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ABSTRACT

Many machine learning applications such as in vision, lgjpland social networking deal with data
in high dimensions. Feature selection is typically emptbieselect a subset of features which im-
proves generalization accuracy as well as reduces the datignal cost of learning the model. One
of the criteria used for feature selection is to jointly e the redundancy and maximize the rele-
vance of the selected features. In this paper, we formubatéatsk of feature selection as a one class
SVM problem in a space where features correspond to the aétéspand instances correspond to
the dimensions. The goal is to look for a representativeedutfghe features (support vectors) which
describes the boundary for the region where the set of therfssa(data points) exists. This leads to a
joint optimization of relevance and redundancy in a pritedijpmax-margin framework. Additionally,
our formulation enables us to leverage existing technifpregptimizing the SVM objective resulting
in highly computationally efficient solutions for the taskfeature selection. Specifically, we employ
the dual coordinate descent algorithm (Hsieh et al., 2688)inally proposed for SVMs, for our for-
mulation. We use a sparse representation to deal with daterynhigh dimensions. Experiments on
seven publicly available benchmark datasets from a vapietpmains show that our approach results
in orders of magnitude faster solutions even while retgrire same level of accuracy compared to
the state of the art feature selection techniques.

(© 2018 Elsevier Ltd. All rights reserved.

1. Introduction high computational cost because of the need to train thsielas
fier multiple number of times. In the embedded methods, fea-
Many machine learning problems in vision, biology, socialture selection criteria is directly incorporated in the ettive
networking and several other domains need to deal with verfjunction of the classifiel (Tan etlal., 2010; Yiteng etlal.12p
high dimensional data. Many of these attributes may notbe reMany filter and wrapper based methods fail on very high di-
evant for the final prediction task and act as noise during thenensional datasets due to their high time and memory require
learning process. A number of feature selection methods havments, and also because of inapplicability on sparse datase
already been proposed in the literature to deal with thi®pro (Guyon and Elisseeff, 2003; Yiteng et al., 2012).
lem. These can be broadly categorized into filter based,-wrap
per based and embedded methods. In the literature, various max-margin formulation had been
In filter based methods, features (or subset of the featuresleveloped for many applications_(Burges, 1998; Guolet al.,
are ranked based on their statistical importance and aie-obl 2007). Recently, we have proposed a hard margin primal for-
ious to the classifier being used (Guyon and Elisseeff, |2003nulation for feature selection using quadratic program)(QP
Peng et all, 2005). Wrapper based methods select subsat of feslover (Prasad et al., 2013). This approach jointly minesiz
tures heuristically and classification accuracy is usedsts e redundancy and maximizes relevance in a max-margin frame-
mate the goodness of the selected subset (Kumar et al),.2012york. We have formulated the task of feature selection asea on
These methods typically result in good accuracy while incurclass SVM problem. (Scholkopf etlal., 2000) in the dual space
wheref eatures correspond to the data points and instances cor-
respond to the dimensions. The goal is to search for a rep-
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tures (data points) lies. This is equivalent to searchingafo features. In order to incorporate feature relevance, wetcoct

hyperplane which maximally separates the data points frem t a set of parallel marginal hyperplanes, one hyperplanedohn e

origin (Scholkopf et al!, 2000). feature. The margin of each separating hyperplane captures
In this paper, we have extended the hard-margin formulatiothe relevance of the corresponding feature. Greater tlee rel

to develop a general soft-margin framework for featurecsele vance, higher the margin required (a greater margin ineseas

tion. We have also modified the primal and dual formulationsthe chances of a feature being a support vector). Redundancy

We present the dual objective as unconstrained optimizatioamong the features is captured implicitly in our framewdrke

problem. We employ the Dual Coordinate Descent (DCD) al-support vectors which lie on respective margin boundanes ¢

gorithm (Hsieh et al., 2008) for solving our formulation. é'h stitute the desired subset of features to be selected. d4uis to

