridges and pores is high, and the number of ar-
tifacts is low. For this reason, it was not necessary to use the
full architecture that includes both CNND and CNNR to obtain
satisfactory results. In particular, we could omit the refinement
step of (CNNR), and use only a simplified version of CNND)
for estimating the coordinates of the pores. The CNN includes
three layers: a convolutional layer composed of 30 filters of
size 5×5 pixels, a max-pooling layer with a kernel of 3×3 pix-
els, and a convolutional layer composed of 1 filter of size 5 × 5
pixels.

Table 1 reports the accuracy achieved by the proposed ap-
proach for DB Touch-based. The obtained results are compared
with those presented in [52], which are related to the methods
developed by Ray et al. [42], Gabor filters [19], Adaptive DoG,
and DAPM [52]. To perform this comparison, we computed
the mean and standard deviation of the RT and RF . The results
reported in [52] refer to a subset of 24 unknown images of DB
Touch-based, while we tested our method using all the 30 im-
ages of DB Touch-based. Our method achieved better accuracy
with respect to the compared state-of-the-art techniques. Only
the algorithm presented in [49] obtained similar performance.

Table 1. Average performance metrics in percentage and standard devia-
tion (in parenthesis) for DB Touch-based.

Ray et al.∗ Gabor filters∗ Adapt. DoG∗ DAPM∗

CNND[42] [19] [52] [52]

RT 60.6 (11.9) 75.9 (7.5) 80.8 (6.5) 84.8 (4.5) 84.69 (7.81)
RF 30.5 (10.9) 23.0 (8.2) 22.2 (9.0) 17.6 (6.3) 15.31 (6.20)

∗These results were obtained using a subset of 24 images of the dataset used in
our experiments, which contains a total of 30 images. However, no
information regarding which 24 images were chosen was found.

Table 2. Average performance metrics in percentage and standard devia-
tion (in parenthesis) for DB Touchless.

Neural classifiers [15] CNND + CNNR

RT 22.9 (5.6) 51.8 (8.3)
RF 16.3 (7.7) 11.7 (6.6)

For completeness, we implemented the technique described
in [49] and compared its performance with that of our method
for all the images of DB Touch-based. Fig. 7 presents the aver-
age 1 − RF obtained by the compared pore extractors for differ-
ent values of d. This graph shows that the proposed approach
properly detected a larger amount of pores with respect to the
compared method.

Fig. 8 (a) presents a visual example of the pores estimated by
the proposed approach. This figure shows a relevant number of
detected pores corresponding to the labeled ones. We obtained
similar results for all the images belonging to DB Touch-based.
Since Jain et al. [19] demonstrated that about 20–40 pores are
sufficient to assess the identity of an individual, we can infer
that our pore extraction method can be successfully applied to
perform recognition tasks with touch-based images.

4.2.2. Results for DB Touchless
Touchless images are the most difficult to analyze, because

of the variability in illumination and pore reflectance. Table 2
presents the results obtained for DB Touchless. We compared
the results of our method with those achieved by the technique
proposed in the work [15], which is the only pore extractor in
literature designed for touchless fingerprint images. To perform
this comparison, we computed the mean and standard deviation
of the RT and RF . Table 2 shows that our method outperforms
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Fig. 7. Average 1 − RF obtained by each approach on DB Touch for dif-
ferent values of d. The displayed curves present the results obtained with
Gabor filters [19] and the proposed approach based on CNN. Our method
obtained the greatest pore estimation accuracy.

Table 3. Average performance metrics in percentage and standard devia-
tion (in parenthesis) for DB Latent.

Gabor filters [19] Inversion CNND + CNNR

RT 32.9 (29.9) 34.8 (15.0) 52.7 (14.5)
RF 79.8 (17.8) 84.3 (10.9) 24.0 (11.2)

Table 4. Average performance metrics in percentage and standard devia-
tion (in parenthesis) for 28 selected areas of 100 × 100 pixels of images in
DB Latent.

