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1. Introduction 

Freezing of Gait (FoG) is one of the most disabling gait 

disturbances among Parkinson’s Disease (PD) symptoms being 

frequently considered as one of the cardinal symptoms in PD 

(Giladi & Fahn 1998). This symptom affects to almost a 50% of 

PD patients and up to an 80% in advanced stages (Macht et al. 

2007). FoG is characterized by a sudden inability to perform an 

effective stepping that hampers the patient to initiate or continue 

locomotion during a short period of time (Moreau et al. 2008; 

Okuma 2006). One of its main consequences of this symptom is 

the loss of postural balance, which provokes falls (Bloem et al. 

2004). Besides of the main physical problems caused by FoG, it 

can also cause complications such as social isolation, anxiety or 

depression (Lieberman 2006; Aarsland et al. 2007). In 

consequence, an accurate tracking of the incidence of FoG 

episodes along the day in terms of episode duration and frequency 

would be of great help to clinicians in order to assess the evolution 

of PD patients. This way, experts could provide assistance to 

patients by means of pharmacotherapy (e.g.: L-dopa) or 

physiotherapy (e.g.: strengthening exercises or cueing). Cueing are 
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external stimuli that have shown to reduce the duration of FoG 

episodes in several patients with PD (Nieuwboer et al. 2009; Arias 

& Cudeiro 2010; Lim et al. 2005). Among cueing systems, 

auditory systems are one of the most extended, since they are easy 

to implement (Jovanov et al. 2009) and they have shown promising 

effects in PD patients (Arias & Cudeiro 2010; Delval et al. 2014).  

Evaluating FoG is a challenging problem due to two main 

factors. On the one hand, FoG is context-dependent, that is, it 

triggers when patients walk through narrow spaces, initiate or end 

gait, an obstacle impedes patients to follow their gait trajectory, or 

in turns (Schaafsma et al. 2003). On the other hand, patients are 

also conditioned by the presence of clinicians, reducing the 

frequency of episodes manifested compared to normal conditions 

(home environments) (Nieuwboer et al. 1998). This circumstance 

makes the correct evaluation of the symptom even more difficult. 

Regarding the clinical practice, FoG current evaluation is twofold: 

direct observation and specific questionnaires. The first method 

involves patients performing a series of activities in order to elicit 

FoG. These actions are, for example, walking through a narrow 

space, turns while walking and, Timed Up & Go tests (Podsiadlo 

& Richardson 1991; Schaafsma et al. 2003; Snijders et al. 2012; 
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Nonnekes et al. 2014). The drawback of these tests are given by 

the aforementioned stated: the patient is conditioned by 

performing movements in non-natural environments. Hence, 

clinicians might find that some patients freeze repeatedly while 

others do not freeze at all, not reflecting, thus, the actual severity 

of the symptom that patients would manifest in their Activities of 

Daily Living (ADL). The second method is performed by means 

of specific questionnaires (Giladi et al. 2000; Giladi et al. 2009; 

Nilsson et al. 2010). This method, although validated, might be 

inaccurate and biased due to the subjective answer of patients and 

caregivers. Additionally, self-assessment of FoG is not reliable 

due to the uncertain perspective of patients and caregivers to 

perceive the episodes. Self-assessment is also conditioned by 

memory loss, inattention or dementia of PD patients, leading to 

inaccurate recall (Papapetropoulos 2012). Evaluation at patient’s 

home may improve the reliability; however, for economic and 

logistic reasons, clinicians are not able to visit patients’ home 

regularly to perform an accurate map of the patient 

symptomatology.  

Recent wearable technologies have enabled the possibility to 

assess in a more objective and cheaper way the evolution and 

severity of different chronic diseases (Wang et al. 2013; Chung et 

al. 2012; Mizuike et al. 2009; Fulk & Sazonov 2012). In the case 

of PD, there are several recent works that have been devoted to 

analyse and monitor PD symptoms (Salarian et al. 2007; Pastorino 

et al. 2011; Pérez-López, Samà, Rodríguez-Martín, Moreno-

Aróstegui, et al. 2016; Pérez-López, Samà, Rodríguez-Martín, 

Català, et al. 2016). Inertial sensors based on Micro-Electro-

Mechanized-Systems (MEMS), mainly triaxial accelerometers 

and gyroscopes, have opened the possibility to monitor motor 

symptoms with unobtrusive wearable devices. This way, patients 

can wear these devices in their ADL while being monitored 

without the presence of clinicians, preventing their interference 

from triggering FoG. Furthermore, these wearable sensors have a 

very low power consuming, which enable several days of 

uninterruptedly usage. In addition to this, the FoG monitoring 

output may be used to provide rhythmic cueing stimuli to PD 

patients (Bächlin et al. 2010) in order to reduce the frequency of 

the symptom. However, auditory cueing systems require real-time 

FoG detection with low latency time to immediately actuate after 

a FoG episode is detected. 

FoG has been widely studied by means of inertial systems but, 

to the best of our knowledge, among those works focused on FoG 

detection, only that of Ahlrichs et al. analysed classification 

models based on inertial signals with patients performing activities 

of daily living (ADL) at their homes (Ahlrichs et al. 2016). 

However, Support Vector Machines (SVM) were the only 

classification method analysed and the output latency time was of 

a minute, being inadequate for cueing actuation. Other works 

reached a lower latency time, such as Moore et al. (6 seconds), 

Bächlin et al. (4 seconds) and Mazilu et al. (3 seconds); 

nonetheless, in these works, tests were performed under controlled 

conditions in laboratory environments. Consequently, when the 

algorithm is validated at patient’s home environments, a high rate 

of false positive detections might be obtained due to many new 

activities and situations that the algorithm is evaluated with. 

In this paper, a new methodology to detect FoG is presented 

based on a single inertial system located at the waist. This 

methodology aims to detect FoG in order to monitor the symptom 

in the daily life of patients and to apply real-time cueing strategies. 