DCD algorithm simultaneously uses the information in thie pr a principled max-margin framework for feature selectioheT

mal as well as in the dual to come up with a very fast solver foproposed formulation for MMFS is presented hereafter.

the SVM objective. In order to apply DCD approach, our for-

mulation has been appropriately modified by including ari-add 2.1. Formulation

tional term in the dual objective, which can be seen as aaegul | ot x represent the data matrix where each row vegtbr
izer on the feature weights. The strength of this regulaiae  (; < 1. M) denotes an instance and each column vettor
be tuned to control the sparsity of the selected featureghi®i (j € 1...N) denotes a feature vector. We will ugdo denote

We adapt the liblinear implementation (Fan €tial.. 2008ptar 5 feature map such that the dot product between the dataspoint
proposed framework so that our approach is scalable to data y5n, pe computed via a kerrdi, X;) = ¢(x)T¢(x;), which can
very high dimensions. We also show that the Quadratic Prope interpreted as the similarly of andx;. We will useY to
gramming Feature Selection (QPF3) (Rodriguez-Lujaniet algenote the vector of class labaks (i € 1...M). Based on
2010) falls out as a special case of our formulation in thd duahe ahove notations, we present the following formulation f

space when using a hard margin. feature selection in the primal:
Experiments on seven publicly available datasets from a vi-

sion, biology and Natural Language Processing (NLP) domain . 1 N

show that our approach results in orders of magnitude faster len EW W+ b+ CZ&

solutions compared to the state of the art techniques wéile r ’ i=1

taining the same level of accuracy. subjectto W'g(f)+b>r -4, &§>0, Vi=1,....N;
The rest of the paper is organized as follows. We de- (1)

scribe our proposed max-margin formulation for featuresel Where,w represents a vector normal to the separating hyper-
tion (MMFS) including the dual coordinate descent apprdach p|ahe(3ﬂ b represents the bias term atits represent slack
Sectior2. We present our experimental evaluation in Seldtio  variablesr; captures the relevance for tefeature. The equa-

We conclude our work in Sectidm 5. tion of the separating hyperplane is givenwys(f) + b = 0
with the distance of the hyperplane from the origin beifyg

Note that in this formulation the objective function is dianito
the one class SVM_(Scholkopf et al., 2000). However, the con
The key objective in feature selection is to select a sulfset cstraints are very much different as our formulation inckitree
features which are highly relevant (that is high predicte  relevance of the features)( The choice ofp determines the
curacy) and non-redundant (that is uncorrelated). Retavan kind of similarity (correlation) to be captured among tha-fe
is captured either using an explicit metric (such as theesorr tures. The set of support vectors obtained after optimittingy
lation between a feature and the target variable) or intplici problemi.e.{fi | w'¢(f) + b = r;} and the margin violators
using the classifier accuracy on the subset of features lseing {fi | & > 0} constitute the set of features to be selected. In the
lected. Redundancy is captured using metrics such as aerreldual space, this translates to those features being seltte
tion coefficient or mutual information. Most of the existifega-  Which 0 < a; < C whereq; is the Lagrange multiplier fof;.
ture selection methods rely on a pairwise notion of sintiysto ~~ We will refer to our approach as Max-Margin Feature Selectio
capture redundancy (Peng et al., 2005; Rodriguez-Lujah,et a(MMFS). Note that when dealing with hard margin (no noise)
2010; Yu and Liu, 2003). case and the term involving disappears (since this enforces
We try to answer the question "Is there a principled approacki = 0, Vi).
to jointly capturing the relevance as well redundancy ansbng  Figure 1 illustrates the intuition behind our proposed feam
the features?”. To do this, we flip around the problem and exwork in the linear dot product space (with hard margin). le th
amine the space where features themselves become the fifigure,w' f + b = O represents the separating hyperplane. The
class objects. In particular, we analyze the space whege "fe distance of this hyperplane from the origin is given-dy/||wl|.
tures” represent the data points and "instances” reprabent The first term in the objective of Equatigh 1 tries to minimize
dimensions. Which boundary could describe well the set ofv'w i.e. maximize J|wi|. The second term in the objective
features lying in this space? Locating the desired bounigary tries to minimizeb i.e. maximize-b. Hence, the overall ob-
similar to one class SVM formulatioh (Scholkopf et bl., 2p0  jective tries to push the plane away from the origin. THe i
This equivalently can be formulated as the problem of séagch
for a hyperplane which maximally separates the featurets (da
points) from the origin in the appropriate kernel space oer LAll the separating hyperplanes are parallel to each otheuiriramework.