Gabor filters [19] Inversion CNND + CNNR

RT 45.3 (19.2) 46.0 (27.4) 63.8 (16.0)
RF 44.9 (23.3) 58.2 (30.1) 17.6 (11.7)

the work in [15] in both figures of merit. These results indi-
cate that, also for touchless images, our CNN-based method can
find more pores with fewer errors with respect to state-of-the-
art techniques. Fig. 8 (b) presents an example of pores retrieved
by the proposed approach. Also in the case of touchless sam-
ples, the number of pores retrieved per image can be sufficiently
high to apply recognition methods based on the coordinates of
the pores.

4.2.3. Results for DB Latent
Table 3 reports the results obtained for DB Latent. We com-

pared our method with the technique presented in [19] and In-
version. To assess the performance, we computed the mean and
standard deviation of the RT and RF . The results confirmed that
latent fingerprints present additional challenges with respect
to touch-based images because all techniques achieved worse
performance with respect to the results reported in Table 1.
Nonetheless, the proposed method based on CNN showed a
higher adaptability with respect to the compared techniques,
achieving better values of RT and RF . Fig. 8 (c) shows an
example of the output of the pore extractor, in which the num-
ber of pores retrieved per image is sufficiently high to perform
recognition tasks using the position of the pores.

One of the main problems of latent fingerprints is that there
are several areas that do not show any pore, which increases
the complexity of pore extraction. To study the performance of

the method with portions of the images that contain a significant
number of pores, we selected a subset of 28 images of size 100×
100 pixels. Table 4 presents the results achieved by our method
and by the method presented in [19] and Inversion. All methods
obtained a better accuracy with respect to the results reported in
Table 1, although our method achieved the best performance.

4.2.4. Accuracy of refinement methods
The refinement based on CNNR is an important step of our

pore extraction method. In this section, we study the impact
of this step on the overall method accuracy. As a test case, we
chose latent fingerprints. We compared the proposed CNNR

with the following techniques:

• Simple refinement: the 4-connected regions of binary map
of the pores B with area greater than 50 pixels, area less
than 2 pixels, or high ratio between the major and minor
axis (greater than 2) are discarded.

• Circle refinement: this algorithm discards pores with low
radial symmetry. It discards a candidate pore Pi of coordi-
nates (xi, yi) if IC(xi, yi) < 0.12.

• CI-based refinement: we use this prefix for methods based
on computational intelligence (CI) that exploit features ex-
tracted from the local regions surrounding each candidate
pore Pi. The methods considers local regions of 11 × 11
pixels centered i (xi, yi). The extracted features included:
average intensity and standard deviation of the local region
of I, average and standard deviation of the local region of
ICNN , the quantiles 0.1, 0.5 and 0.9 of the local region of
I, the quantiles 0.1, 0.5 and 0.9 of the local region of ICNN ,
and the quantiles 0.1, 0.5 and 0.9 of the local region of IC .
We used the following CI techniques:

– k-nearest neighbors (kNN), with different numbers
of neighbors;

– naive Bayes classifier;

– Support Vector Machine with polynomial kernel
function.

Table 5 presents the obtained results, showing that CNNR

achieved the best performance. In particular, these results show
that CNNR removed a much higher number of falsely estimated
pores with respect to the compared refinement techniques.

4.2.5. Computational time analysis
In this section, we analyze the time required by our pore ex-

traction method. We executed the tests using a PC with 3.7 GHz
Intel (R) Xeon (R) E5-1620 v2 CPU, RAM 16 GB and NVIDIA
(R) Quadro (R) K4000 3GB GPU. The operating system was
Windows 7 professional 64 bit. All methods were implemented
using Matlab.

For touch-based images, the pore extraction process (CNND

and the estimation of the coordinates of the pores) took about
0.2 s per image. The GPU parallelization of CNND reduced
the execution time of about 5 ms. The impact of GPU paral-
lelization is not very significant because the most time consum-
ing task is the estimation of the coordinates of the pores. We
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(a) (b) (c)

Fig. 8. Examples of pores extracted by the proposed detector in an image from (a) DB Touch-based, (b) DB Touchless, (c) DB Latent. Red circles indicate
pores labeled by the supervisors, while blue squares indicate the pores obtained by our method.

