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ABSTRACT

Many machine learning applications such as in vision, biology and social networking deal with data
in high dimensions. Feature selection is typically employed to select a subset of features which im-
proves generalization accuracy as well as reduces the computational cost of learning the model. One
of the criteria used for feature selection is to jointly minimize the redundancy and maximize the rele-
vance of the selected features. In this paper, we formulate the task of feature selection as a one class
SVM problem in a space where features correspond to the data points and instances correspond to
the dimensions. The goal is to look for a representative subset of the features (support vectors) which
describes the boundary for the region where the set of the features (data points) exists. This leads to a
joint optimization of relevance and redundancy in a principled max-margin framework. Additionally,
our formulation enables us to leverage existing techniquesfor optimizing the SVM objective resulting
in highly computationally efficient solutions for the task of feature selection. Specifically, we employ
the dual coordinate descent algorithm (Hsieh et al., 2008),originally proposed for SVMs, for our for-
mulation. We use a sparse representation to deal with data invery high dimensions. Experiments on
seven publicly available benchmark datasets from a varietyof domains show that our approach results
in orders of magnitude faster solutions even while retaining the same level of accuracy compared to
the state of the art feature selection techniques.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Many machine learning problems in vision, biology, social
networking and several other domains need to deal with very
high dimensional data. Many of these attributes may not be rel-
evant for the final prediction task and act as noise during the
learning process. A number of feature selection methods have
already been proposed in the literature to deal with this prob-
lem. These can be broadly categorized into filter based, wrap-
per based and embedded methods.

In filter based methods, features (or subset of the features)
are ranked based on their statistical importance and are obliv-
ious to the classifier being used (Guyon and Elisseeff, 2003;
Peng et al., 2005). Wrapper based methods select subset of fea-
tures heuristically and classification accuracy is used to esti-
mate the goodness of the selected subset (Kumar et al., 2012).
These methods typically result in good accuracy while incur
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high computational cost because of the need to train the classi-
fier multiple number of times. In the embedded methods, fea-
ture selection criteria is directly incorporated in the objective
function of the classifier (Tan et al., 2010; Yiteng et al., 2012).
Many filter and wrapper based methods fail on very high di-
mensional datasets due to their high time and memory require-
ments, and also because of inapplicability on sparse datasets
(Guyon and Elisseeff, 2003; Yiteng et al., 2012).

In the literature, various max-margin formulation had been
developed for many applications (Burges, 1998; Guo et al.,
2007). Recently, we have proposed a hard margin primal for-
mulation for feature selection using quadratic program (QP)
slover (Prasad et al., 2013). This approach jointly minimizes
redundancy and maximizes relevance in a max-margin frame-
work. We have formulated the task of feature selection as a one
class SVM problem (Schölkopf et al., 2000) in the dual space
wheref eatures correspond to the data points and instances cor-
respond to the dimensions. The goal is to search for a rep-
resentative subset of the features (support vectors) whichde-
scribes the boundary for the region in which the set of the fea-
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tures (data points) lies. This is equivalent to searching for a
hyperplane which maximally separates the data points from the
origin (Schölkopf et al., 2000).

In this paper, we have extended the hard-margin formulation
to develop a general soft-margin framework for feature selec-
tion. We have also modified the primal and dual formulations.
We present the dual objective as unconstrained optimization
problem. We employ the Dual Coordinate Descent (DCD) al-
gorithm (Hsieh et al., 2008) for solving our formulation. The
DCD algorithm simultaneously uses the information in the pri-
mal as well as in the dual to come up with a very fast solver for
the SVM objective. In order to apply DCD approach, our for-
mulation has been appropriately modified by including an addi-
tional term in the dual objective, which can be seen as a regular-
izer on the feature weights. The strength of this regularizer can
be tuned to control the sparsity of the selected features weights.
We adapt the liblinear implementation (Fan et al., 2008) forour
proposed framework so that our approach is scalable to data in
very high dimensions. We also show that the Quadratic Pro-
gramming Feature Selection (QPFS) (Rodriguez-Lujan et al.,
2010) falls out as a special case of our formulation in the dual
space when using a hard margin.

Experiments on seven publicly available datasets from a vi-
sion, biology and Natural Language Processing (NLP) domains
show that our approach results in orders of magnitude faster
solutions compared to the state of the art techniques while re-
taining the same level of accuracy.

