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We present a scheme for online, unsupervised state discovery and detection from streaming, multi-
featured, asynchronous data in high-frequency financial markets. Online feature correlations are computed
using an unbiased, lossless Fourier estimator. A high-speed maximum likelihood clustering algorithm is
then used to find the feature cluster configuration which best explains the structure in the correlation
matrix. We conjecture that this feature configuration is a candidate descriptor for the temporal state of
the system. Using a simple cluster configuration similarity metric, we are able to enumerate the state
space based on prevailing feature configurations. The proposed state representation removes the need
for human-driven data pre-processing for state attribute specification, allowing a learning agent to find
structure in streaming data, discern changes in the system, enumerate its perceived state space and learn
suitable action-selection policies.
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microstructure

1. Introduction

Machine learning has become ubiquitous in high-frequency financial markets, as technological ad-
vances enable low-latency automated algorithms to replace functions traditionally performed by
human traders, portfolio managers, risk managers and regulators. This is particularly true for trad-
ing algorithms, where reinforcement learning algorithms have recently been considered as dynamic
alternatives to traditional stochastic control techniques (such as those found in Bertsimas and Lo
(1998), Almgren and Chriss (2000), Forsyth (2011), Frei and Westray (2015), Cartea et al. (2015))
for mapping optimal trajectories through the system. Nevmyvaka (2004), Nevmyvaka et al. (2006)
were among the first authors to consider a reinforcement learning agent for optimal limit order
placement for a liquidation program. They used a discrete-state, discrete-action Q-learning agent
which converged to a policy for the optimal price at which to post the remaining inventory in the
market, based on the time remaining in the liquidation program, remaining inventory to trade and
domain-informed public state attributes, such as prevailing spreads, price levels and volumes. Hen-
dricks and Wilcox (2014) considered a similar problem, demonstrating that a reinforcement learning
agent can be used to adapt a trading strategy with respect to prevailing spread and volume dy-
namics, executing a sequence of optimised market orders. These authors demonstrate a significant
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positive improvement on cost of trading compared to state-of-the-art techniques, motivating rein-
forcement learning as a suitable framework for online learning agents in financial markets. Both
studies, however, use a subjective set of attributes for state representation in the learning algorithm.
While the choice is informed by domain knowledge and may be suitable at the operating scale of a
human trader, we conjecture that a more objective representation may yield better trading policies
for agents operating at machine scale.

It is well known that the performance of certain classes of machine learning algorithms is strongly
dependent on the choice of data representation, or features, upon which they are applied (Hinton
(2007), Lee et al. (2009), Bengio et al.). This is likely due to certain forms of representation mask-
ing exploitable characteristics explaining variations in the data, or at least burying them in layers
which cannot be detected by the learning algorithm. As such, significant effort can be spent on
data pre-processing, using domain knowledge to inform appropriate representations for effective
machine learning. While such human intervention can be useful to guide learning agents in new
domains, it does restrict the agent’s discoverable policies to those which mimic policies acceptable
to an intuitive human agent in the domain. Bengio et al. state that an artificial intelligence should
fundamentally understand the world around us, and thus be able to identify and disentangle ex-
planatory features from low-level sensory data without human intervention. In this way, a machine
learning agent can provide more general, and sometimes complementary optimal policies to those
expected by human agents, thereby cultivating its own distinct machine intelligence.

This goal has been recognised by the machine learning community, with a recent surge in scientific
activity concerning unsupervised feature learning (or deep learning), seeking the discovery of useful
representations which result in more meaningful classifiers and predictors in various domains (see
Dahl et al. (2012), Hinton et al. (2012), Boulanger-Lewandowski et al. (2012), Ciresan et al. (2012),
Glorot et al. (2011), Krizhevsky et al. (2012) for some state-of-the-art examples). At a recent NIPS
workshop, Mnih et al. presented the first deep learning model to successfully learn control policies
from high dimensional sensory data using reinforcement learning Mnih et al. (2013). The agent was
able to learn to play several Atari2600 games, using a convolutional neural network (CNN) trained
using a Q-learning algorithm, with only raw pixels as the input. While this is a somewhat different
domain to the optimal trade execution problem, it does present certain analogues consistent with
our goal: using low-level sensory data (pixels here, vs streaming tick data for our problem), the
CNN is able to abstract useful representations from the raw data and train a Q-learning agent to
achieve some goal. While it would seem appropriate to apply this technique to our problem, the
computational burden of the CNN may be too onerous for our goal of an online near-real-time
algorithm using modest hardware. Even recent work of Ciresan et al. (2011) on state-of-the-art,
computationally efficient, GPU-optimised CNNs yield computation times of the order of minutes
for relatively simple problems.