The proposed method is compared to other three approaches by 

testing six different classifiers with signals obtained from patients’ 

at their residence. Once the best method is selected, then, a final 

model is found by reducing the real-time computational load. This 

way, the resulting classifier’s inputs (i.e. features) are reduced in 

order to lighten the real-time implementation. Finally, the 

accuracy of the presented method is computed based on a leave-

one-patient-out (LOPO) strategy in order to estimate in the most 

unbiased way its FoG detection capacity.  

The paper is structured as follows: Section 2 is devoted to 

describe the related work on machine learning methods used to 

detect FoG. Section 3 describes the proposed approach and its 

validation. Section 4 presents the experiments and the data 

collection, while Section 5 shows and discusses our results. 

Finally, conclusions are drawn in Section 6. 

2. Related work 

It is well known that FoG is a disabling symptom for PD 

patients but also a poor understood symptom (Cowie et al. 2004; 

Okuma 2006; Giladi & Nieuwboer 2008). Clinical signs of FoG 

are different among patients so they manifest it differently. 

Although it is context-dependent, there is not a rule anticipating 

where a patient will freeze. Thus, specific tests might lead to 

uncertain outcomes, since some patients will manifest FoG but 

others might freeze in other conditions. However, there are some 

common features that characterize FoG in terms of inertial signals 

and that can be exploited by machine learning algorithms.  

Moore and Bächlin (MB) approach, which is based on 

analyzing the power spectra in two frequency bands, has been 

employed in some works to analyze its accuracy in detecting FoG 

in different body parts (Bächlin et al. 2010; Zabaleta et al. 2008; 

Niazmand et al. 2011; Zhao et al. 2012; Mazilu et al. 2012; 

Tripoliti et al. 2013; Mazilu et al. 2013; Ahlrichs et al. 2016). 

According to Bächlin et al., best results are achieved with sensors 

placed at legs although waist is also a good location (Bächlin et al. 

2009). In addition, it has been also combined with features 

obtained from other sensors that could contextualize or 

characterize better a FoG episode. For example, Zabaleta et al. 

developed a FoG detection algorithm based on gyroscopes 

attached to lower limbs. Their work consisted of combining the 

frequency features along with spectral densities features. They 

could detect the 82.7% of the FoG episodes although they only 

used 2 PD patients for this test. The group of Niazmand and Zhao 

implemented the MB algorithm in a system with 5 accelerometers 

embedded within a washable jogging pant (Niazmand et al. 2011). 

They obtained sensitivity and specificity over 85% in six PD 

patients in a short and controlled test in 2011. In 2012, they 

obtained results over 80% with eight PD patients in a real time 

system within the same pants (Zhao et al. 2012).  

In 2012, Mazilu et al. performed an online algorithm with 3 

accelerometers achieving results over 95% on sensitivity and 

specificity also using the MB algorithm combined with other 

features (Mazilu et al. 2012). After using correlation based feature 

subset selection, they achieved a reduced set of features, which 

was evaluated through different classifiers, including Random 

Forests, k-NN (1 and 2 neighbours), and multi-layer perceptron, 

among others. Best results were obtained with a window of 4 

seconds and with Random Forest classifier, achieving 99.54% and 

99.96% in sensitivity and specificity. This method was employed 

with a 10-fold cross validation (CV) and evaluated by windows 

through the Weka software; which presents the drawbacks of 

evaluating classifiers with data from a patient who also 

participated in the traning and, furthermore, leading to an 

overestimation of true negatives in long periods of FoG episodes 

absence (Hall et al. 2009). Nonetheless, tests were performed 

under controlled environments and with very few activities 

(basically walking). This way, the algorithm is only trained for 
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specific situations leading to uncertain behaviours in home ADL 

condition.  With a user independent model, results decreased to a 

66.25% and 95.38% on sensitivity and specificity, respectively. 

There are other works in the literature that have studied FoG 

detection without the MB algorithm. For example, Mazilu et al. 

proposed an unsupervised feature learning in order to build an 

input vector for a tree-based classifier (Mazilu et al. 2013). In this 

work they employed two methods for selecting features and they 

compared them to the MB algorithm. First, they employed 

classical time-domain features and then they reduced features in 

order to analyse the behaviour of the tree-based classifier. Then, a 

Primary Component Analysis (PCA) was employed to extract new 

features directly from the raw signal. Sensitivity and specificity 

were 77.7% and 87.56% for unsupervised features and 69.42% and 

87.76% for classical time-domain features, respectively. In this 

case, however, they only compared walk vs FoG episodes, which 

may conduct to an ambiguous behaviour in other ADL situations. 

Nevertheless, results enhanced the MB approach by an 8.1% in 

terms of F1-score.  

Tripoliti also tested different classifiers (Random forest, 

Decision Tree, Random tree and Naive Bayes) and different 

locations by computing entropy on the 3 axes of the sensors. A 

window-based evaluation was performed, achieving an accuracy 

of 96.11% with a sensitivity of 81.94% and specificity of 98.74%. 

with all the sensors available (6 accelerometers and 2 gyroscopes). 

The test was performed under controlled conditions and with a 

very specific test that included few activities (Tripoliti et al. 2013). 

Ahlrichs et al. performed an algorithm with different features and 

a SVM classifier (Ahlrichs et al. 2016). The specificity was 

validated with non-FoG patients, and the latency time was one 

minute, being useless for instantly actuate after the FoG episode 

appearance.  

3. FoG detection approach  

This section presents the approach followed to detect FoG 

based on machine learning classification models that are applied 

to inertial signals. In addition, this section also describes the 

reduction of the final FoG detection model. 

Two main considerations are envisaged in the design of the 

FoG detection method. First, the method must enable the 

monitoring of the symptom during the daily life of patients. 