The rest of the paper is organized as follows. We de-
scribe our proposed max-margin formulation for feature selec-
tion (MMFS) including the dual coordinate descent approachin
Section 2. We present our experimental evaluation in Section 4.
We conclude our work in Section 5.

2. Proposed Max-Margin Framework

The key objective in feature selection is to select a subset of
features which are highly relevant (that is high predictiveac-
curacy) and non-redundant (that is uncorrelated). Relevance
is captured either using an explicit metric (such as the corre-
lation between a feature and the target variable) or implicitly
using the classifier accuracy on the subset of features beingse-
lected. Redundancy is captured using metrics such as correla-
tion coefficient or mutual information. Most of the existingfea-
ture selection methods rely on a pairwise notion of similarity to
capture redundancy (Peng et al., 2005; Rodriguez-Lujan et al.,
2010; Yu and Liu, 2003).

We try to answer the question ”Is there a principled approach
to jointly capturing the relevance as well redundancy amongst
the features?”. To do this, we flip around the problem and ex-
amine the space where features themselves become the first
class objects. In particular, we analyze the space where ”fea-
tures” represent the data points and ”instances” representthe
dimensions. Which boundary could describe well the set of
features lying in this space? Locating the desired boundaryis
similar to one class SVM formulation (Schölkopf et al., 2000).
This equivalently can be formulated as the problem of searching
for a hyperplane which maximally separates the features (data
points) from the origin in the appropriate kernel space overthe

features. In order to incorporate feature relevance, we construct
a set of parallel marginal hyperplanes, one hyperplane for each
feature. The margin of each separating hyperplane captures
the relevance of the corresponding feature. Greater the rele-
vance, higher the margin required (a greater margin increases
the chances of a feature being a support vector). Redundancy
among the features is captured implicitly in our framework.The
support vectors which lie on respective margin boundaries con-
stitute the desired subset of features to be selected. This leads to
a principled max-margin framework for feature selection. The
proposed formulation for MMFS is presented hereafter.

2.1. Formulation

Let X represent the data matrix where each row vectorxi
T

(i ∈ 1 . . .M) denotes an instance and each column vectorf j

( j ∈ 1 . . .N) denotes a feature vector. We will useφ to denote
a feature map such that the dot product between the data points
can be computed via a kernelk(xi, x j) = φ(xi)Tφ(x j), which can
be interpreted as the similarly ofxi and x j. We will useY to
denote the vector of class labelsyi’s (i ∈ 1 . . .M). Based on
the above notations, we present the following formulation for
feature selection in the primal:

min
w,b

1
2

wT w + b +C
N
∑

i=1

ξi

subject to wTφ( fi) + b ≥ ri − ξi, ξi ≥ 0, ∀i = 1, . . . ,N;
(1)

where,w represents a vector normal to the separating hyper-
plane(s)1, b represents the bias term andξi’s represent slack
variables.ri captures the relevance for theith feature. The equa-
tion of the separating hyperplane is given bywTφ( fi) + b = 0
with the distance of the hyperplane from the origin being−b.
Note that in this formulation the objective function is similar to
the one class SVM (Schölkopf et al., 2000). However, the con-
straints are very much different as our formulation includes the
relevance of the features (r). The choice ofφ determines the
kind of similarity (correlation) to be captured among the fea-
tures. The set of support vectors obtained after optimizingthis
problem i.e.{ fi | wTφ( fi) + b = ri} and the margin violators
{ fi | ξi > 0} constitute the set of features to be selected. In the
dual space, this translates to those features being selected for
which 0 < αi ≤ C whereαi is the Lagrange multiplier forfi.
We will refer to our approach as Max-Margin Feature Selection
(MMFS). Note that when dealing with hard margin (no noise)
case and the term involvingC disappears (since this enforces
ξi = 0,∀i).

Figure 1 illustrates the intuition behind our proposed frame-
work in the linear dot product space (with hard margin). In the
figure,wT f + b = 0 represents the separating hyperplane. The
distance of this hyperplane from the origin is given by−b/||w||.
The first term in the objective of Equation 1 tries to minimize
wT w i.e. maximize 1/||w||. The second term in the objective
tries to minimizeb i.e. maximize−b. Hence, the overall ob-
jective tries to push the plane away from the origin. The ith

1All the separating hyperplanes are parallel to each other inour framework.
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dashed plane represents the margin boundary for the ith feature.
The distance of this marginal hyperplane from the separating
hyperplane is given byri/||w|| whereri is the pre-computed rel-
evance of the ith feature. Therefore, minimizingwT w in the
objective also amounts to maximizing this marginal distance
(ri/||w||). Hence, the objective has the dual goal of pushing the
hyperplane away from the origin while maximizing the margin
for each feature (weighted by its relevance)as well. The features
which lie on the respective marginal planes are the support fea-
tures (encircled points). The redundancy is explicitly captured
in the dual formulation of this problem.