We are thus tasked with developing a form of state representation which can be constructed
directly from raw asynchronous tick data, is able to capture salient features of the limit order book,
is computationally efficient for near-real-time use (of the order of seconds) and can be successfully
combined with Q-learning for optimal trade execution policies. In the following sections, we describe
our approach which is able to construct a rich state representation in a computation time of the
order of seconds, using relatively modest hardware, enabling near-real-time state detection for
online learning.

2. Cluster configurations as temporal state descriptors

In the previous studies considering state representations for high-frequency financial markets, the
following pre-processed attributes were used as candidate descriptors: bid/ask spread, quote vol-
umes, quote volume imbalance, trade price levels and traded volumes (Nevmyvaka et al. (2006),
Hendricks and Wilcox (2014)). These were informed by common notions and intuition from hu-
man traders regarding the typical drivers of trade execution cost when interacting with financial
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markets. Consider a trader who is only able to execute market orders to satisfy an arrival price
objective in a limit order book market. The limit order book is a schedule of quoted prices and vol-
umes at which market participants are willing to transact, where ask quotes refer to sell orders and
bid quotes refer to buy orders, with bid quote prices strictly less than ask quote prices. Participants
who place limit orders effectively achieve can achieve a favourable price if they are willing to wait
for the market to move in the direction of their limit price. There is thus uncertainty in the time
at which the transaction will take place, if at all. Alternatively, a trader may place a market order,
whereby they guarantee execution by matching against prevailing limit orders in the system, i.e. a
buy market order will match against commensurate limit ask quotes, with the trade price calculated
as the volume-weighted price of the matched ask quotes. The cost of this timing guarantee is thus
paying a higher (lower) price for a buy (sell) order, where the extent of this cost is governed by the
prevailing quote depth in the limit order book. The difference between the highest bid quote price
and the lowest ask quote price is referred to as the spread.

Given the objective of minimising trading cost with respect to an arrival price benchmark, and
the constraint of only executing market orders, a rational trader will attempt to plan his execution
trajectory such that he crosses the spread infrequently, when there is sufficient quote volume at
the top of the limit order book and the spread is narrow. This would minimise the cost paid for
guaranteed execution. Thus, spread and quote volume were natural candidates for public state
attributes if we wish our RL agent to learn this behaviour. In particular, when spreads are narrow
(wide) and volumes are high (low), we expect the RL agent to trade more (less) aggressively to
minimise the trading program’s overall execution cost.

While informed by domain knowledge and consistent with the data-preprocessing paradigm de-
scribed in Bengio et al., these choices are somewhat subjective and are only capable of a partial
representation of the true state space. Indeed, even the enumeration of all possible spread and
volume configurations at the finest resolution is unlikely to be able to capture the endogenous and
exogenous dynamics of the financial system, especially given recent arguments for multi-level cau-
sation and scale-specific behaviour (Wilcox and Gebbie (2014), Hendricks et al. (2016a)). While we
can increase the complexity of the state space representation by increasing the number of attributes,
the curse of dimensionality soon prevents computational tractability for an online algorithm, at
least in the Q-learning setting we consider.

We propose an alternative notion to characterise the state at each decision point, effectively
reducing the set of public attributes to a single metric, while preserving information from all
measurable aspects of the system.

One can think of a particular realisation of state attributes as a cluster configuration of observable
features for a stock. Consider the case of the model used by Hendricks and Wilcox (2014), where
spread and quote volume were used as public attributes. These are derived from the following low-
level features of the limit order book: Level-1 Bid Price, Level-1 Bid Volume, Level-1 Ask Price,
Level-1 Ask Volume. Figure 1 illustrates how a cluster configuration of these low-level features has
an analogous interpretation to the low/high spread, low/high volume regimes described in Hendricks
and Wilcox (2014).

In time period t1, we see Level-1 Ask Volume, Level-1 Bid Volume and Level-1 Bid Price are all
correlated and increasing, thus being ascribed to the same cluster. Level-1 Ask Price is decreasing
and is ascribed to another cluster. In particular, we notice that Level-1 Bid Price is increasing
and Level-1 Ask Price is decreasing, which is consistent with a narrowing spread regime. Since
we are considering market orders for a BUY trading program, we note that the narrow spread is
accompanied by a larger Level-1 Ask Volume, which presents favourable conditions for an increase
in trading activity. Thus the low spread, high quote volume regime considered in the SSRQ model
has an analogous feature cluster configuration interpretation.

