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 It performs simultaneous human and object attribute labelling for ROIs. 

 It is equipped to translate regional information into detailed image descriptions. 
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AB ST R ACT  

This research proposes a distinctive deep learning network architecture for image captioning and description generation. 

Specifically, we propose a hierarchically trained deep network in order to increase the fluidity and descriptive nature of the 

generated image captions. The proposed deep network consists of initial regional proposal generation and two key stages for 

image description generation. The initial regional proposal generation is based upon the Region Proposal Network from the 

Faster R-CNN. This process generates regions of interest that are then used to annotate and classify human and object attributes. 

The first key stage of the proposed system conducts detailed label description generation for each region of interest. The second 

stage uses a Recurrent Neural Network (RNN)-based encoder-decoder structure to translate these regional descriptions into a 

full image description. Especially, the proposed deep network model can label scenes, objects, human and object attributes, 

simultaneously, which is achieved through multiple individually trained RNNs. 

The empirical results indicate that our work is comparable to existing research and outperforms state-of-the-art existing methods 

considerably when evaluated with out-of-domain images from the IAPR TC-12 dataset, especially considering that our system is 

not trained on images from any of the image captioning datasets. When evaluated with several well-known evaluation metrics, 

the proposed system achieves an improvement of ~60% at BLEU-1 over existing methods on the IAPR TC-12 dataset. 

Moreover, compared with related methods, the proposed deep network requires substantially fewer data samples for training, 

leading to a much-reduced computational cost.  

2016 Elsevier Ltd. All rights reserved. 
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Fig. 1. The high-level overview of the proposed image description 

generation system. 

1. Introduction  

Image captioning is one of the uprising but also challenging 

research areas for deep learning. A system that can not only 

accurately label image regions but also scale to whole image 

description shows great potential in diverse applications such as 

news or medical image annotation and automatic scripts 

generation for movies. Many existing research and publicly 

available datasets were tailored for brief image captioning so far 

[1, 2]. It is still a challenging task to generate detailed and refined 

descriptions for both relevant regions and the whole image.  

Therefore, in this research, we aim to address the above 

challenges and propose a novel compact deep network 

architecture for detailed image description generation. The 

proposed deep network is composed of multiple Convolutional 

Neural Networks (CNNs) [3] in combination with Recurrent 

Neural Networks (RNNs) [4], specifically Long Short Term 

Memory networks (LSTM) [5] and Gated Recurrent Network 

(GRU) [6], for image caption generation. It is capable of 

performing object and scene classification, as well as human and 

object attribute prediction, simultaneously. Especially, the 

simultaneous generation of human and object attributes provides 

rich and detailed descriptions of image regions, and equips the 

proposed system with impressive capabilities to deal with out-of-

domain queries. 

 

The overall architecture of the proposed deep network is 

presented in Fig. 1. The system is composed of multiple stages 

(including pre-processing and two key stages), the combination 

of which allows for the full functionality. The initial processing 

of the system uses the Region Proposal Network (RPN) [7] to 

generate multiple regional proposals (i.e. regions of interest), that 

are likely to contain objects or people. The first key stage of the 

model conducts object and scene classification and attribute 

prediction. This stage combines the extracted regional features 

with word vectors in an RNN for attribute prediction, and utilizes 

the same regional features for scene and object labelling. The 

second stage is used for language „conversion‟. It converts the 

generated attributes and other class labels into fully descriptive 

image captions. 

In order to enhance the system‟s generalization and 

scalability, instead of trained using existing image caption 

datasets such as Flickr [8] or MSCOCO [9], the overall proposed 

deep architecture is hierarchically trained upon multiple different 

datasets from different domains. These datasets have their 

individual dedications to be used within a particular domain, e.g. 

attribute datasets are originally purely dedicated to attribute 

prediction applications.  

Using multiple datasets allows for several benefits. As an 

example, the proposed system ensures that there is reduced 

offline training, as compared to other end-to-end and composite 

methods. Our proposed model ideally would require one dataset 

that would be annotated with all the functionality of the system. 

The closest dataset currently is Visual Genome (VG) [10], which 

is incredibly large with ~110,000 images, however no full image 

captions are provided, despite all other desired features. 