. .
.

. .
..
. .

−b/||w||

M
argin

(ri /||w
||)

w T
f
+

b
=

0

Separating
hyperplane

w T
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i th
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Support Features
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x 2

Fig. 1. Feature representation in sample space. The diagram is conceptual
only.

2.2. Dual Formulation
In order to solve the MMFS optimization efficiently by Dual

Coordinate Descent strategy, we require both the primal and
dual formulations. The dual formulation for Equation 1 can be
derived using the Lagrangian method. The Lagrangian function
L(w, b, ξ, α, β) can be written as:

L(w, b, ξ, α, β) = min
w,b

1
2

wT w + b + C
N
∑

i=1

ξi

+

N
∑

i=1

αi(ri − ξi − (wTφ( fi) + b)) −
N
∑

i=1

βiξi

Where,αi’s andβi’s are the Lagrange multipliers. Now, the
Lagrangian dual can be written as:

max
α,β:αi≥0,βi≥0

min
w,b,ξ

L(w, b, ξ, α, β) (2)

At the optimality,∇wL, ∂L
∂b and ∂L

∂ξi
(for all i) will be 0 i.e.

∇wL = w −
N
∑

i=1

αiφ( fi) = 0;
∂L
∂b
= 1−

N
∑

i=1

αi = 0

∂L
∂ξi
= C − αi − βi = 0

(3)

By substituting the values from Equation (3) into Equation (2)
we get:

f (α) = max
α

rTα −
1
2
αT Qα

Subject to 0≤ αi ≤ C, i = 1, ...,M; ITα = 1.
(4)

This is similar to the standard SVM dual derivation
(Schölkopf et al., 2000). The only difference is that whilethere
is a single margin in standard SVM, the number of features here
dictate the number of margins . We can equivalently rewrite the
dual formulation of (4) as follows:

f (α) = min
α

1
2
αT Qα − rTα

Subject to 0≤ αi ≤ C, i = 1, ...,M; ITα = 1.
(5)

Here, Q is the similarity matrix whose entries are given by
Qi j = k( fi, f j) wherek( fi, f j) = φ( fi)Tφ( f j) is the kernel func-
tion corresponding to the dot product in the transformed feature
space.r represents the vector of feature relevance.α’s are the
Lagrange multipliers. Note that the first term in the objective
captures the redundancy between the features and the second
term captures the relevance as in the case of QPFS formula-
tion of (Rodriguez-Lujan et al., 2010). Hence, the connection
between the redundancy and the relevance becomes explicit in
the dual formulation. It should be noted that the dual objec-
tive bears a close similarity to the QPFS objective. We give the
detailed comparison in Section 3. We can give relative impor-
tance to redundancy and relevance by incorporating a scaling
parameterθ ∈ (0, 1) in Equation (5) as follows:

f (α) = min
α

1
2

(1− θ)αT Qα − θrTα

Subject to 0≤ αi ≤ C, i = 1, ...,M; ITα = 1.
(6)

In the primal formulation (Equation (1)), this can be achieved
by scaling the relevance scores byθ1−θ , that is, replacing the
constraintswTφ( fi) + b ≥ ri − ξi by wTφ( fi) + b ≥ θ

1−θ (ri − ξi).

2.3. Choice of Metrics

The relevance of a feature in our framework is captured us-
ing the correlation between the feature vector and the classlabel
vector. In our experiments, we have normalized the data as well
as the target vector (class labels) so that it has zero mean and
unit variance. Hence, the dot product between the feature vec-
tor and the target vector (normalized) estimates the correlation
between them i.e. relevance of theith feature can be computed
asri = |YTφ( fi)|. Some other appropriate metric which captures
the predictive accuracy of a feature (such as mutual informa-
tion(MI)) could also be used (Peng et al., 2005).