As a further example, consider the cluster configuration in time period t2. Here, Level-1 Ask
Price is increasing, while Level-1 Bid Price and Level-1 Ask Volume are both decreasing, resulting
in a high spread, low quote volume regime, consistent with a decrease in trading activity.

This simple illustration demonstrates that the cluster configurations of low-level sensory features
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Figure 1. Illustrating how identified feature configurations may have an analogous interpretation, in terms of human-
specified pre-processed features.

in high-frequency financial markets may have an analogous interpretation to the trader-intuition-
derived regimes usually specified. Furthermore, by allowing the clustering algorithm to be exposed
to streaming data from all measurable features, unique and persistent cluster configurations may
yield meaningful state representations for machine learning classifiers and predictors, beyond those
which may have been expected and proposed by human traders. In addition, an appropriate cluster
configuration similarity metric can be used to identify temporal states which are characterised by
the same feature cluster configurations. If certain configurations persist throughout the trading day,
we then have a reduced number of states for which to solve our optimal trading policy. Thus, we will
investigate using cluster configurations to describe temporal regimes in a reinforcement learning
framework, utilising a high-speed cluster detection algorithm appropriate for online learning.

3. Correlation estimation from streaming asynchronous data

A key input in the clustering algorithm used in this analysis is an object correlation matrix. Classi-
cal estimators for co-volatility, and hence correlation, typically rely on evenly-spaced, synchronous
observations for computation. In the case of high-frequency data in financial markets, the asyn-
chronous arrival of the price time series would require the use of pre-processing or interpolation
techniques before classical techniques can be applied, potentially introducing bias into the results
(see Griffin and Oomen (2011) for a survey of candidate estimators). Malliavin and Mancino (2002,
2009) introduced a non-parametric co-volatility estimator based on Fourier series analysis, prin-
cipally relying on the integration of a time series, rather than its differentiation. Their method
removes the need for any artificially-imposed synchronicity, providing a measure of co-volatility
which exploits more information in the data, unaffected by data arrival time and sampling fre-
quency.

Using the assumption that asset prices are continuous semi-martingales, Malliavin and Mancino
(2002, 2009) prove a general identity which relates the Fourier transform of the co-volatility function
with the Fourier transform of the log price returns. We refer the reader to their papers for the full
exposition and proofs. For our purposes, we have made use of their integrated co-volatility estimator,
defined in Equation 1.

Σ̂12
n,N :=

1

2N + 1

∑

|s|<N

n1−1∑

i=0

n2−1∑

j=0

e(is(t1i−t2j))δI1
i
(p1)δJ2

j
(p2). (1)
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where N is the number of Fourier coefficients, nk is the number of price changes for asset k in the
integrated window, tki is the time of each price change for asset k, δIk

i
(pk) is the consecutive change

in log-price of asset k between time tki and tki+1. To compute the required pairwise correlation,
we compute the volatility for each asset, as well as the co-volatility for both, then use the simple
relation in Equation 2.

ρ12 =
Σ̂12
n,N√

Σ̂11
n,N × Σ̂22

n,N

. (2)

We will apply this technique for finding feature correlations, i.e. considering features as assets in
the above exposition. For the implementation, we used a combination of vectorisation and graphics
processing unit (GPU) programming techniques to achieve efficient computation via parallelisation
in MATLAB. Computation of complex exponential coefficients and multiplication with log price
differences were performed on the GPU, after which the results in the gpuArrays were passed back
to the CPU for final computation of co-volatility and correlation. Details of the implementation
can be found in Wilcox et al. (2016).

4. High-speed feature clustering

A number of authors have promoted the use of spin glass models from statistical physics to capture
the essential nature of complex financial systems (Blatt et al. (1996), Giada and Marsili (2002),
Hendricks (2016)). In a recent paper, Hendricks et al. (2016b) provide an efficient computational
solution for a technique initially proposed by Blatt et al. (1996, 1997) and Giada and Marsili
(2001, 2002), where the super-paramagnetic ordering of a q-state Potts model is used for cluster
identification. In a market Potts model, each stock can take on one of q possible states, and each
state can be represented by a cluster of similar stocks. Cluster membership is indicative of some
commonality among the cluster members. Each stock has a component of its dynamics as a function
of the state it is in and a component of its dynamics influenced by stock specific noise. In addition,
there may be global couplings that influence all the stocks, i.e. the external field that represents a
market mode.