2. Proposed Max-Margin Framework
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dashed plane represents the margin boundary fol'tfesiture. By substituting the values from Equatidd (3) into Equat@h (
The distance of this marginal hyperplane from the sepayatinwe get:
hyperplane is given by /||wl| wherer; is the pre-computed rel-

evance of the't feature. There_for_e_, mini_mizing/T_W in t_he f(@)=max rfa- EQTQQ
objective also amounts to maximizing this marginal distanc @ 2 (4)
(ri/IIwl)). Hence, the objective has the dual goal of pushing the Subjectto 0< @i <Cii=1..,M;lTa=1

hyperplane away from the origin while maximizing the margin o o
for each feature (weighted by its relevance)as well. Theifea This 1S similar _to the standarq SVM _dual derivation
which lie on the respective marginal planes are the suppart f (Scholkopfetal. 2000). The only difference is that witilere

tures (encircled points). The redundancy is explicitlytoapd IS @ Single margin in standard SVM, the number of features her
in the dual formulation of this problem. dictate the number of margins . We can equivalently rewhi¢e t

dual formulation of[(#) as follows:
7% 1
f (@) = min EaTQa —rTa

®)

N

Subjectto O<e; <C,i=1,..M; ITa =1

Here, Q is the similarity matrix whose entries are given by
Qi = k(fi, fj) wherek(fi, f;) = ¢(fi)T¢(f;) is the kernel func-

tion corresponding to the dot product in the transformetifea
space.r represents the vector of feature relevanes.are the
Lagrange multipliers. Note that the first term in the objeeti
captures the redundancy between the features and the second
term captures the relevance as in the case of QPFS formula-
tion of (Rodriguez-Lujan et al., 2010). Hence, the conrmecti
between the redundancy and the relevance becomes explicit i
the dual formulation. It should be noted that the dual objec-
tive bears a close similarity to the QPFS objective. We dine t
detailed comparison in Sectiéh 3. We can give relative impor
tance to redundancy and relevance by incorporating a scalin
parameted € (0, 1) in Equation[(b) as follows:

Fig. 1. Featurerepresentation in sample space. The diagram is conceptual 1
only. fa)=min >(1- 0)a" Qo —orTa ©)
_ Subjectto O<a;<Cii=1,..,M; ITa =1

2.2. Dual Formulation

In order to solve the MMFS optimization efficiently by Dual In the primal formulation (Equatioi]1)), this can be acleigv
Coordinate Descent strategy, we require both the primal andy scaling the relevance scores kff that is, replacing the
dual formulations. The dual formulation for Equatldn 1 can b constraintsv’ ¢(f;) + b > rj — & by w' ¢(fi) + b > 1%(r - &).
derived using the Lagrangian method. The Lagrangian fancti

L(W» b7 é:» a’»ﬂ) can be written as: 2.3. Choice of Metrics

. 1 N The relevance of a feature in our framework is captured us-
Lw,b.¢e.f) =min  Sww+b+C Z q ing the correlation between the feature vector and the tihe$
=1 vector. In our experiments, we have normalized the data s we
N T & as the target vector (class labels) so that it has zero meahn an
* .le ai(fi = & — (W ¢(f) + b)) - iZ;'Bigi unit variance. Hence, the dot product between the feature ve
h B tor and the target vector (normalized) estimates the ctioel
Where,ei's andpi's are the Lagrange multipliers. Now, the petween them i.e. relevance of tifefeature can be computed
Lagrangian dual can be written as: asr; = [YT#(f;)]. Some other appropriate metric which captures
the predictive accuracy of a feature (such as mutual inferma
tion(MI)) could also be used (Peng et al., 2005).
The redundancy is usually captured using correlation or mu-
tual information in feature selection tasks (Peng et aD520In
our framework, the dot product space (kernel) capturesithe s

max min  L(w,b, ¢, a,
a,B:2i>05>0 wb¢ ( é‘: @ IB) (2)