The redundancy is usually captured using correlation or mu-
tual information in feature selection tasks (Peng et al., 2005). In
our framework, the dot product space (kernel) captures the sim-
ilarity (redundancy) among the features and the required simi-
larity metric can be captured by selecting the appropriate ker-
nel. The linear kernel (f T

i f j) represents the correlation among
the features when the features are normalized to zero mean and
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unit variance2. Since the value of the correlation ranges be-
tween−1 and 1, a degree two homogeneous polynomial ker-
nel defined over normalized data represents the squared corre-
lation (i.e. φ( fi)Tφ( f j) = ( f T

i f j)2). The choice of this kernel is
quite intuitive for feature selection as it gives equal importance
to the positive and negative correlations. A Gaussian kernel
can also be used to approximate the mutual information (MI)
(Gretton et al., 2005) which is the key metric for non-linearre-
dundancy measure in feature selection problems (Peng et al.,
2005; Rodriguez-Lujan et al., 2010). Since the MMFS formu-
lation very closely matches the one class SVM formulation, any
of the existing algorithms for SVM optimization either in pri-
mal or dual can be used. Next, we describe the use of Dual Co-
ordinate Descent (DCD) algorithm (Hsieh et al., 2008) to ob-
tain a highly computationally efficient solution for our feature
selection formulation.

2.4. Dual Coordinate Descent for MMFS

Following equation (1), the number of variables and the num-
ber of constraints in the primal formulation areM+1 and 2N,
respectively, while from equation (6), it is seen that the corre-
sponding numbers areN and 2N+1, respectively. Solving the
primal (typically by using QP solvers) may be efficient (O(M3))
in the cases whenM ≪ N (Shalev-Shwartz et al., 2007). Solv-
ing the dual using QP solvers requiresO(N2) space andO(N3)
time. Even solving the dual using sequential minimal optimiza-
tion (SMO) based methods in practice has the complexity of
O(N2) (Fan et al., 2005). These hightime andmemory com-
plexities limit the scalability of directly solving the primal or
dual for data with a very large number of instances and fea-
tures.

In many cases when the data already lies in a rich feature
space, the performance of linear SVMs is observed to be sim-
ilar to that of non-linear SVMs. In such scenarios, it may be
much more efficient to train the linear SVMs directly. The dual
coordinate descent methods have been well studied for solving
linear SVMs using unconstrained form of the primal as well as
dual formulations (Hsieh et al., 2008) who have shown that dual
coordinate descent algorithm is significantly faster than many
other existing algorithms for solving the SVM problem. Since
our formulation very closely resembles the one class SVM for-
mulation (with the exception of having a separate margin for
each feature), we can easily adapt the Dual Coordinate Descent
(DCD) algorithm for our case.

Following the unconstrained formulation for the SVM ob-
jective (Hsieh et al., 2008), the MMFS objective in the primal
(using a linear kernel) can be written as:

min
w

1
2

wT w +
1
γ

b2

2
+C

N
∑

i=1

ξ(w; fi, ri) (7)

whereξ(w; fi, ri) denotes the loss function andγ is a control
parameter. Assuming standardL1 loss,ξ(w, xi, ri) = max(ri −

(wT
i fi + b), 0). Note the slightly changed form of the objective

2It is typical to normalize the data to zero mean and unit variance for feature
selection.

compared to Equation (1) where the bias termb has been re-
placed by a squared termb

2

2 . The bias term can now be handled
by introducing an additional dimension:

f ′i ← [ fi 1/γ] w′i ← [wi b] (8)

Equation (7) can then be equivalently written as:

min
w′

1
2

w′T w′ + C
N
∑

i=1

ξ(w′, f ′i , ri) (9)

The dual of this slightly modified problem becomes:

f (α) = min
α

1
2

(

αT Q′α + γ ∗ (ITα)2
)

− r′Tα

subject to 0≤ αi ≤ C,∀i;
(10)

whereQ′ is (N+1)×(N+1) matrix such thatQ′i j = f ′Ti f ′j . Com-
paring Equation (10) with Equation (6), we note that the con-
straint requiringITα = 1 is no longer needed because of the
slightly changed form of the objective. In the unconstrained
form of the dual, we are minimizing an additional term (ITα)2

in the objective which is nothing but the square of theL1 reg-
ularizer over the feature weights. Note that this term in theob-
jective effectively takes care of the original constraintITα = 1.
The parameterγ controls the strength of this regularizer and can
be tuned to control the sparsity of the solution. The gradient of
the objective w.r.t toαi can be computed as follows:

Gi = (Q′α)i + γ

N
∑

i=1

αi − r′i

Using the factw′ =
∑N

j=1α j f ′j (set of Equations (3)), the gradi-
ent can be further reduced as:

Gi = f T
i w′ + γ

N
∑

i=1

αi − r′i

We adapt the Dual Coordinate Descent algorithm
(Hsieh et al., 2008) for our MMFS problem. This algo-
rithm works by optimizing the dual objective by computing
the gradient based on the weight vectorw′ in the primal. This
process is repeated with respect to eachαi in turn and the
weight vectorw′ is updated accordingly. This translates into
optimizing a one variable quadratic function at every step
and can be done very efficiently. We name this approach
MMFS-DCD in the paper, henceforth.

2.5. Complexity

Following (Hsieh et al., 2008), the MMFS-DCD approach
obtains anǫ-accurate solution inO(log(1/ǫ)) number of iter-
ations. Time complexity of a single iteration isO(MN). Mem-
ory complexity of the DCD algorithm isO(NM). For sparse
datasets, the complexities depend onN̄ instead ofN, where
N̄ is the average number of non-zero feature values in an in-
stance. The details about the proof of convergence are available
in (Hsieh et al., 2008).
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3. Relationship to Existing Filter Based Methods

Quadratic Programming Feature Selection (QPFS)
(Rodriguez-Lujan et al., 2010) is a filter based feature se-
lection method which models the feature selection problem
as a quadratic program jointly minimizing redundancy and
maximizing relevance. Redundancy is captured using some
kind of similarity score (such as MI or correlation) amongstthe
features. Relevance is captured using the correlation between
a feature and the target variable. One norm of the feature
weight vectorα is constrained to be 1. Formally, the quadratic
program can written as:

f (α) = min
α

1
2

(1− θ)αT Qα − θrTα

Subject to αi ≥ 0, i = 1, ...,N; ITα = 1.
(11)

Q is an N × N matrix representing redundancy among the
features,r is an N-sized vector representing the feature rel-
evance andα is an N-sized vector capturing feature weights.
θ ∈ [0, 1] is a scalar which controls the relative importance of
redundancy (theQ term) and the relevance (ther term). QPFS
objective closely resembles the minimal-redundancy-maximal-
relevance (mRMR) (Peng et al., 2005) criterion. Whenθ = 1,
only the relevance is considered (maximum Relevance) and
when θ = 0 only redundancy among the features is cap-
tured. QPFS has also been shown to outperform many exist-
ing feature selection methods including mRMR and maxRel
(Rodriguez-Lujan et al., 2010).

The form of the QPFS formulation above is exactly sim-
ilar to our dual formulation (Equation 6) for an appropriate
choice of kernel (similarity) function andC = ∞ (hard mar-
gin). Hence, the QPFS objective falls out as a special case
of our max-margin framework in the dual problem space when
dealing with hard margin. It should be noted that Lujan et al.
(Rodriguez-Lujan et al., 2010) do not give any strong justifica-
tion for the particular form of the objective used, other than the
fact that it makes intuitive sense and seems to work well in prac-
tice. This is unlike our case where we present a max-margin
based framework for jointly optimizing relevance and redun-
dancy. Therefore, our formulation can be seen as providing a
framework for the use of the QPFS objective and generalizing
it further to handle noise (soft margin). Further, since no direct
connection of the QPFS objective has been established with the
SVM like formulation by Lujan et al. (Rodriguez-Lujan et al.,
2010), the proposed approach for solving the objective is to
simply use any of the standard quadratic programming imple-
mentations. Hence, the time complexity of QPFS approach is
O(N3

+ MN2) and space complexity isO(N2). To deal with
cubic complexity, they propose combining it with the Nystr¨om
method which works on subsamples of the data. This can par-
tially alleviate the problem with the computational inefficiency
of QPFS but comes at the cost of significant loss in accuracy,
as shown by our experiments. In our case, because of the close
connection with the SVM based max-margin formulation and
the ability to use the information from the primal as well as the
dual, we can utilize any of the highly optimized SVM solvers
(such as DCD which has time complexity linear inN).

Further it may be noted that while our MMFS-DCD ap-
proach can handle sparse representation of very high dimen-
sional datasets, other feature selection methods like QPFS,
FCBF, mRMR etc. cannot do so directly.