Therefore, the proposed system is trained on multiple smaller 

irrelevant image datasets, yet still provides a competitive 

outcome to systems that are trained on a single image captioning 

dataset. Our proposed region-based method allows for increased 

functionality, including longer image descriptions with regional 

details, and simultaneous region and full image description 

generation. Overall, the system shows great diversity for image 

caption/description generation with more efficient training and 

testing in comparison to existing methods. 

Moreover, as the proposed system is not specifically trained 

on image-to-caption datasets, such as Flickr [8] or MSCOCO [9], 

another main advantage of the system is that it can handle out-of-

domain images efficiently. This ensures that a reasonable detailed 

description can be generated for most images passed on to the 

system regardless of its source to increase the system‟s 

robustness. Finally, the main contributions of our research are 

summarized as follows: 

• A novel deep architecture for image region annotation 

is proposed. It generates not only regional annotations but also 

integrates the regional captioning into full image descriptions. 

• The proposed deep network has a more efficient 

training process and shows great robustness and efficacy in 

dealing with out-of-domain images. It has also been deployed 

and integrated with the vision API of a humanoid robot to 

indicate its effectiveness in real-life settings. 

2. Related Work 

Recent research in the image captioning domain has typically 

been dominated by the use of CNN + RNN [1, 2, 11], which can 

be split into two general categories, i.e. composite and end-to-end 

models. The composite method [12] is comparatively simpler, 
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Table 1. The methodologies of existing research frameworks 

and utilizes a template system to import the detections into 

multiple pre-defined structures. It generally produces rigid 

sounding image captions. However, motivated by recent superior 

research, and similar to our proposed network model, the second 

method focuses on end-to-end architectures, which are capable of 

generating an image caption in one pass of the model. Such 

systems tend to be built upon multiple components and use the 

outputs of all individual components to produce the final caption. 

Such end-to-end systems are fluid and natural compared to the 

above template-based methods, however require a comparatively 

higher computational cost. 

However, the captions generated by these two existing 

composite and end-to-end models are also small and 

undescriptive, typically around 10 words per image [9]. In this 

research, we aim to improve upon this limitation and generate a 

system to describe images in a much higher degree of details.  

2.1. Recent Research on Image Captioning 

Recent work of Johnson et al. [13] introduced a dense 

captioning system to this field. Rather than captioning an image, 

their work captions many individual regions with rich 

annotations, e.g. objects and attributes. This is achieved with a 

localization layer which acts as a region proposal generator to 

annotate image regions. This layer was developed based upon the 

research of Ren [7], in which a Region Proposal Network was 

trained to generate the regional proposals rather than relying on 

the existing less efficient techniques such as EdgeBoxes of 

Selective Search.  

Tan and Chan [14] proposed a system similar to the existing 

work of Johnson et al. [13]. However, rather than utilizing the 

typical word based approaches that RNNs tend to adopt, their 

model encodes the sentence as a combination of both phrases and 

words for image caption generation. 

Recent work of Matsuo et al. [15] showed initial exploration 

of quantitative natural language descriptions utilizing human 

brain activities. Owing to the lack of brain activity datasets for 

deep learning research, the work re-uses frameworks of Vinyals 

et al. [1] and Xu et al. [11]. Overall, the work synchronized 

image datasets from movies and brain activity data from an fMRI 

scanner, and relied on the MRI data to generate 

descriptions. 

 Fang et al. [16] proposed a caption generation system 

utilizing a bag of words method. Their work implements multiple 

instance learning and uses visual classifiers for words that 

commonly appear in existing captions. In addition, their system 

treats the caption/description generation as an optimization 

problem. It takes the previously generated words and then finds a 

sentence/caption that has the highest likelihood to caption the 

image that contains every word it has detected.  

Tran et al. [17] have produced a system that could richly 

caption images. Their research claims to be able to detect and 

classify a large range of visual concepts. This includes specific 

locations, as well as specific persons such as celebrities or people 

of influence. Their framework consists of a compositional 

approach. It combines a feature extracting CNN, which passes 

features to their visual concept network that was trained on 700 

visual concepts, such as celebrities and landmarks. It then 

follows similar research in the field and passes these into a 

language model. Their work has an advantage, i.e. if the system‟s 

confidence is low, instead of generating a rich caption, it can 

produce a simpler caption that can essentially annotate/list the 

objects within the image.  