At the optimality, VuL, § and & (for all i) will be O i.e.

N N
Vol =w-— Zai¢(fi) =0; oL =1- Z =0 ilarity (redundancy) among the features and the requinedt si
i1 db i-1 3) larity metric can be captured by selecting the appropriate k
oL nel. The linear kernelf(" f;) represents the correlation among

6—& =C-a -6 =0 the features when the features are normalized to zero mehn an
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unit variancéd. Since the value of the correlation ranges be-compared to Equatiol](1) where the bias tdyrhas been re-
tween-1 and 1, a degree two homogeneous polynomial kerplaced by a squared ter%za. The bias term can now be handled
nel defined over normalized data represents the squarest corby introducing an additional dimension:

lation (i.e. ¢(f)T¢(f;) = (fT f;)?. The choice of this kernel is

quite intuitive for feature selection as it gives equal irtpnce f—[fi 1/y] W [wi b] (8)
to the positive and negative correlations. A Gaussian kerne

can also be used to approximate the mutual information (MEquation[(Y) can then be equivalently written as:

(Gretton et al., 2005) which is the key metric for non-linesyr N

dunc_lancy measure in feature selectlo_n problems (Peng et al. min }WTW + ng(w’ £.11) 9)
2005;| Rodriguez-Lujan et al., 2010). Since the MMFS formu- w2 —

lation very closely matches the one class SVM formulatioy, a

of the existing algorithms for SVM optimization either inipr  The dual of this slightly modified problem becomes:

mal or dual can be used. Next, we describe the use of Dual Co-

ordinate Descent (DCD) algorithm_(Hsieh et al., 2008) to ob- f(a) = min }(QTQ/Q by w (lTa)Z) Ty

tain a highly computationally efficient solution for our fage _ @ 2 . (10)
selection formulation. subjectto 0< o < C,Vi;

2.4. Dual Coordinate Descent for MMFS whereQ’ is (N+1)x(N+1) matrix such thaQi’j = f’inj’. Com-

Following equatiori{lL), the number of variables and the numParing Equation(10) with Equatiohl(6), we note that the con-
ber of constraints in the primal formulation aké+1 and AN, ~ Straint requiringl " = 1 is no longer needed because of the
respectively, while from equatiofll(6), it is seen that theeo ~ Slightly changed form of the objective. In the unconstreine
sponding numbers amd and N+1, respectively. Solving the form of the dual, we are minimizing an additional terhi)?
primal (typically by using QP solvers) may be efficied(1))  in the objective which is nothing but the square of ttiereg-
in the cases whell < N (Shalev-Shwartz et Al., 2007). Solv- ularizer over the feature weights. Note that this term indhe
ing the dual using QP solvers requi®EN?) space an®(N3) jective effectively takes care of the ongmgl constrqh =1
time. Even solving the dual using sequential minimal optani The parametey controls the st_rength of this regularlzer anq can
tion (SMO) based methods in practice has the complexity oP® tuned to control the sparsity of the solution. The gradién
O(N?) (Fan etal.| 2005). These higlme andmemory com-  the objective w.r.t ta can be computed as follows:
plexities limit the scalability of directly solving the pnial or N
dual for data with a very large number of instances and fea- G = (Qa) + 7204 !
tures. =)