Table 5. Average performance metrics in percentage and standard deviation (in parenthesis) for DB Latent using different refinement schemes.

CNND + CNND + CNND + CNND + CNND + CNND + CNND + CNND +

Simple Circle CI-kNN1 CI-kNN5 CI-kNN10 CI-Bayes CI-SVM CNNR

RT 89.6 (3.9) 72.1 (16) 46.4 (10.4) 40.8(11.3) 32.4 (12.1) 52.1 (17.0) 49.2 (14.6) 52.7 (14.5)
RF 80.8 (6.0) 52.2 (14.3) 54.2 (8.8) 44.2 (10.22) 35.9 (12.4) 40.3 (15.4) 52.6 (12.5) 24.0 (11.2)

Note: Simple = Simple refinement; Circle = Circle refinement; CI-kNN = CI-based refinement using k-nearest neighbors (kNN); CI-Bayes = CI-based refinement
using naive Bayes classifier; CI-SVM = CI-based refinement using Support Vector Machine with polynomial kernel function; CNN-R = CNN Refinement.

also implemented one of the methods used in the state-of-the-
art method Gabor filters [19], which required around 0.8 s to
extract the pores from each image. In comparison, our method
is around 4 times faster. This is mainly due to the absence of a
preprocessing step that required around 0.7 s per image for the
Gabor filters method.

For touchless images, the use of two consecutive CNNs in-
creased the execution time. The analysis of touchless images
required around 0.7 s per image, divided into application of
CNND (0.1 s), estimation of the coordinates of the pores and
pore image creation (0.5 s) and application of CNNR (0.1 s). In
comparison, the method based on neural classifiers presented
in [15] took around 0.8 s per image, which can be divided into
pore detection (0.3 s), pore feature extraction (0.5 s) and neu-
ral post-processing (0.01 s). The CNN-based method is faster,
mainly because CNND is more precise than the first step of the
method presented in [15] and extracts less candidate pores.

For latent fingerprints, our method required around 0.3 s. As
with touchless images, the execution time can be divided into
application of CNND (0.02 s), estimation of the coordinates
of the pores and pore image creation (0.2 s) and application
of CNNR (0.1 s). Gabor filters method, in comparison, took
around 0.2 s. In this case, the CNN based method is slower, due
to the refinement step. Nonetheless, considering the improve-
ment in pore detection accuracy, we believe that the increase in
computational time is deserved.

We think that the computational cost of our method is accept-
able since Matlab is a prototype-oriented and non-optimized en-
vironment. We expect that the use of compiled languages, such
as C/C++, can reduce the processing time, obtaining real-time
performance.

5. Conclusions and future work

In this work, we proposed a novel method for the extrac-
tion of Level 3 features. In particular, our method is designed
for estimating the coordinates of sweat pores from heteroge-
neous fingerprint images, including touch-based, touchless and
latent samples. Given the different characteristics of the ana-
lyzed images, which include different levels of noise, artifacts,
and quality of illumination conditions, it was necessary to de-
sign a very flexible pore extraction method. Convolutional Neu-
ral Networks (CNN) provide a suitable solution to this problem
because they can adapt their parameters to different conditions
by learning from examples. Furthermore, they do not require
any assumption on the characteristics of the input images.

In the presented work, we performed tests on more than
23, 000 classified pores. We used three image datasests com-
posed of 30 touch-based images, 44 touchless samples, and 36
latent fingerprints. Results showed the validity of the proposed
methodology, with the majority of the pores correctly extracted.
We compared our results with those of other well-known meth-
ods in the literature. Our method achieved higher accuracy for
all the considered types of fingerprint images.

Future work should regard the design of novel matching al-
gorithms based on features related to the pores and able to deal
with heterogeneous fingerprint images. In addition, the pro-
posed approach could be exploited to design innovative and
more accurate liveness detection algorithms able to work with
samples acquired using different technologies.
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