4. Experiments

4.1. Datasets

We demonstrate our experiments on seven publicly avail-
able benchmark datasets with medium to large number of di-
mensions. Out of these seven datasets Leukemia, RAOA and
RAC are microarray datasets (Kumar et al., 2012), MNIST is
a vision dataset (Tan et al., 2010) and REAL-SIM, Webspam
and Kddb are the text classification datasets from NLP domain
(Chang et al., 2010; Yiteng et al., 2012). Table 1 describes the
details of the datasets. The last column represents the sparsity
that is average number of non-zero features per instance in the
dataset.

Table 1. Dataset description

Dataset # Training # Testing # Features Sparsity
Leukemia 72 - 7,129 7,129
RAOA 31 - 18,432 18,422
RAC 33 - 48,701 48,701
MNIST 11,982 1,984 752 752
REAL-SIM 57,848 14,461 20,958 51.5
Webspam 80,000 70,000 8,355,099 3,730
Kddb 100,000 748,401 29,889,813 30

4.2. Algorithms

We compared the performance of our proposed
MMFS algorithm with FCBF3 (Yu and Liu, 2003), QPFS
(Rodriguez-Lujan et al., 2010) and two other embedded feature
selection methods, namely, Feature Generating Machine
(FGM) (Tan et al., 2010) and Group Discovery Machine
(GDM) (Yiteng et al., 2012). FGM uses cutting plane strategy
for feature selection. GDM further tries to minimize the
redundancy in FGM by incorporating the correlation among
the features. QPFS, FGM and GDM have been shown to
outperform a variety of existing feature selection methods
including mRMR and MaxRel (Peng et al., 2005), FCBF
(Yu and Liu, 2003), SVM-RFE (Guyon and Elisseeff, 2003),
etc. For QPFS, we used mutual information (MI) as the
similarity metric as it has been shown to give the best set of
results (Rodriguez-Lujan et al., 2010). In MMFS-DCD, we use
correlation of a feature vector with the target class vectorto
compute the feature relevance.

3http://www.public.asu.edu/h̃uanliu/FCBF/FCBFsoftware.html
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4.3. Methodology

We compare all the approaches for feature selection in terms
of their accuracy and execution time on each of the datasets.For
all the datasets except Webspam and Kddb, we report the accu-
racies obtained at varying number of topK features (K = {2,
3, 4,. . . , 100}) selected for each of the methods. For webspam
and kddb datasets,we report the accuracies obtained at varying
number of topK features (K ={5, 10, 20, 30,. . . , 200}) selected
by FGM, GDM and MMFS-DCD methods.

We also report the best accuracies obtained at any given
value of K in the above range for all the datasets. We have
normalized all the datasets except webspam and kddb to zero
mean and unit variance. The zero mean and unit variance
normalization for webspam and kddb datasets is very mem-
ory inefficient (very large memory (> 100GB)) as these two
are very large sparse datasets. We have normalized these two
datasets with unit variance (Yiteng et al., 2012). In the mi-
croarray datasets, the number of samples are small so we re-
port the leave-one-out cross-validation (LOOCV) accuracy. For
MNIST and REAL-SIM datasets, training and testing splits are
provided in (Chang et al., 2010). We have followed the train-
ing and testing splits of (Yiteng et al., 2012) for webspam and
kddb datasets. The results reported are averaged over 10 ran-
dom splits.

For MMFS-DCD,γ parameter was tuned separately for each
of the microarray datasets. The values of the parametersC and
θ were set to 1 and 0.5 respectively in all the experiments. We
used the default settings of the parameters for both FGM and
GDM as reported in (Tan et al., 2010; Yiteng et al., 2012). Af-
ter the topK features are selected, we used L2-regularized L2-
loss SVM (Fan et al., 2008) with default settings (that is cost
parameterC=1) for classification for each of the algorithms and
for each of the datasets. MMFS was implemented on top of
the liblinear tool4. This implementation uses shrinking strategy
(Hsieh et al., 2008). We used the publicly available implemen-
tation of QPFS (Rodriguez-Lujan et al., 2010). For FGM, we
used the publicly available tool5. GDM was implemented as an
extension of the FGM based on the details given in Yiteng et.
al (Yiteng et al., 2012). Any additional required wrapper code
was written in C/C++. All the experiments were run on a In-
tel CoreTM i7 3.10GHz machine with 16GB RAM under linux
operating system.