In many cases when the data already lies in a rich feature
space, the performance of linear SVMs is observed to be sinysing the faciv = 2;.“:1 a;f{ (set of Equationd(3)), the gradi-
ilar to that of non-linear SVMs. In such scenarios, it may beent can be further reduced as:
much more efficient to train the linear SVMs directly. The Hdua
coordinate descent methods have been well studied fomgplvi
linear SVMs using unconstrained form of the primal as well as
dual formulations (Hsieh et al., 2008) who have shown that du

coordinate descent algorithm is significantly faster thamyn We adapt the Dual Coordinate Descent algorithm
other existing algorithms for solving the SVM problem. $inc (Hsieh et al., 2008) for our MMFS problem. This algo-
our formulation very closely resembles the one class SVM forrithm works by optimizing the dual objective by computing
mulation (with the exception of having a separate margin fokhe gradient based on the weight veatsrin the primal. This
each feature), we can easily adapt the Dual Coordinate Besceprocess is repeated with respect to eaghin turn and the
(DCD) algorithm for our case. weight vectorw’ is updated accordingly. This translates into

Following the unconstrained formulation for the SVM ob- optimizing a one variable quadratic function at every step
jective [Hsieh et al, 2008), the MMFS objective in the pima and can be done very efficiently. We name this approach
(using a linear kernel) can be written as: MMFS-DCD in the paper, henceforth.

N
G = fiTV\/ +’)/Zai—ri/

i=1

1 10?2 .
min EWTW+ _% " sz(W; fi,ri) (7)  25. Complexity
w .
7 =t Following (Hsieh et al., 2008), the MMFS-DCD approach
where£(w; f,,r;) denotes the loss function andis a control ~ obtains ane-accurate solution if©(log(1/€)) number of iter-
parameter. Assuming standdrd loss,&(w, X, ri) = max{; — ations. Time complexity of a single iteration@MN). Mem-

(W f; + b),0). Note the slightly changed form of the objective ory complexity of the DCD algorithm i©(NM). For sparse
datasets, the complexities depend Mrinstead ofN, where

N is the average number of non-zero feature values in an in-
2|tis typical to normalize the data to zero mean and unit veséafor feature _Stance- The details about the proof of convergence areabieil
selection. in (Hsieh et al.l, 2008).
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3. Relationship to Existing Filter Based Methods Further it may be noted that while our MMFS-DCD ap-
proach can handle sparse representation of very high dimen-

Quadratic Programming Feature Selection (QPFSyional datasets, other feature selection methods like QPFS

(Rodriguez-Lujan et al.. 2010) is a filter based feature seFCBF, mRMR etc. cannot do so directly.

lection method which models the feature selection problem

as a quadratic program jointly minimizing redundancy and

maximizing relevance. Redundancy is captured using somg Experiments

kind of similarity score (such as Ml or correlation) amonidst

features. Relevance is captured using the correlationdmtw 41 Datasets

a feature and the target variable. One norm of the feature™

weight vector is constrained to be 1. Formally,

program can written as: the quadratic We demonstrate our experiments on seven publicly avail-

able benchmark datasets with medium to large number of di-
mensions. Out of these seven datasets Leukemia, RAOA and
RAC are microarray datasels (Kumar et al., 2012), MNIST is
a vision dataset (Tan etlal., 2010) and REAL-SIM, Webspam
and Kddb are the text classification datasets from NLP domain
(Chang et all, 2010; Yiteng etlal., 2012). Table 1 describes t
details of the datasets. The last column represents thsigpar
that is average number of non-zero features per instan¢ein t
dataset.

f@)=mn3a-ne Q-o"e

Subjectto @; > 0,i=1,...N; ITe = 1.