Second, it must enable the activation of external auditory cueing 

stimuli. As a result of the second consideration, the machine 

learning approach must be implementable in real-time with low 

latency. In addition, due to the first restriction, the method must 

have a low computational burden and must be implementable in 

low power-consumption microcontrollers in order to enable a long 

duration of the wearable device. These considerations introduce a 

trade-off between FoG detection accuracy and meeting the real-

time and low computational-burden restrictions. However, given 

the nature of the problem, accuracy takes precedence. 

The proposed approach is divided into different phases, which 

are depicted into the left part of Figure 1. First, inertial signals are 

captured from a waist-worn triaxial accelerometer. This position 

has been chosen, first, because it has been previously used to detect 

FoG with relative success (Moore et al. 2013), and, second, it also 

enables the monitoring of other relevant information for PD (such 

as gait parameters (Sayeed et al. 2015), dyskinesia (Pérez-López, 

Samà, Rodríguez-Martín, Moreno-Aróstegui, et al. 2016) and 

on/off motor states presence (Pérez-López, Samà, Rodríguez-

Martín, Català, et al. 2016)). Second, signals are conditioned and 

specific features for FoG detection are obtained as a function of 

different window lengths. These features are then entered into 

several machine learning classifiers.  

Finally, the most suitable model for FoG detection is optimised 

for real-time implementation. This way, given the most accurate 

window size, feature extraction, and machine learning 

classification method, a feature reduction of the corresponding 

model is performed. This feature reduction method is described in 

subsection 3.4 and is represented in the right part of Figure 1. 

The proposed approach is compared to three previously 

reported works. These works consist of other feature extraction 

methods and specific classifiers. This way, previously reported 

features are tested with the all the different window lengths and 

machine learning classifiers used by the proposed approach. The 

other features employed are presented in Section 4. 

3.1. Signal conditioning and windowing 

FoG detection method employs the acceleration signals collected 

by a waist-worn device. This device is a wearable inertial system 

called 9x2, a small and light (77x37x21mm3 and 78g with 

battery) device (Figure 2), which is located at the left side of the 

waist (Rodríguez-Martín et al. 2013). This inertial measurement 

unit stored accelerometer data at 40Hz. This frequency is enough 

for the analysis of human movement in PD patients (Zhou & Hu 

2008) and, furthermore, 99% of the frequency content of gait is 

contained below 20 Hz (Antonsson & Mann 1985). Finally, 

Figure 1. Proposed approach for Freezing of Gait detection. Specific feature extraction method is proposed while several window sizes 
and machine learning classifiers are compared. The model found by using the optimal window size and machine learning classifier is, 

then, reduced through a feature subset selection process. 
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freezing of gait symptom has been observed to provide harmonics 

in acceleration signals between 3 and 8Hz (Moore et al. 2008). 

More formally, let x1, …, xM, y1, …, yM, and z1, …, zM be the 

measurements obtained by the accelerometer in each of its three 

axes at discrete times t1, …, tM. As shown in Figure 2, the proposed 

FoG detection method conditions the signals captured by the 

accelerometer with a second-order low-pass Butterworth filter, 

which enables the removing of high-frequency noise. The 

implementation of the Butterworth filter is given by two vectors a 

∈ ℝ2 and b ∈ ℝ3 that enable the filtering of the signals with a low 

computational cost, since each new filtered value is obtained 

through the current and the last two filtered and non-filtered 

samples, i.e. for X axis  𝑥𝑖
′ = ∑ 𝑏𝑖𝑥𝑖−𝑗+1

3
𝑗=1 −∑ 𝑎𝑖𝑥𝑖−𝑗

′2
𝑗=1 . 

Filtered signals are then windowed, i.e. they are splitted into 

windows of N consecutive samples, being each window started 

every N/2 samples. The sequence of samples contained in a certain 

window 𝑤, where 𝑤 = {1,… , ⌊2𝑀/𝑁⌋} and ⌊·⌋ is the integer floor 

operator, starting at sample 𝑠𝑤 = 1 + (𝑤 − 1) · 𝑁/2 is 

represented by: 

 

𝐴𝑤 = {(𝑥′𝑠𝑤 , 𝑦′𝑠𝑤 , 𝑧′𝑠𝑤), … , (𝑥′𝑠𝑤+𝑁−1, 𝑦′𝑠𝑤+𝑁−1 , 𝑧′𝑠𝑤+𝑁−1)}  (1) 

 

The number of samples N to be used in a window is not limited; 

however, we consider a small number of possibilities due to our 

aim of implementing the FoG detector in real-time. Thus, window 

length is required to be implementable for a low-consume 

microcontroller and, furthermore, it should be a power of 2 in order 

to facilitate the discrete Fourier transform based on the FFT 

algorithm. In consequence, window length values explored are 

N={32, 64, 128, 256}, which correspond to 0.8, 1.6, 3.2 and 6.4 

seconds, respectively, since 40 samples are obtained per second. 

The filtered samples contained into a window are, then, 

characterized according to a specific set of features, which are 

presented in the next subsection. In this paper, this set of features 

to detect FoG is proposed and it is compared to three other sets 

previously published in the literature. 

 
Figure 2. The 9x2 and its orientation on waist. 

 

3.2. Feature extraction 

A total of 55 features are proposed to characterize FoG, which are 

listed in Table 1. These features aim to represent different aspects 

of PD patients activities and movements and, furthermore, 

different characteristics of gait. Means, standard deviations 

(Rodriguez-Martin et al. 2013), skewness, kurtosis and integrals 

(Bouten et al. 1994) of each axis are used to represent the 

orientation of the sensor, the quantity of movement and the third 

and fourth statistical moments on each axis. Correlations (Reyes 

Ortiz 2015) and auto-regression coefficients (Khan et al. 2010) are 

employed to include information on the linear relation among axis 

and the shape of the signal. Also, the differences between the 

means of the different accelerometer axes are included to consider 

the relative orientation of the inertial system (Rodriguez-Martin et 

al. 2013) with respect to previous windows, which enables the 

identification of postural changes. Skewness and kurtosis are also 

obtained from the magnitude signal.   