4.4. Results

4.4.1. Accuracy
Table 2 presents the best set of average accuracies (vary-

ing the number of top-K features selected) for all the methods.
QPFS method did not produce any results on RAOA and RAC
dataset within 24 hours6. So, we used Nyström approximation
(Rodriguez-Lujan et al., 2010) with sampling rate(ρ=0.01) for
these datasets. In the Figure 2(a), QPFS-N represents the QPFS
with Nyström approximation. The QPFS and FCBF methods

4http://www.csie.ntu.edu.tw/ cjlin/liblinear
5http://www.c2i.ntu.edu.sg/mingkui/FGM.htm
6We put a dash− with corresponding entries in the Table 2.

can not handle the sparse data, so we compare FGM, GDM and
MMFS-DCD for webspam and kddb datasets. MMFS-DCD
reaches the best accuracy on a small number of topK features
for all the microarray datasets. Further, MMFS-DCD produces
significantly better accuracies compared to FCBF, QPFS, FGM
and GDM on all the microarray datasets (FGM does equally
well on RAC). On MNIST and webspam datasets, MMFS-DCD
is marginally worse than the best performing algorithm. The
plots for the average accuracies obtained as we vary the num-
ber of topK features are available in thesupplementary file.
Clearly, for most of the datasets, MMFS-DCD is able to achieve
the best set of accuracies at early stages of feature selection
compared to all algorithms. Further, the gene ontology and bi-
ological significance of top selected genes for leukemia dataset
is provided in thesupplementary file.

4.4.2. Time
Figure 2 plots the average execution time for each of the

methods. y-axis is plotted on a log scale. The time requirement
for MMFS-DCD, FCBF and QPFS is independent of the num-
ber of features selected. For FGM and GDM, time requirement
monotonically increases withK. For GDM, there is a sharp in-
crease in the time required whenK becomes greater than five7.
It is obvious from Figure 2 that MMFS-DCD is upto several or-
ders of magnitude faster than all the other algorithms on allthe
datasets8.

4.4.3. Parameter Sensitivity Analysis
Figure 3 presents the variation in accuracy for MMFS-DCD

on the Leukemia dataset, as we vary the regularizer parameter
(γ) with varying number of topk features. The accuracy is not
very sensitive toγ as demonstrated by a large flat region in the
graph.
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Fig. 3. Accuracy variation across γ and top k features

5. Conclusion and Future Work

We have presented a novel Max-Margin framework for Fea-
ture Selection (MMFS) similar to one class SVM formulation.
Our framework provides a principled approach to jointly max-
imize relevance and minimize redundancy. It also enables us

7For RAC, we run GDM upto 20 iterations.
8 Plots for remaining datasets are available in supplementary file.
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Table 2. Best Accuracy (in %)
Dataset FCBF QPFS FGM GDM MMFS-DCD

Accuracy M Accuracy M Accuracy M Accuracy M Accuracy M
Leukemia 90.28±0.1 37 87.50± 0.1 45 87.5±0.1 2 84.72±0.1 2 91.67±0.1 6
RAOA 74.19±0.2 2 67.75±0.2∗ 6 67.75±0.2 2 54.84±0.2 2 83.87±0.1 2
RAC 48.48±0.2 12 96.97±0.1∗ 75 100.0±0.0 3 87.88±0.1 3 100.0±0.0 2
MNIST 91.07±0.0 19 96.06±0.0 94 96.21±0.0 99 96.67±0.0 77 96.06±0.0 83
REAL-SIM - - - - 90.03±0.01 90 89.48±0.01 100 90.19±0.01 100
Webspam - - - - 95.91±0.0 200 96.80 ± 0.0 200 96.79± 0.0 200
Kddb - - - - 87.60± 0.0 150 87.77± 0.0 190 88.39 ± 0.0 200
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Fig. 2. Comparison of execution time (in seconds) of MMFS-DCD with other methods for varying number of top K features.

to use existing SVM based optimization techniques leading to
highly efficient solutions for the task of feature selection. Our
experiments show that MMFS with dual coordinate decent ap-
proach is many orders of magnitude faster than existing state of
the art techniques while retaining the same level of accuracy.

One of the key future directions includes exploring if there
is some notion of a generalization bound for the task of feature
selection in our framework as in the case of SVMs for the task
of classification. In other words, what can we say about the
quality of the features selected as we see more and more data.
We would also like to explore the performance of our model
with non-linear kernels. Lastly, exploring the trade-off as we
vary the noise penalty would also be a direction to pursue in the
future.
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