Users‟ vision has also been considered in attempt to improve 

existing image captioning research. Human gaze has been  

explored for tasks such as localization in the form of attention 

[11]. For instance, Sugano and Bulling [18] explored gaze-

assisted image captioning by examining the relationship between 

human gaze and attention mechanisms. Also, the attention 

mechanism has been adopted by the work of Xu et al. [11]. 

Image captioning has also been explored recently in a multi-

lingual set-up [19], in order to caption and describe images in 

more than one target languages. This has been explored both as 

image caption and machine translation, as well as modifying the 

RNN to generate multiple language outputs. 

The deep network proposed in this research is motivated by 

the above existing frameworks. The individual key aspects of 

some closely related research frameworks are summarized in 

Related work Methodologies Contributions 

Ren [7] Region Proposal Network (RPN) – Allowing accurate and 

near cost free region proposals. Faster and more reliable 

than methods such as Selective Search. 

 

 Constructing a RPN, which is a fully connected network trained end-to-end 

specifically on region proposals.  

 Proposing a deep model that alternates between fine-tuning the RPN and 
the object detector. 

Xu et al. [11] Saliency/Attention model – Focusing on a region similar 

to that in which the human vision behaves 
 Introducing both soft and hard attention mechanisms, as well as showing 

how „where‟ and „what‟ can be used to gain insight and interpret the results 
from the framework by visualizing where the model was „looking‟. 

Johnson et al. 

[13] 

Regional description – Applying caption techniques to 

individual image regions 
 Introducing a dense localization layer that can be implanted into existing 

CNN models.  

 Introducing a new large-scale dataset (i.e. Visual Genome). 

Tan and Chan 
[14] 

Phrase based LSTM – Encoding sequences of phrases and 
words 

 Proposing a novel phrase based LSTM in which the image is encoded in 
three stages, i.e. chunking of the image, phrase composition as a vector 

representation and encoding the sentence based on the image, words, and 

phrases. 

Fang et al. [16] Determining salient content and knowing which image 

contents are interesting or novel using contextual common 

sense knowledge. 

 Re-ranking word detectors that capture global semantics. 

Tran et al. [17] Rich description – Adding specifics to image, such as 
person and location 

 Presenting a caption model for open domain images, which utilizes a 
composite approach. 

 Enriching existing frameworks with visual concepts such as landmarks and 
celebrity identification. 

Sugano and 

Bulling [18] 

Employing gaze annotated image inputs to generate gaze 

assisted captioning 
 Providing an analysis of the relation between object and scene recognition 

models and human gaze, as well as presenting a novel gaze assisted 

attention framework. 
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Fig. 2. (a) The initial process of extracting features from the generated region of interest. (b) The process of combining the features and word vectors to 

generate region attributes. (c) Using the re-added VGG layers to generate object labels and the trained scene layers to generate scene labels. 

Table 1. 

3. The Proposed Deep Network for Image Description 
Generation 

This research proposes a hierarchical deep network with the 

intention to produce image description with a great level of 

details. It integrates multiple CNNs with particular types of 

RNNs such as LSTM and GRU, for image description 

generation. We introduce each key stage of the proposed network 

below. 

3.1. Model Training 

Our proposed framework is loosely categorized as an end-to-

end system. It presents a unified model that can generate not only 

descriptive region annotations, as DenseCap [13], but also full 

image descriptions, as Google NIC [1] and NeuralTalk [2]. Due 

to the large and complex nature of the proposed model, and the 

fact that the model is trained on multiple datasets, the proposed 

system has to be trained hierarchically. 

This process first involves freezing multiple sections and 

branches of the model, before training and fine-tuning the desired 

weights on the relevant branches with the relevant data. This 

leads to a large amount of training data being utilized, across 

multiple datasets, including the generation and use of dummy 

data for the unaltered branches. The freezing and training of 

certain layers at the training stage depend upon the dataset 

currently in use.  