In addition, frequency features (Najafi et al. 2003; Rodriguez-

Martin et al. 2013; Pérez-López, Samà, Rodríguez-Martín, 

Moreno-Aróstegui, et al. 2016; Samà et al. 2012) are used to 

include information related to determine different postures or 

activities which cannot be a FoG episode, such as walking, sit, 

stand, lying, and PT. These features are obtained by means of the 

FFT, which is applied to each window 𝐴𝑤. The result is composed 

of a set of 3·N complex values (𝑋1, 𝑌1, 𝑍1), … , (𝑋𝑁 , 𝑌𝑁, 𝑍𝑁) 
representing the amplitude and phase of each complex exponential 

in which the signal can be decomposed according to the following 

equation: 

 

𝑋ℎ
𝑤 = ∑ 𝑥𝑠

′
𝑤+𝑛−1

𝑒−
𝑖2𝜋ℎ𝑛

𝑁𝑁
𝑛=1                       (2) 

 

which corresponds to the window 𝑤 of the X axis, although it is 

also obtained for axes Y and Z, and where ℎ = 1,… ,𝑁. 

From the values obtained by the FFT algorithm in Equation 

(2), several features are obtained related to the spectral content of 

the windowed signal. Firstly, specific frequency bands are 

identified. Given a range of frequencies [𝑓1, 𝑓2] with 0 <  𝑓1 ≤
 𝑓2 ≤ 20, the set 𝐻𝑓1 ,𝑓2

𝑊 is formed based on the absolute values of 

the complex harmonics within this frequency range:  

 

𝐻𝑓1,𝑓2
𝑊 =

{
 
 
 
 

 
 
 
 

  

|𝑋
⌊𝑓1∗

𝑁

40
⌋

𝑊 | + |𝑌
⌊𝑓1∗

𝑁

40
⌋

𝑊 | + |𝑍
⌊𝑓1∗

𝑁

40
⌋
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|𝑋
⌊𝑓1∗

𝑁

40
⌋+1

𝑊 | + |𝑌
⌊𝑓1∗
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40
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𝑊 | + |𝑍
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40
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40
⌋

𝑊 | + |𝑍
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40
⌋
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}
 
 
 
 

 
 
 
 

     (3) 

Secondly, frequency features are employed, since the energy 

spectra within specific frequency ranges correspond to determined 

activities. The first frequency range or frequency band used is 

𝐻0.04,0.68
𝑤  and corresponds to the posture transition band (Najafi et 

al. 2003).  A second band employed is 𝐻3,8
𝑤 , which has been shown 

to be related with FoG (Moore et al. 2008). Finally, 𝐻0.68,3
𝑤  is 

proposed since it corresponds to walking frequency content 

(Rodriguez-Martin et al. 2013). From these three bands, standard 

deviation, skewness and kurtosis are obtained (Mazilu et al. 2013). 

The remaining frequency features used are the maximum, the 

second maximum harmonic and their distance, which are 

considered relevant since they establish the main dominant 

frequency and how the frequency content is distributed.  

Finally, the Principal Component Analysis (PCA) has also 

been employed, as described below. Let 𝒓0.04,8
𝑤  be the row vector-

form of the set 𝐻0.04,8
𝑤 . PCA has been used to reduce the 

dimensionality of its harmonics in any windowed signal. More 

specifically, PCA has been applied to a set of 𝒓0.04,8
𝑤  vectors 

organised in a matrix 𝑀 = [𝒓0.04,8
1 𝑇

 𝒓0.04,8
2 𝑇

, … , 𝒓0.04,8
𝐿 𝑇

 ]
𝑇
. This L 

windows are a randomly-selected subset of the training data 

composed by a 10% of the data from each patient, thus containing 

both FoG episodes and other activities. PCA is applied to 𝑀 in 

order to obtain the orthonormal change of basis matrix 𝑉 that 

brings each pattern 𝒓0.04,8
𝑤  from the original space to the latent one. 

PCA is applied to matrix 𝑴 by first centering the data, then 

obtaining the covariance matrix, and then applying a Singular 

Value Decomposition (SVD) so that 𝑼𝚺𝑽 decomposition is 

obtained. In the SVD process, it was identified that only the first 3 

latent variables contributed with data (i.e. their singular values 
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were significantly higher than the rest). In consequence, only the 

first three components of the latent representation of  𝒓0.04,8
𝑤 , i.e. 

the first three values of  𝑽 · 𝒓0.04,8
𝑤 , are employed as features 

(feature group 11, last row in Table 1). Note that the PCA process 

is only applied once in the training process and a real-time 

implementation of the feature-extraction process would only 

require a partial implementation of  𝑽 · 𝒓0.04,8
𝑤 . 

 
Table 1. List of features employed in the proposed approach 

Group:  

No.  

features 

Feature group Description 

𝑔1: 5 Means 

Mean of axis X, Y and Z 

Mean of the difference between X and Z axis and Y and 

X axis 

𝑔2: 3 
Difference among 

mean values 

Difference in the mean value of axis X between current 

window and predecessor. Similarly, difference in axes Y–

Z and Z–X 

𝑔3: 3 Standard deviations Standard deviation in axes X, Y and Z (time domain) 

𝑔4: 3 Correlations Correlation between X and Y axis, Y–Z, and X–Z 

𝑔5: 5 
Frequency standard 

deviation 

Standard deviation of the absolute value of the harmonics 

in the following frequency bands:  

0.04-0.68 Hz, 0.68-3 Hz, 3-8 Hz, 8-20 Hz and 0.1-8 Hz 

𝑔6: 4 
Highest harmonics 

and centre of mass 

Maximum and 2nd maximum harmonic amplitude, their 

frequency distance, and the frequency centre of mass 

𝑔7: 7 Skewness 

Skewness of  I) X, Y and Z axis (separately); II) of the 

magnitude signal, III) of the absolute value of the 

harmonics in the frequency bands 0.04-0.68, 0.68-3 and 

3-8 Hz  

𝑔8: 7 Kurtosis Kurtosis of  I) X, Y and Z axis (separately); II) magnitude 

signal, III) of the absolute value of the harmonics in the 

frequency bands 0.04-0.68, 0.68-3 and 3-8 Hz  

𝑔9: 3 Integrals Discrete summation of all values from X, Y and Z axis 

𝑔10: 12 Auto-regression 

coefficients 

4 auto-regression coefficients obtained by the Bourg 

method from axis X, Y and Z 

𝑔11, 3 Principal Component 

Values 

First three principal component values 

 

3.3. Machine learning classifiers 

Features extracted to represent each signal window, either the 

proposed ones or the previously reported on the literature, are used 

as the input of a supervised learning classifier with the aim of 

obtaining a robust FoG detection. Note that the label 

corresponding to each window, which consists on either FoG or 

no-FoG, is also employed by the learning classifier. 