We refer the reader to Giada and Marsili (2001), Hendricks et al. (2016b,a) for a comprehensive
discussion of the technique and derivation of the pertinent log-likelihood fitness function. A key
assumption in the derivation is that an object’s price time series increments, x̄i, evolve under Noh
(2000) model dynamics, whereby objects belonging to the same cluster share a common component,
i.e.

x̄i = gsi η̄si +
√

1− g2
si ε̄i, (3)

where ε̄i is a vector describing the deviation of object i from the features of cluster s, and η̄si
describes cluster-specific features. gs is a loading factor that encodes the similarity or difference
between objects in cluster s.

Then, for a candidate cluster configuration of n objects, S = {s1, ..., sn}, the log-likelihood of S
explaining the structure inherent in the data is given by

Lc(S) =
1

2

∑

s:ns>1

(
log

ns
cs

+ (ns − 1) log
n2
s − ns
n2
s − cs

)
, (4)
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where

Ci,j =
x̄ix̄j√
‖x̄i2‖‖x̄j2‖

(5)

is the Pearson correlation between the ith and jth objects, representing the short-range distance-
dependent ferromagnetic interaction term in the Potts analogy,

ns =
N∑

i=1

δsi,s (6)

is the number of objects in the sth cluster and

cs =
N∑

i=1

N∑

j=1

Ci,jδsi,sδsj ,s (7)

is the intra-cluster correlation.
Hendricks et al. (2016b) show that the likelihood function specified in Equation 4 can be used as

an objective function in a high-speed, scalable parallel genetic algorithm (PGA), where candidate
cluster configurations are evaluated and successively improved until a configuration best explains
the inherent structure suggested by a correlation matrix. We will utilise their computational solu-
tion, since it provides the near-realtime efficiency required for our proposed online algorithm.

It is important to note that this approach, applied to stock features as objects, is consistent
with the notion of financial markets as complex adaptive systems (Hendricks et al. (2016a), Wilcox
and Gebbie (2014)). Essentially, if we consider the spin glass model analogy described in Blatt
et al. (1996, 1997), we are finding a spin glass configuration (feature clustering) which permits a
metastable system state given the spin-interaction term (feature correlations). This provides us with
an unsupervised means to determine the optimal feature configuration at the scale of interaction,
using a technique with is suited to the complex system dynamics.

5. Cluster configuration similarity and state discrimination

In Sections 3 and 4, we demonstrated a scheme to determine the feature cluster configuration from
raw asynchronous data streaming from a market data feed, over an integrated window. Given this
choice of state representation, what remains is to provide a feasible scheme to discriminate between
states, such that the state space can be enumerated online.

This is a special case of a more general problem: measuring the distance between overlapping
cluster configurations of a fixed set of objects. Consider two candidate cluster configurations of a
fixed set of n objects, C1 = {s1, s2, ..., sn} and C2 = {s′1, s′2, ..., s′n}, where sk and s′k are the cluster
indices to which the kth object belongs in each configuration. We would like to define a distance
metric d(C1, C2) which quantifies the configuration differences, while preserving the properties of
symmetry, identity of indiscernables, non-negativity and sub-additivity.

Goldberg et al. (2010) considered this problem and proposed three candidate measures to quantify
cluster configuration differences. We chose to implement a variant on their best match metric, which
effectively counts the number of moves required to convert one configuration to the other. The
measure is defined as,

d(C1, C2) =
n

n2 − 1

n∑

i=1

min
j
d(si, s

′
j), (8)
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where d(s, s′) = 1− |s∩s′||s∪s′| and n
n2−1 is a normalisation constant, such that the maximum distance

between two configurations is 1 (single cluster vs all singletons). For example, consider the following
two candidate cluster configurations:

C1 = {1, 2, 3, 3, 4, 4, 4, 5}
C2 = {1, 2, 2, 2, 3, 3, 4, 5}.