VGG [20] is a popular CNN and commonly used for object 

classification. It has a high top-5 accuracy which means that 

these weights of its layers can directly be inserted into the 

corresponding layers of our model for object 

classification, as shown in Fig. 2. However, VGG‟s success can 

be in part related to the discriminative features it extracts before 

applying its fully connected layers. We intend to utilize these 

features for more than just object and scene classification, but 

also subsequent attribute prediction. 

This is achieved as previously stated by unaltering the 

convolution layers of VGG, so that the extracted features will 

remain the same. These features are then used to train the scene 

classification using the fully connected layers on the given 

dataset. A list of datasets used for the training of each key stage 

of the proposed model is provided in Section 3.1.1. 

Human and object attributes are also trained in our current 

model configuration. This stage uses word encoding in 

combination with the extracted features in order to generate 

regional attribute labels. Again, all layers which are irrelevant 

during training are isolated or unaltered.  

When training the deep neural networks to obtain a target 

output, we are only training certain layers, while the frozen layers 

are given dummy data. These will not update the weights in any 

way yet still allow the training of the necessary layers to take 

place. This process is repeated for all relevant branches of the 

model. 

Although the model is currently trained hierarchically, in 

future work, if a dataset exists that covers all needed outcomes, 

the model could theoretically be trained in an end-to-end fashion. 

3.1 .1 .  Model  Datase ts  

In Fig. 2, the model has been split into a number of 

components. We highlight the datasets used to train the relevant 
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a) ImageNet (objects labels) [21] – This dataset 

consists of around half a million images, for 200 

objects. VGG is also pre-trained on this dataset. 

b) PubFig [22] – This large facial image dataset 

initially has 79 attributes for each of the ~60,000 

images. We only use a small subset of the available 

human attributes, although a large subset of the 

images is used in this research. 

c) ImageNet (object attributes) [21] – A small portion 

of 10,000 images from the full ImageNet dataset is 

paired with 10 object attributes. All of these images 

are used for training in our work. 

d) MSCOCO/IAPR TC-12 [9, 23] captions – We 

collect captions from MSCOCO and IAPR TC-12 

for the training of the caption generator in this work. 

e) SUN scene dataset [24] – This dataset consists of 

more than 100,000 images of 397 scene categories. 

We use a subset of the available images, i.e. 10,000 

images, for training. 

3.2. Architecture 

The initial processing of the system requires regions to be 

collected and cropped. These regions are likely to contain objects 

or people for the system to annotate. This stage involves region 

proposal generation. In this research, it is implemented by the 

Faster R-CNN [7]. The RPN within the Faster R-CNN is 

essentially a powerful neural network that generates bounding 

box regions and confidence scores. It produces a high score when 

the system believes the region contains an object or something of 

interest. The number of regional proposals passed on to the next 

stage is determined by several factors, such as the size and the 

complexity of the image as well as the generated confidence 

measures. 

After generating regional proposals, the rest of the proposed 

model is split into two key stages. The first stage generates 

detailed regional labels, and the second stage translates these 

region labels into a full description. We introduce these two 

stages in detail in the following. 

The first key stage accepts two inputs, i.e. a start word and an 

image. It generates attribute and object labels word by word and 

the sequence is fed back into the network to produce all attribute 

and object labels. The second stage is based upon a common 

machine translation approach to „translate‟ the labels from source 

(i.e. region labels) to a full description. Therefore, the final 

generated description is expected to be more detailed than that of 

existing research. 

These two stages, described for the rest of this work 

as regional and translation models, can be further broken down 

into a number of branches that are responsible for a specific task, 

i.e. attribute prediction and scene and object classification. These 

branches are explained in detail below. 

The regional model in the first stage can be split into three 

branches, as shown in Fig. 2. The first section, as shown in Fig. 

2(a), shows the region of interest being passed into the VGG 

feature extraction network to generate the discriminative features 

as used in the subsequent stages of the model. The left branch, as 

indicated in Fig. 2(b), learns word feature vectors, which are 

ultimately used for attribute generation. This branch converts 

word integer positions within the vocabulary into a fixed size 

vector. In our work, this is a 128-dimensional vector. 

The vector is passed through a GRU [6] accompanied with 

fully connected layers to generate an output at each time step. 