In this paper, several classifiers are tested in order to establish 

the most suitable. Since FoG detection is a bi-classification 

problem, SVM (Cristianini & Shawe-Taylor 2000) and Logistic 

regression (Hosmer et al. 2013) are employed due to their 

suitability and commonly good performance. On the other hand, 

Naive Bayes, k-NN, MLP (Haykin 1998) and Random Forest 

(Breiman 2001) have also been utilized in FoG detection works 

(Mazilu et al. 2012; Tripoliti et al. 2013); in consequence they are 

also evaluated. The classifiers that have been tested and their 

corresponding evaluated hyper-parameters are presented in Table 

2. The supervised learning experiments have been performed 

through Weka software (Hall et al. 2009). Feature subset selection 

was implemented in Matlab, and LibSVM package was used to 

work with SVM (Chang & Lin 2011). 

Table 2. List of classifiers and parameters tested 

Classifier Main Parameter 

k-NN K: 1, 3, 10, 20, 30, 40, 50 

Random 

Forest 
#trees: 1,3,5,10,20 

Logistic 
Regression 

- 

Naive Bayes - 

Multilayer 

Perceptron 

Learning Rate: 0.3, 0.5, 1 

#Hidden Layers: 1,2,3,5,10 

Support 

Vector 
Machines 

Kernel: Linear, 2nd D. Poly, 3rd D. Poly, RBF 

C: 10-3,  10-2, …, 103 
γ (RBF): 10-3,  10-2, …, 103 

 

In order to compare the different classifiers, a stratified 10-fold 

CV approach has been applied to all of them. As the next 

subsection describes, a final LOPO process is used to evaluate the 

FoG detection abilities of the most suitable classifier. 

3.4. Reduction of the optimal model and LOPO process 

The classifier that is found to maximise FoG detection accuracy 

is optimised for its implementation into a low-power-consumption 

microcontroller. To this end, the number of features used is 

reduced through a greedy feature subset selection method. In 

addition to this, a LOPO schema is used in order to determine in a 

non-biased way the FoG detection capacity of the classifier. 

More concretely, the best combination of window size, feature 

extraction and machine learning classifier is considered. As 

Section 5 describes, the set of features that most suitably 

characterizes FoG is the proposed in this paper, which comprises 

55 values that are listed in Table 1.  

From this initial feature set, LOPO is applied to estimate the 

FoG detection ability. More specifically, data from all patients 

except for one are used to train a classification model based on CV. 

The resulting model is, then, used to predict the data from the 

remaining patient, from which specificity and sensitivity values 

are obtained. This process is repeated as many times as patients 

are available. As a result of the initial LOPO process, the average 

specificity and sensitivity among patients using the initial set is 

obtained.  

Secondly, the 55 features are divided into 11 groups of features 

according to the same division in which they are presented in Table 

1, i.e. G={𝑔1, … , 𝑔11}. Each one of these feature groups is 

individually removed; then, LOPO is applied, resulting in the 

average specificity and sensitivity among patients. The average 

geometric mean between specificity and sensitivity, i.e. 𝑀 =
√𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 · 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 for each after removing each group of 

features is then considered. At this point, 𝑀𝐺, 

𝑀𝐺−𝑔1, 𝑀𝐺−𝑔2, … ,𝑀𝐺−𝑔11 have been obtained. For those groups 

satisfying 𝑀𝐺−𝑔𝑖 ≤ 𝑀𝐺 + 𝛿 the process is stopped. Alternatively, 

those feature groups that improve the geometric mean above 𝛿 are 

explored, and the process continues iteratively by removing 

another group, e.g. 𝑀𝐺−𝑔𝑖−𝑔2, 𝑀𝐺−𝑔𝑖−𝑔3, etc. Values of 𝛿 tested 

are 0.1%, 0.25%, 0.5%, 1%, 2%, and 5%. 

The final model to be implemented in a low power-

consumption microcontroller for real-time FoG detection is that 

one that maximises the geometric mean metric through the 

described LOPO process.  

4. Experiments 

This section describes the data acquisition process including the 

inclusion criteria and the data test protocol. In addition, it is also 

presented the features set in which the proposed method is going 

to be compared to.   

4.1. Data acquisition 
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Data from 15 PD patients that form part of the Freezing in 

Parkinson’s Disease: Improving Quality of Life with an 

Automatic Control System (MASPARK) project data collection, 

have been employed in this work. These patients participated in a 

data collection protocol carried out by Centro Médico Teknon 

(Spain) which was approved by the local ethics committee. All 

patients gave informed written consent to the study. The inclusion 

criteria for the participants was a Hoehn & Yahr stage above 2 in 

OFF state, not having dementia according to DSM IV criteria, 

having a FoG-Q score above or equal to 6, and, finally, to have 

presented a total amount of FoG time during the data collection 

longer than one minute.  

Data from the first 6 PD patients who participated in the 

database have been used to obtain the optimal window size, feature 

extraction and machine learning classifier through a 10-fold CV 

process, as described in Section 3. The complete dataset has been 

used in the LOPO process to reduce the features used by the 

classifiers, as described in subsection 4.3. 