Then, when considering cluster index 2, d(s2, s
′
2) = 1− |s2∩s′2||s2∪s′2| = 1− 1

3 = 0.67. Thus we have,

Table 1. Demonstration of best match metric for calculating distance between two overlapping cluster
configurations

Cluster index k |sk ∩ s′k| |sk ∪ s′k| d(sk, s
′
k)

1 1 1 0.00
2 1 3 0.67
3 0 4 1.00
4 1 3 0.67
5 1 1 0.00

d(C1, C2) 2.34
4.8 = 0.49

Given a quantified distance between cluster configurations, we need to specify some distance
threshold which encodes the idea that the configurations are sufficiently similar to be categorised
as the same state. The specification of this distance threshold is somewhat ad-hoc and a source
for subjective input, however coupled with a learning objective, we can iterate through multiple
candidate thresholds to determine one which optimises the objective. In the use-case demonstrated
in Section 8, we consider a simple Q-learning algorithm which aims to maximise wealth by deciding
when to buy/sell shares. Starting with a given cash amount and stock inventory, we provide the
learning agent with a fixed set of actions (buy/sell volumes) which it can perform in each period,
based on the prevailing state. Each candidate distance threshold will provide the agent with a
different lens to discriminate states, hence the state-action policy and terminal wealth of the agent
will be impacted. We will choose a threshold which maximises terminal wealth.

The best match metric is easy to compute, intuitive and efficient, however the alternative metrics
proposed by Goldberg et al. (2010) should be explored in further research, to assess the impact on
state discrimination.

6. Reinforcement learning with online state discovery

Reinforcement learning (RL) is a technique for finding a calibrated policy in a controlled Markovian
system with unknown dynamics, mapping system states to optimal or near-optimal decisions, given
some objective. Learning can be model-free (Watkins (1989)) or model-based (Sutton (1990)),
however the key principle is that feedbacks from interactions with the system can be used to
provide insight for optimal planning decisions. We refer the reader to Kaelbling et al. (1996) for
a comprehensive review of RL techniques. We will consider using the state space enumeration
technique described in Sections 2 to 5 for an RL agent, enabling online planning decisions to be
made with an adaptive state space.

The learning algorithm we consider can be seen as a particular implementation of the Dyna-Q
architecture proposed by Sutton (1990), Sutton and Barto (1998), whereby feedbacks from the
system are simultaneously used to improve the model of the system dynamics (state transitions),
as well as the state-action policy for the learning objective. Both the feedbacks (or rewards) and
expected state transitions are used to enumerate a so-called Q-matrix online, which contains the
(current) discounted expected reward for each state-action pair, assuming the optimal policy is
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followed after the current time-step (Watkins (1989)). At the tth step in the learning algorithm,
the agent:

• observes its current state St ∈ S,
• selects and performs an action At ∈ A,
• estimates the subsequent state St+1 as a result of performing action At using the current

model of state transitions,
• receives an immediate reward rt and
• uses a learning factor αt, which decreases gradually over time.

Q is updated as follows:

Q(St, At) = Q(St, At) + αt[rt + γmax
b
Q(St+1, b)−Q(St, At)], (9)

where γ is the discount rate controlling the importance of future rewards. In the usual discrete-
actions, discrete-states specification, the state space S and permissible actions A are fixed a priori
and remain fixed for the learning program. We now consider the case where the action set A
remains fixed, but the state space S is dynamic, viz. discovered online as the agent interacts with
the system. Each time a new state is discovered using the proposition in Section 5, the state space
is increased. For the Q-learning update rule in Equation 9, the next state is determined using the
prevailing empirical transition probability matrix, as

St+1 = arg max
Sj

Pr(St, Sj) for Sj ∈ S.

For the purposes of the investigation in Section 8, we assume that the agent’s actions do not
affect the system state evolution. This is an artefact of interacting with a historical data feed, where
the consequences of an agent’s actions cannot easily be incorporated. The overall proposition is,
however, designed for a live trading agent submitting actual market orders, thus a live trading
agent will affect the data feed it receives (absorbing limit orders through trades, affecting the LOB
features), and thus the state space it perceives. We expect the efficacy demonstrated in Section 8
to translate to live trading.

7. Problem description and algorithm

7.1. Wealth maximisation: Long-only

To test the efficacy of the framework proposed in this paper, we construct a wealth maximising
trading agent operating in high-frequency financial markets, able to buy and sell quantities of one
given stock. The agent begins with a specified level of cash and stock inventory. At each trading
opportunity (we assume regular 5-minute periods, however this can be generalised), the agent is
able to buy certain quantities of the stock using available cash, or sell certain quantities of stock
based on the level of inventory. We assume the agent is subject to a long-only (LO) constraint,
i.e. the agent is not able to short-sell inventory, and is not allowed to use leverage. The reward is
calculated as the portfolio PnL following the chosen action, i.e. the difference between the current
portfolio value (inventory marked-to-market at current mid-price + cash) and the initial portfolio
value. All price associated with all buy actions is the prevailing best ask price, and for all sell actions
the prevailing best bid price. This ensures that spread is included as a transaction cost when trading.
The agent uses the asynchronous tick-level data observed over the preceeding 5-minute window to
compute feature correlations and the associated cluster configuration, as described in Sections 3
and 4, before determining the state, using the proposition in Section 5, and updating the Q-matrix.
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7.2. Algorithm