Q is an N x N matrix representing redundancy among the
features,r is an N-sized vector representing the feature rel-
evance andr is an N-sized vector capturing feature weights.
0 € [0,1] is a scalar which controls the relative importance of
redundancy (th€ term) and the relevance (thgerm). QPFS

objective closely resembles the minimal-redundancy-maki Table 1. Dataset description

relevance (MRMR)_(Peng etlal., 2005) criterion. Wiiea 1,

only the relevance is considered (maximum Relevance) andDataset #Training #Testing #Features Sparsity

when 6 = 0 only redundancy among the features is cap- Leukemia 72 - 7,129 7,129

tured. QPFS has also been shown to outperform many exist-RAOA 31 - 18,432 18,422

ing feature selection methods including mMRMR and maxRel RAC 33 - 48,701 48,701

(Rodriguez-Lujan et al., 2010). MNIST 11,982 1,984 752 752
The form of the QPFS formulation above is exactly sim- REAL-SIM 57,848 14,461 20,958 51.5

ilar to our dual formulation (Equatiofl 6) for an appropriate \Webspam 80,000 70,000 8,355,099 3,730

choice of kernel (similarity) function an@ = oo (hard mar- _Kddb 100,000 748,401 29,889,813 30

gin). Hence, the QPFS objective falls out as a special case

of our max-margin framework in the dual problem space when

dealing with hard margin. It should be noted that Lujan et al.

(Rodriguez-Lujan et al., 2010) do not give any strong jusdi

tion for the particular form of the objective used, othenttiae ~ 4.2. Algorithms

fact that it makes intuitive sense and seems to work wellacpr

tice. This is unlike our case where we present a max-margin e compared the performance of our proposed
based framework for jointly optimizing relevance and redun MMFS_algorithm with FcBB (YuandLid, [2008), QPFs
dancy. Therefore, our formulation can be seen as providing fRodriguez-Lujan et al., 2010) and two other embedded featu
framework for the use of the QPFS objective and generalizing€!ection _methods, namely, Feature Generating Machine
it further to handle noise (soft margin). Further, since itest  (FGM) (Tanetal.,l 2010) and Group Discovery Machine
connection of the QPFS objective has been establishedheith t ((PM) (Yiteng etal.} 2012). FGM uses cutting plane strategy
SVM like formulation by Lujan et al.[(Rodriguez-Lujan ef,al. for feature s_electlon. _GDM furth_er tries to minimize the
2010), the proposed approach for solving the objective is t§€dundancy in FGM by incorporating the correlation among
simply use any of the standard quadratic programming implethe features. QPFS, FGM and GDM have been shown to

mentations. Hence, the time complexity of QPFS approach igutperform a variety of existing feature selection methods
O(N® + MN?) and space complexity i©(N2). To deal with including mRMR and MaxRel | (Peng et al., 2005), FCBF

cubic complexity, they propose combining it with the Ngser~  (Yu.and Liu, 12008), SVM-RFE[(Guyon and Elisseeff, 2003),
method which works on subsamples of the data. This can paffc- For QPFS, we used mutual information (M) as the
tially alleviate the problem with the computational inefficcy similarity metric as it _has been shown to give the best set of
of QPFS but comes at the cost of significant loss in accuracy€Sults(Rodriguez-Lujan et'al.. 2010). In MMFS-DCD, we use
as shown by our experiments. In our case, because of the clo§@rrelation of a feature vector with the target class vettor
connection with the SVM based max-margin formulation andcompute the feature relevance.

the ability to use the information from the primal as welllas t
dual, we can utilize any of the highly optimized SVM solvers
(such as DCD which has time complexity lineami). 3http://www.public.asu.edblianliu/FCBF/FCBFsoftware.html
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4.3. Methodology can not handle the sparse data, so we compare FGM, GDM and

m|¥IMFS-DCD for webspam and kddb datasets. MMFS-DCD
reaches the best accuracy on a small number oKtégatures

C(?_r all the microarray datasets. Further, MMFS-DCD produce
significantly better accuracies compared to FCBF, QPFS, FGM

mamd GDM on all the microarray datasets (FGM does equally

and kddb datasets,we report the accuracies obtained angary well on RAC). On MNIST and webspam datasets, MMFS-DCD

number of topK features K =(5, 10, 20, 30 200 selected is marginally worse than the best performing algorithm. The
by FGM, GDM and MMES-DCD methods. plots for the average accuracies obtained as we vary the num-