The mean age of the patients was 71.5±12.7 years old and the 

mean Hoehn & Yahr scale was 2.79±0.29. Four patients needed 

walking assistance in OFF and the mean FoG-Q test index was 

14.9±6.23, being the lowest score 6 and the highest score 23. 

Data collection was performed at patients’ home, where FoG 

episodes use to occur with more frequency (Nieuwboer et al. 

1998). The protocol test consisted of two parts of approximately 

20 minutes each. Given that medication has a strong effect on the 

severity and frequency of FoG episodes in many patients (Giladi 

et al. 2000), the first test was performed early in the morning after 

the withdrawal of the first daily medication intake. Once the first 

part was completed, the medication was taken. The second part 

was performed when the effect of the medication was evident. 

Both parts of the test comprised 4 different activities: firstly, 

showing the patients’ home, secondly, a FoG provocation test in 

which the patient was told to go through a narrow space and, 

afterwards, turning back, over several times. The third activity 

consisted of going outdoors for a short walk, and, finally, the last 

one required the patient to perform a dual task activity, e.g. reading 

something while carrying an object. Within the second part of the 

test, a false positive protocol activity for FoG was also performed. 

This protocol consisted of performing activities in which their 

inertial frequency response may be similar to a FoG episode, for 

example, brushing teeth, painting, and erasing in a sheet of paper. 

Acceleration signals were captured while patients executed the 

described protocol wearing the 9x2 Inertial Measurement Unit on 

the left side of the waist. All tests were video-recorded in order to 

create a gold-standard for labelling the activities and the FoG 

episodes. Within the MASPARK project, clinical experts labelled 

all activities, postures and the type of FoG episodes. 

4.2. Comparison with previously reported feature extraction 
methods 

As previously described, features proposed in the predecessor 

Section were compared to those reported in other research works. 

This subsection describes the features used to this end. 

The first tested set of previously reported features was reported 

by Mazilu et at (Mazilu et al. 2012), who employed 15 features as 

the input for different classifiers. They used the mean, standard 

deviation and variance of a given window from each axis X, Y and 

Z. They also employed the entropy of the frequency components 

in a window and the sum of the frequency components, i.e. |𝑋0,20
𝑤 |,

|𝑌0,20
𝑤 | and |𝑍0,20

𝑤 |, for each axis individually. Finally, the freezing 

index (𝐹𝐼) and power index (𝑃𝐼) proposed by Moore et al. (Moore 

et al. 2008) and Bächlin et al. (Bächlin et al. 2009), respectively, 

were calculated for all three axes together. The last two indices are 

represented by 𝐹𝐼 = |𝑃3,8
𝑤 | / |𝑃0.5,3

𝑤 | and 𝑃𝐼 = |𝑃0.5,8
𝑤 |, respectively. 

The second set of features tested in this paper are those 

employed by Tripoliti et al. (Tripoliti et al. 2013). After pre-

processing the signals, they extracted the entropy of the 

accelerometer and gyroscope signals from each axis in different 

body parts as features to detect FoG. In this paper, however, only 

accelerometer features and waist location are tested in order to be 

comparable to our single sensor approach. This way, three features 

are obtained. 

Finally, features presented by Moore et al. and Bächlin et al. are 

also tested. In the work of Bächlin et al., they optimized the 

freezing index and power index by maximizing the minimum of 

sensitivity and specificity given with a certain value for both 𝐹𝐼 
and 𝑃𝐼. Thus, after finding an optimal value, a threshold based rule 

was designed. In our paper, in order to compare the performance 

of the same classifiers for different feature sets, the threshold-

based classifier is not used. Instead of this, Moore and Bächlin 

features are the input for different classifiers maximizing the 

accuracy, which enables a more generalised non-linear 

classification. 

5. Results 

In this section, the results from the 10-fold CV results using 

different window sizes, features and classifiers are first presented. 

Second, the improvement of the most suitable model, in order to 

reduce the computational resources needed, through feature 

reduction and LOPO process is reported, with the most significant 

results for each feature group extraction. Finally, these results are 

discussed. 

5.1. Window size, feature extraction and classifier results 

Table 3 shows a summary of the results achieved in the 10-fold 

CV using different classifiers and window sizes. Given that many 

parameters are tested and too many results have been obtained to 

be completely reported, the geometric mean of the sensitivity and 

specificity of each method over the different patients is reported in 

this table. Also, this mean is provided for the best parameter 

configuration for each classifier, which is repeated among the 

different window sizes and feature sets employed. The last row 

includes the results corresponding to the reduced feature for 

comparison purposes (see subsection 5.2 for the specific features 

used).  
The best result obtained (89.60%) belongs to CETpD features 

with 64-samples window size and a SVM classifier. This result 

stands for a 91.81% on sensitivity and an 87.45% on specificity, 

which is considered by the authors as an appropriately balancing 

of both sensitivity and specificity. These results are significantly 

better (p < 0.01) according to a t-test applied to the means of the 

results obtained among each group of features (among the different 

window and for the best classifier). Mazilu et al. features obtain 

also a good score (83%) although results of sensitivity are 94% 

and specificity 73.7% are much more unbalanced. These lower 

values may be due to the features used by Mazilu et al. since, 

although they represent the signal behaviour in each axis, they do 

not include cross-axis information (as in correlation), which may 

be important in recognizing FoG since the signal variation among 

them may result characteristic. Finally, Tripoliti et al. and Moore 

& Bächlin features obtain a geometric mean of 77% (98.8% on 

sensitivity and 60.31% on specificity) and 77% (92.6% on 

sensitivity and 64.26% on specificity), respectively. These results 

are clearly lower than the obtained from the proposed features and 

have a lack of any practical usage given the low specificity values, 

which would result in a high rate of false positive detections. 

Last row of Table 3 reports the geometric mean values 

corresponding to the reduced feature set that result from the subset 

selection process applied to the CETpD features and described in 
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subection 5.2. The resulting feature set has been tested with the 

same 6 classifiers under the same conditions than the remaining 

features presented in Table 3. The feature set reduction eliminates 

redundant sets of features leading to a less computational burden 

algorithm while keeping a similar performance. 