Algorithm 1 describes the general implementation of the learning algorithm with online state
discovery. We begin by initialising an empty Q-matrix, as no states have been discovered. After the
first estimation period has passed (in this case 5 minutes), the raw feature data in the estimation
period window is used to compute feature correlations, and then the feature cluster configuration.
The correlation computation using a parallelised implementation of the Fourier estimator takes
at most 0.05 seconds (Wilcox et al. (2016)), and the cluster configuration computation takes at
most 0.8 seconds (Hendricks et al. (2016b)). This is the most expensive part of the algorithm, thus
the achieved sub-second computation time is conducive for online application. We made use of
fairly modest hardware with a gaming graphics processing unit (GPU) (Core i7-3820, 16GB DDR3
RAM, Nvidia Titan X 12GB GDDR5), thus there is room for further reductions in computation
time through hardware scaling.

Following the cluster configuration computation, we compute the distance between the current
feature configuration and the previously-identified configurations associated with prevailing states
in the state space. If the distance between the current configuration and a previously-identified
configuration is less than the specified threshold, we ascribe the associated state index to the
current configuration. If the distance to all previously-identified configurations is larger than the
threshold, a new state is created. The prevailing transition probability matrix is updated with the
new state. We then use the ε-greedy algorithm to choose an action based on the prevailing Q-matrix,
recording the reward as the difference between the marked-to-market portfolio value and initial
portfolio value. The transition probability matrix is then used to identify the next expected state,
and the Q-value associated with the current state-action pair is updated using Equation 9.

Algorithm 1 Unsupervised state detection and learning
Initialise Q-matrix
while Trading program not complete do

Extract feature time-series (raw, asynchronous events) for integrated window
Compute feature correlations using Fourier estimator
Compute feature cluster configuration C using PGA
Compare C with previously identified configurations Ci ∈ state space
Update state space
if state space = ∅ then

Generate new state
else if distance(C,Ci) ≤ threshold for any Ci ∈ state space then

Assign state index of Ci to C
else

Generate new state
end if
Update state transition probability matrix
Update empirical prob of 1-step transition given all identified states
if initialisation period complete then

Choose current optimal buy/sell action using Q-matrix
Record reward R as difference between current MTM portfolio value
and initial portfolio value

end if
Update Q-matrix
Determine next state using current transition prob matrix
Update Q-value associated with state-action pair, given recorded reward, next state
and prevailing Q-value

end while

8. Data and Results

8.1. Data

The data for this study constituted tick-level trades and top-of-book quotes for one candidate
stock on the Johannesburg Stock Exchange (JSE) from 1 October 2012 to 30 November 2012. We
have chosen Anglo American (AGL) as an example of a liquid stock on the JSE with the typical
trading volumes expected to support (automated) systematic strategies such as the proposal in
this paper. This data was sourced from the Thomson Reuters Tick History (TRTH) database.
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The raw data was stored in a MongoDB noSQL database, with appropriate indexes created for
efficient retrieval and manipulation. The particular fields of interest for our study are: Trade Price,
Trade Volume, Level-1 Bid Price, Level-1 Bid Volume, Level-1 Ask Price, Level-1 Ask Volume.
Each of these features are represented by an unevenly-spaced time series in the dataset based on
event occurrence. The stored, asynchronous event data is a close approximation to a stream of
asynchronous events arriving from a live market data feed. We will apply our learning algorithm
to this data in its most raw form, to avoid any subjective bias which may be introduced by data
pre-processing techniques.

Table 2 shows the parameters which were used in the results which follow. A number of ex-
periments with varying state discrimination thresholds were performed using a 1-week dataset (1
October 2012 to 5 October 2012). These initial results yielded a value of 0.05 which maximised
average end-of-day PnL over this period. While we will explore the full sensitivity of PnL to this
threshold in further research, here we will demonstrate the efficacy of the algorithm using a fixed
threshold of 0.05.

Table 2. Parameters used for testing long-only wealth maximisation algorithm.