We also report the best accuracies obtained at any givelt" of topK features are available in trmlpple_rmntary file. .
b y 9 learly, for most of the datasets, MMFS-DCD is able to achiev

value of K in the above range for all the datasets. We have best set of . A v st f feature selecti
normalized all the datasets except webspam and kddb to zeme est set ol accuracies at early stages ot feature elect
ompared to all algorithms. Further, the gene ontology and b

mean and unit variance. The zero mean and unit varianceo ¥ o ;
normalization for webspam and kddb datasets is very memql()glcaI S|gr_1|f|cance of top sele_cted genes for leukemiasit
ory inefficient (very large memory>( 100GB)) as these two is provided in thesupplementary file.
are very large sparse datasets. We have normalized these t‘ﬂ% 2> Time
datasets with unit variance (Yiteng et al., 2012). In the mi- "7 i ,

croarray datasets, the number of samples are small so we re-Figure[2 pIo_ts_ the average execution time _for each_ of the
port the leave-one-out cross-validation (LOOCV) accur&oy methods. y-axis is plotted on a log _scgle. The time requirgme
MNIST and REAL-SIM datasets, training and testing splits ar ©°" MMFS-DCD, FCBF and QPFS is independent of the num-

provided in (Chang et Al., 2010). We have followed the train-Pe" Of features selected. For FGM and GDM, time requirement

ing and testing splits of__(Yiteng etldl., 2012) for webspard an monoto_nlcally.mcrease_s witk. For GDM, there is a sharp in-

kddb datasets. The results reported are averaged over 10 rdfiease in the time required whénbecomes greater than fie

dom splits. Itis obvious fr_om Figurél2 that MMFS-DCD is upto several or-
For MMFS-DCD,y parameter was tuned separately for eachders of magnitude faster than all the other algorithms othell

of the microarray datasets. The values of the paramétersd atasef

0 were set to 1 and.b respectively in all the experiments. We

used the default settings of the parameters for both FGM anéi'4'_3' Parameter Sensitivity Apa!ysis_
GDM as reported inl (Tan et al., 2010; Yiteng et al., 2012). Af- Figurel3 presents the variation in accuracy for MMFS-DCD

ter the topK features are selected, we used L2-regularized L20" the Leukemia dataset, as we vary the regularizer paramete
loss SVM (Fan et all, 2008) with default settings (that istcos (¥) With varying number of toj features. The accuracy is not
paramete€=1) for classification for each of the algorithms and V€'Y Sensitive tos as demonstrated by a large flat region in the
for each of the datasets. MMFS was implemented on top o8raph.
the liblinear tod. This implementation uses shrinking strategy
(Hsieh et al., 2008). We used the publicly available impleme

tation of QPFS|(Rodriguez-Lujan et al., 2010). For FGM, we

used the publicly available t¢bIGDM was implemented as an
extension of the FGM based on the details given in Yiteng et.

al (Yiteng et al.| 2012). Any additional required wrappedeo

was written in C/C++. All the experiments were run on a In-

tel Cord™ i7 3.10GHz machine with 16GB RAM under linux
operating system.

We compare all the approaches for feature selection in ter
of their accuracy and execution time on each of the dataSets.
all the datasets except Webspam and Kddb, we report the ac
racies obtained at varying number of t&pfeatures K = {2,

3, 4,..., 100) selected for each of the methods. For webspa

gamma 0
44 ReSU| tS # selected features

4.4.1. Accuracy

Table[2 presents the best set of average accuracies (vary-
ing the number of top-K features selected) for all the meshod
QPFS method did not produce any results on RAOA and RAG;. Conclusion and Future Work
dataset within 24 houfis So, we used Nystrom approximation
(Rodriguez-Lujan et all, 2010) with sampling rate0.01) for We have presented a novel Max-Margin framework for Fea-
these datasets. In the Figure 2(a), QPFS-N represents th8 QPture Selection (MMFS) similar to one class SVM formulation.