 

 
Table 3. Geometric mean of sensitivity and specificity in detecting FoG for the 
different feature extraction methods, window sizes and machine learning 

classifiers. Best results are presented here among the different hyper-

parameters tested. Ran. Forest stands for Random Forests, ANN for Artificial 
Neural Networks (multilayer perceptron) and Logistic Regr. for Logistic 

regression. The complete table of results is available as the extra material of 

this paper. In this supplementary material, the hyper-parameters corresponding 
to each result can be found. 

 

  Window 

Size  

  k-

NN     

Ran. 

Forest 

Logistic 

Regr. 

Naive 

Bayes 
ANN SVM 

CETPD 

features 

32 70.80 78.48 58.52 79.24 79.26 89.48 

64 76.86 80.76 66.73 79.18 80.42 89.60 

128 81.98 82.25 71.04 79.42 85.16 89.47 

256 83.17 83.41 74.69 79.18 83.60 89.19 

Mazilu et al. 

features 

32 77.62 81.06 55.52 78.41 75.55 82.49 

64 78.32 81.17 57.55 80.71 77.40 83.45 

128 80.68 81.89 58.52 81.27 73.76 83.65 

256 80.52 80.70 57.99 79.51 75.28 83.58 

Tripoliti 

features 

32 4.11 7.95 0 76.68 0 77.11 

64 52.63 51.67 0 77.57 0 77.45 

128 56.02 56.15 0 77.74 0 76.91 

256 72.03 54.77 0 77.20 0 74.65 

Moore & 

Bächlin 

features 

32 58.35 60.26 2.90 5.44 0 77.18 

64 65.94 67.10 1.97 0 0 45.90 

128 67.78 66.85 0 0 0 46.14 

256 62.86 64.72 0 71.26 0 43.62 

CETpD 

subset of 
features 

128 79.69 80.72 75.75 81.35 81.36 89.63 

 

On the other hand, window size seems to slightly affect to 

some classifiers though with a minor relevance. For example, 

CETpD, Mazilu and Tripoliti features’ results obtained by the 

SVM are not altered by the window size. However, in Moore and 

Bächlin approach, the algorithm performance is maximized with 

32 samples per window; although two exceptions are found since 

k-NN and random forest classifiers provide the best performance 

with 256 samples. These results may be due to the sensor position, 

given that patients wore the sensor on the waist. In a previous 

paper in which different sensor locations were compared through 

the Moore approach (Bächlin et al. 2009), waist location was 

found to miss short FoG episodes with respect to ankle location. 

Thus, given that only non-short episodes (longer than a second) 

are detected, the window size is not influential with regards to the 

accuracy. 

Finally, the comparison between classifiers shows that the best 

one is the SVM classifier with 89.60% on the geometric mean of 

sensitivity and specificity compared to the 85.16% achieved with 

the multilayer perceptron, which is the second better classifier. In 

average, Random Forests are the 2nd best performance classifier, 

though an 83.41% is achieved as highest value. In addition, SVM 

is the best classifier for any feature set achieving the highest value 

after performing different window size tests. 

Given the results presented in Table 3, feature reduction and 

LOPO process have been applied to the proposed feature 

extraction and the SVM classifier with 128 samples.  

 

5.2. Feature reduction and LOPO process 

The results of the feature subset reduction process for 𝛿=1% is 

represented in Figure 3 as a directed graph. The graph’s initial 

node corresponds to the complete set of features, and the 

remaining nodes represent those subsets of features that satisfied 

the condition 𝑀𝐺−𝑔𝑖1− … −𝑔𝑖𝑘
 > 𝑀𝐺−𝑔𝑖1− … −𝑔𝑖𝑘−1 + 𝛿, i.e. those 

subsets for which having removed a specific group of features 

improves the LOPO accuracy in at least 1%. Directed edges 

represent the relation among nodes, i.e. the successor has a group 

of features less than the predecessor. Each node include the 

average geometric of the specificity and sensitivity among 

patients. The feature subset selection process provided the same 

group selection for 𝛿 < 1%, while 𝛿 > 1% resulted in slightly 

lower geometric mean values. 

Figure 3 shows that there are four groups of features that can be 

consistently removed, which are the means, kurtosis, integrals and 

autoregression coefficients. After removing them, the classifier 

improves by 4.32% its average geometric mean with respect to the 

initial node. The number of features decreases from 55 to 28, 

which reduces the computational load of the feature extraction 

process. This way, a real-time implementation of the method will 

benefit through, first, the reduction of the Support Vectors (SV) 

dimensionality (in terms of columns) and the reduction of the 

resources needed to compute the features. As a result, the method 

is more affordable for a real-time implementation, which is very 

sensible in low-consume microcontrollers as those that wearable 

devices require.  

The results provided by the LOPO process (geometric mean of 

85.15%, 84.49 on sensitivity and 85.83 on specificity) do not 

achieve the same values presented in Table 3 (89.63%) due to the 

differences in the evaluation process described in Section 3. First, 

Table 3 results were obtained through a stratified 10-fold CV, so 

data from all patients were likely to be in the training and 

validation folds. Instead, LOPO process performs the same 10-fold 

CV without using the data from a patient (last process in Figure 1). 

Then, these data are used to obtain the specificity and sensitivity. 