Stock AGL
Features Trade Price/Volume, L1 Ask/Bid Price/Volume
Initial Cash R100 000
Initial Inventory 800 shares
Buy Actions (proportion of Cash) {0, 0.1, 0.2, ..., 0.9, 1.0}
Sell Actions (proportion of Inventory) {0.1, 0.2, 0.3, ..., 0.9, 1.0}
State discrimination threshold 0.05
Probability of random action 0.05
Start time 09:05
End time 16:30
Estimation period / Trading frequency 5 minutes
Initialisation period 5 periods

8.2. Results

Table 3 shows the summarised results from our analysis. We ran the algorithm for each day in our
data set (01 October 2012 to 30 November 2012), constructing a distribution of end-of-day (16:30)
PnL, expressed as a percentage of initial portfolio value. A positive percentage thus indicates that
the algorithm decisions created value over the trading day. To test the efficacy of our algorithm,
we compared its performance to a random agent and a buy-and-hold agent. The random agent
chooses actions randomly at each decision point, i.e. makes no use of the learnt Q-matrix. This
will allow us to test whether our algorithm is at least better than choosing actions at random. The
buy-and-hold agent takes no trading actions, but rather holds the initial inventory for the duration
of the trading day. This will allow us to test whether a learnt trading policy was better or worse
than doing nothing at all. The table shows the minimum, lower quartile (LQ), mean, median, upper
quartile (UQ), maximum and standard deviation of the end-of-day PnL distributions for the three
agents.

Table 3. Summarised results from algorithm testing. The LO Wealth Maximiser agent is compared to a Random
agent, where actions are chosen randomly at each trading opportunity, and a Buy-and-Hold agent, where no

trading takes place and the initial inventory is held for the day. The algorithm begins at 09:05 and ends at 16:30
each trading day. These results summarise the distribution of end-of-day (16:30) PnL recorded for each day in the

investigation period (01 Oct 2012 to 30 Nov 2012).

AGL PnL (as % of initial portfolio value)
Model Min LQ Mean Median UQ Max Std Dev
LO Wealth Maximiser -2.16 -0.38 0.12 0.18 0.53 2.77 0.98
Random -2.62 -1.10 -0.61 -0.48 -0.24 1.30 0.87
Buy-and-Hold -3.87 -0.83 -0.01 -0.22 0.65 3.19 1.39

Based on the results in Table 3, we see that the LO wealth maximiser agent generates a sig-
nificantly better mean and median end-of-day PnL compared to both the random agent and buy-

10
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and-hold agent over this investigation period. In fact, the entire distribution for the LO wealth
maximiser is more positively skewed, indicating that, in general, the agent generated a modest,
but positive daily PnL. This is significant, as after only 5 periods of initialisation to refine the
transition probability matrix, with no prior training, the agent is able to learn a useful policy fast
enough to generate a positive PnL by the end of the trading day. While many more tests need to be
run, varying the parameters in Table 2 and considering longer (and varied) investigation periods,
these results indicate that the approach suggested in this chapter may be an effective framework for
deploying purposeful trading agents which are able to identify exploitable structure in streaming
market data feeds, and learn policies fast enough.