with Nystrom approximation. The QPFS and FCBF method€Our framework provides a principled approach to jointly max
imize relevance and minimize redundancy. It also enables us

Fig. 3. Accuracy variation acrossy and top k features

“http://www.csie.ntu.edu.tw/ cjlin/liblinear
Shttp://www.c2i.ntu.edu.sg/mingkui/FGM.htm “For RAC, we run GDM upto 20 iterations.
6We put a dash- with corresponding entries in the Table 2. 8 Plots for remaining datasets are available in supplemgfitar




Table 2. Best Accuracy (in %)

Dataset FCBF QPES FGM GDM MMFS-DCD
Accuracy M Accuracy M Accuracy M Accuracy M Accuracy M
Leukemia 90.280.1 37 87.5@0.1 45 87.50.1 2 84.720.1 2 91.67+0.1 6
RAOA 74.19%0.2 2 67.750.2 6 67.75:0.2 2 54.840.2 2 83.87+0.1 2
RAC 48.48:0.2 12 96.9#0.1" 75 100.@¢:0.0 3 87.880.1 3 100.0+0.0 2
MNIST 91.0#0.0 19 96.060.0 94 96.230.0 99 96.67+0.0 77 96.06:0.0 83
REAL-SIM - - - - 90.030.01 90 89.480.01 100 90.19+0.01 100
Webspam - - - - 95.940.0 200 96.80+00 200 96.79+0.0 200
Kddb - - - - 87.60+0.0 150 87.720.0 190 88.39+00 200
10* __10% _10°
s [t —&— MMFS-DCD £ H
£ | —o— QPFS-N £ K/f/’i,/_/—/ £
A FGM S S
810t —+—GDM S0l g //\/\/\/\//\
= FCBF = =
g E FGM 24
$ 3 ——cbm 8
<10’ 20 —ea— MMFS-DCD a
£ Py Py Feu
S E E —+— GDM
6 = 5 5 —=&— MMFS-DCD)|
10720 2‘0 4‘0 éO 8‘0 100 © 1o’ 20 40 60 80 100 120 140 160 180 200 © 10‘0 20 40 60 80 100 120 140 160 180 200
# selected features # selected features # selected features
(a) RAC (b) webspam (c) kddb

Fig. 2. Comparison of execution time (in seconds) of MMFS-DCD with other methods for varying number of top K features.

to use existing SVM based optimization techniques leading t Fan, R.E., Chen, P.H., Lin, C.J., 2005. Working set seleaiging second order

highly efficient solutions for the task of feature selecti@ur

information for training support vector machines. J. Mackarn. Res. 6,
1889-1918.

experiments show that MMFS with dual coordinate decent ap(-Bretton, A., Herbrich, R., Smola, A., Bousquet, O., SchpfkB., 2005. Kernel

proach is many orders of magnitude faster than existing stfat

methods for measuring independence. J. Mach. Learn. Re876;-2129.

the art techniques while retaining the same level of acgurac  Guo, Z., Zhang, Z., Xing, E.P., Faloutsos, C., 2007. A maxgindramework

One of the key future directions includes exploring if there

on image annotation and multimodal image retrieval., ilfME; IEEE. pp.
504-507.

is some notion of a generalization bound for the task of f@atu ,/qn 1., Elisseeft, A., 2003. An intoduction to variableddieature selection.
selection in our framework as in the case of SVMs for the task Journal of Machine Learning Research 3, 1157-1182.
of classification. In other words, what can we say about thélsieh, C.J., Chang, KW, Lin, C.J., Keerthi, S.S., Sundgaa, S., 2008. A

quality of the features selected as we see more and more data.
We would also like to explore the performance of our model

with non-linear kernels. Lastly, exploring the trade-off e

vary the noise penalty would also be a direction to pursuleen t

future.
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