In consequence, LOPO process has a higher degree of difficulty 

and, as a result, presents lower performances, which in our case 

are about 4.3%. An additional test has been carried out to reduce 

the number of SV. A method devoted to this task is the Separable 

Case Approximation (SCA) (Geebelen et al. 2012). This method 

starts from an already trained regular SVM (i.e. with soft-margin 

and kernelised, as one of the resulting models from our LOPO 

process), to identify the training patterns that are misclassified by 

the model. Then, the misclassified patterns are either removed 

from the training dataset or their class labels are flipped, and a new 

SVM without soft-margin is trained with the new dataset. By doing 

this, a very similar hyperplane separation is obtained and the 

number of SV of the new SVM is significantly reduced. In our 

case, the original SVM from a given patient originally had 7412 

SV, from a training dataset with more than 20,000 patterns. After 

applying SCA, the resulting SVM had 992 SV. The original SVM 

with the complete set of features would require to allocate 1.6 MB 

of memory to save it, while the reduced one requires less than a 

half, 0.79 MB. Given that the flash memory of the 9x2-device’s 

microcontroller used in the experiments (STM32F415RG) is of 1 

MB, the improvements done by the feature and SV reduction 

enable the real-time implementation of the method. 
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5.3. Discussion  

The results achieved by the method presented in this work 

obtained by optimising the window size and the machine learning 

classifier show that it is the set that provides the highest accuracy  

and geometric mean, outperforming those reported by Mazilu et 

al., Tripoliti et al. and Moore and Bachlin works.    

 

Table 4. Summary of results. Results reported in previous publications and those obtained in this paper are presented. Conditions employed to perform each 
method, including number of patients, number of sensors, protocol test and evaluation method are also described. 

  

Reported 

results 

reported in the 

previous paper 

(Sensitivity, 

Specificity) 

Results obtained 

in this work 

Accuracy (sens., 

spec.) through 

10-fold CV 

No. of 

sensors 

used in the 

previous 

paper 

No. of 

sensors 

used in 

this 

work 

No. of 

patients in 

the 

previous 

paper 

Number 

of 

patients 

in this 

work (10-

fold CV) 

Protocol 

test in the 

previous 

paper 

Protocol test 

in this work 

Evaluation 

system in 

the previous 

paper 

Evaluation 

system in 

this work 

Rodriguez 

et al. 
- 

89.6%  

(91.77%, 87.45%) 
Waist 

Waist 

- 

6 

- 

Home and 

outdoors 

activities (walk, 

stand, sit, posture 

transitions, stairs, 

dual task, home 

cleaning, 

brushing teeth, 

draw, laptop 

affairs) 

- 

Window 

Evaluation 

Mazilu et 

al. 
66.25%, 95.38%  

83.65% 

 (94.75%, 73.72%) 
Waist 8 

Walking and 

turns 

Window 

evaluation 

Tripoliti 

et al. 
81.94% , 98.74%  

77.45%  

(98.21%, 61.1%) 

Waist, legs, 

wrists and 

chest 

5 

Lying, walk, 

turns, 

drinking 

water and sit 

Window 

evaluation 

Bächlin et 

al. 
73.1%, 81.6%  

77.18%  

(92.59%, 64.25%) 
Ankle 8 

Walk, turns, 

carrying light 

objects 

Window 

evaluation 

Mazilu et al. presented accuracies in their work that are lower 

than those achieved by their same features with our dataset of 

signals. They reported a sensitivity and specificity over 95% by 

using a 10-fold CV and 3 accelerometers located on the shank, 

thigh and lower back. Two reasons are envisaged to explain our 

lower results. First, their evaluation dataset was formed by random 

windows including data of a patient into the training set and the 

evaluation set. This method leads to an overestimation of results, 

since the classifier learns the behaviour of the episodes performed 

by the patient who is evaluated. In the case of the LOPO process, 

Mazilu et al. report a high specificity but a very low sensitivity 

(66%). Second, the environment (i.e. patient’s home in our case, 

and laboratory conditions in theirs) and the activities performed by 

patients, which were basically walking and turning in Mazilu’s 

experiments, made it easier for the classifiers in Mazilu’s work to 

detect FoG, so rather simpler features were enough to achieve such 

performance. On the contrary, the more challenging activities done 

by patients in our experiments may have provided many false 

positive situations. In this sense, it is noted that their method 

achieved a geometric mean of 77.23% through a LOPO evaluation, 

which is 8% lower than the reported for our approach. 

 Similarly, the results of Tripoliti reported in their paper (81.9% 

on sensitivity and 98.74 on specificity) may have been decreased 

by the use of a single sensor (they used up to 6), and the set of 

activities, which was limited (walking, turning and drinking from 

a glass).  

To summarise, it is observed that the presented approach either 

presents a similar accuracy or outperforms previous works, while 

having the advantage of using a single sensor and being validated 

through a LOPO process. In addition, the method obtained is 

implementable in real-time, which are important advantages for 

the monitoring of PD and the administration of cueing. 

6. Conclusions 

In this work, a machine learning algorithm to detect FoG with a 

single inertial system in the waist based on a triaxial accelerometer 

Figure 3. Feature reduction and LOPO results for 𝛿 = 1%. The graph’s initial node corresponds to the complete set of features. Each 

successor node represents a group of features (among those presented in Table 1) removed from the predecessor node and satisfying the condition 

𝑀𝐺−𝑔𝑖1− … −𝑔𝑖𝑘  > 𝑀𝐺−𝑔𝑖1− … −𝑔𝑖𝑘−1 + 𝛿. Each node includes the average geometric of the specificity and sensitivity among patients. The 

complete list of feature groups are defined in Table 1. 
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is proposed. This algorithm consists of a novel set of features used 

as the input of a learning classifier. The algorithm is tested with 

inertial data from a dataset of signals collected within patients’ 

home, and it is evaluated by using several classifiers, different 

parameters for each classifier, and different window sizes in order 

to identify the most suitable one. Furthermore, the proposed 

method has been compared to other sets of features from relevant 

works that achieved significant results in detecting FoG. Results 

show a significant increase on FoG detection accuracy in the 

proposed approach with respect to the other implemented feature 

sets.  

The algorithm presented in this work enables the real-time 

detection of FoG in ambulatory conditions for PD patients, 

opening the possibility to administering cueing stimuli. However, 

further work to validate the method is needed by including more 

patients. In this sense, within MASPARK project, it is expected to 

increase this database with the coming pilots of the project. 
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