Figures 2 to 6 illustrate a typical run of the online algorithm, at various stages in the trading
day, showing the identified states (top-left), prevailing transition probability matrix (top-right),
portfolio PnL, stock mid-price, best bid and best ask levels (bottom-left) and current Q-matrix
values (bottom-right). For the transition probability matrix and Q-matrix values, green indicates
higher positive values (darker is higher), red/orange indicates lower values (darker is lower) and
grey indicates an uninitialised state transition/state-action pair. In the current PnL plot, green
dots indicate buy decisions and red dots indicate sell decisions, with the size of the dot being
proportional to the quantity.
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Figure 2. Status at 09:35. Demonstration of long-only wealth maximisation algorithm, starting with R100 000 cash
and 800 AGL shares. The top-left plot shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right plot illustrates the current empirical 1-step
transition probability matrix, based on identified states. The bottom-left plot shows the stock mid-price, best ask and
best bid in green (right Y-axis) and the running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined
by the difference between the current portfolio value (inventory marked-to-market at current mid-price + cash) and
the initial portfolio value. Green dots indicate buy actions and red dots indicate sell actions, where the size of the dot
is proportional to the quantity bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating
the expected cumulative discounted reward for each state-action pair.
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Figure 3. Status at 09:45. Demonstration of long-only wealth maximisation algorithm, starting with R100 000 cash
and 800 AGL shares. The top-left plot shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right plot illustrates the current empirical 1-step
transition probability matrix, based on identified states. The bottom-left plot shows the stock mid-price, best ask and
best bid in green (right Y-axis) and the running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined
by the difference between the current portfolio value (inventory marked-to-market at current mid-price + cash) and
the initial portfolio value. Green dots indicate buy actions and red dots indicate sell actions, where the size of the dot
is proportional to the quantity bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating
the expected cumulative discounted reward for each state-action pair.
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Figure 4. Status at 10:30. Demonstration of long-only wealth maximisation algorithm, starting with R100 000 cash
and 800 AGL shares. The top-left plot shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right plot illustrates the current empirical 1-step
transition probability matrix, based on identified states. The bottom-left plot shows the stock mid-price, best ask and
best bid in green (right Y-axis) and the running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined
by the difference between the current portfolio value (inventory marked-to-market at current mid-price + cash) and
the initial portfolio value. Green dots indicate buy actions and red dots indicate sell actions, where the size of the dot
is proportional to the quantity bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating
the expected cumulative discounted reward for each state-action pair.
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Figure 5. Status at 12:45. Demonstration of long-only wealth maximisation algorithm, starting with R100 000 cash
and 800 AGL shares. The top-left plot shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right plot illustrates the current empirical 1-step
transition probability matrix, based on identified states. The bottom-left plot shows the stock mid-price, best ask and
best bid in green (right Y-axis) and the running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined
by the difference between the current portfolio value (inventory marked-to-market at current mid-price + cash) and
the initial portfolio value. Green dots indicate buy actions and red dots indicate sell actions, where the size of the dot
is proportional to the quantity bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating
the expected cumulative discounted reward for each state-action pair.
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Identified temporal states of AGLJ.J from 2012−10−10 09:05 to 2012−10−10 16:59
Estimation period = 5min,  Resampling period = min, Threshold = 0.05
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Figure 6. Status at 13:30. Demonstration of long-only wealth maximisation algorithm, starting with R100 000 cash
and 800 AGL shares. The top-left plot shows the identified states since the start of the trading program (09:05),
where blocks in the same row indicate the same state. The top-right plot illustrates the current empirical 1-step
transition probability matrix, based on identified states. The bottom-left plot shows the stock mid-price, best ask and
best bid in green (right Y-axis) and the running portfolio PnL in blue (left Y-axis). The portfolio PnL is determined
by the difference between the current portfolio value (inventory marked-to-market at current mid-price + cash) and
the initial portfolio value. Green dots indicate buy actions and red dots indicate sell actions, where the size of the dot
is proportional to the quantity bought/sold. The bottom-right plot shows the current Q-matrix values, illustrating
the expected cumulative discounted reward for each state-action pair.
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9. Conclusion

In this paper, we demonstrated a scheme for online, unsupervised state discovery, detection and
learning in high frequency markets, which is consistent with the complex adaptive system paradigm.
By treating stock features as objects and applying the Potts model clustering approach, we are
essentially finding a spin glass configuration (feature clustering) which permits a metastable system
state given the spin-interaction term (feature correlations). Combined with a candidate state dis-
crimination technique, this allows us to enumerate the state space online, permitting a purposeful
agent to learn useful policies in an unknown domain without knowledge of human-preprocessed
features and states.

The framework introduced here is conceptual and there are many areas for refinement, however
we demonstrated that even with a simple choice of cluster distance metric and only top-of-book
LOB features, a wealth-maximising agent can systematically outperform a random agent and buy-
and-hold agent over the investigation period considered. In particular, after only 5 periods of
initialisation to refine the transition probability matrix, with no prior training, the agent is able
to learn a useful policy fast enough to generate a positive PnL by the end of the trading day.
This is a promising result for the technique and bodes well for further research. We note that this
technique is market agnostic and, in principle, could be applied to any system with a streaming,
multi-featured data feed where the underlying system is a complex adaptive system.

We note that we have assumed that the agent’s actions do not affect the system state evolution.
This is an artefact of interacting with a historical data feed, where the consequences of an agent’s
actions cannot easily be incorporated. The overall proposition is, however, designed for a live
trading agent submitting actual market orders, thus a live trading agent will affect the data feed
it receives (absorbing limit orders through trades, affecting the LOB features), and thus the state
space it perceives. We expect the efficacy of the algorithm to translate to live trading.

Prudent further investigations would include using alternative streaming features from the LOB
(such as market depth), testing the stability of the algorithm over longer and more varied in-
vestigation periods, testing the sensitivity to the state discrimination threshold parameter, using
event-time estimation windows / decision frequencies and alternative actions and reward functions.
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