The next stage in this branch involves the image features. The 

outputs of GRU and sequence image features are then merged 

and combined before being passed through the subsequent 

language generating neural network. This network consists of 

LSTM [5] layers in combination with a fully connected layer in 

which the next word in the sequence is generated. The aim of this 

branch is to generate human and object attribute labels of the 

input regions which are later used in the translation stage. 

The first part of the right branch, as illustrated in Fig. 2(c), 

specifically classifies object labels. This branch uses 4096 image 

features extracted from the VGG16 CNN. This branch initially 

has the last two layers removed, which consist of a dropout and a 

fully connected layer, in order to deliver the features. However, 

these layers are re-added subsequently in the architecture so that 

captions and object labels can be simultaneously generated, and 

later concatenated with the attribute labels to deliver an overall 

output. On the same branch, the extracted image features are used 

to classify a scene label. Furthermore, the far right section, in 

Fig. 2(c), is used to classify the scene and it generally uses the 

whole image as a region. To achieve classification, the layers of 

this branch are fine-tuned on the SUN dataset [24]. The initial 

stage of this process is the same as the object classification as it 

collects 4096 discriminative features from the VGG16 CNN. 

This abovementioned processes rely on multiple training 

stages. However, the second stage of the model, i.e. the 

„translation‟ or „conversion‟ stage, only requires one training 

step, while the entire top section, previously discussed, remains 

as is, unaltered by this stage. 

 This translation model in the second stage shown in Fig. 3 

follows the work of Bahdanu et al. [25] in which a single neural 

network architecture consists of an improved encoder-decoder. 

This encoder-decoder architecture is originally designed for 

machine translation, and outperforms existing statistical machine 

Fig. 3. An example of the generated input regional attributes and its translated output description 
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Ours: four female tourists are posing with a large, dark 

brown mountain with a snow covered peak in the 

background 
NTalk: a man and a woman are walking on a beach 

NIC: a man is standing on a snow covered mountain 

Ours: a man in a black jacket with a grey rain jacket on a 

head on a grey brick on a bridge over mountains in the 

background 
NTalk: a man and a woman are standing on a rocky path 

NIC: a man and a woman standing next to each other 

Ours: a grey and light brown house with a small very dense 

vegetation behind it 
NTalk: a man and a woman are sitting on a bench in a park 

NIC: a man sitting on a bench with a dog 

Ours: a man green mountain landscape with a few towns 

with a brown, bald mountain range in the background 
NTalk: a young girl in a pink dress is walking on a path 

NIC: a man and a woman standing next to a man 

Ours: three grown-ups in a flat landscape with a mountain in 

the background 

NTalk: a man standing on a beach holding a surfboard 

NIC:  a man and a woman are sitting on a rock overlooking a 

lake 

Ours: a man is standing on a black rock with a sandy desert, 

a green valley and a mountain range and clouds in 

NTalk: a man sitting on a bench in the middle of a field 

NIC: a man and a woman are sitting on a rock overlooking a 

lake 

Fig. 4. Example outputs generated by the proposed system, Google NIC and NeuralTalk (referred as NTalk) on the IAPR TC-12 dataset 

Reasonable Results: 

Good Results: 

translation approaches such as Koehn [26] and Sutskever et al. 

[27].  

This model structure of encoder-decoder [28] is still used in 

the typical fashion of encoding the source text into a vector, and 

decoding the vector to generate the target text. In this 

research, the source consists of extracted attribute labels together 

with scene and image information, with the target being a 

detailed image description.  
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Table 3. Our results and comparison with related work on the IAPR TC-12 dataset 

Table 2. Example images and outputs produced by the system deployed on the NAO robot 

As previously discussed, the encoding structure is used to 

encode the attribute and class labels into a vector. It initially 

encodes into a sequence of vectors, of which a subset is 

adaptively chosen for use during the decoding stage. This is 

followed by the decoder which uses this subset to generate an 

image description. This encoder-decoder processing is opposed 

to a fixed length vector, which is determined to be a bottle neck 

problem in existing research. An example of generated regional 

attributes and its associated translated output is shown in Fig. 3. 

As can be seen in Fig. 3, the generated input attributes describe 

two middle aged persons in life jackets. This is translated and the 

system generates „two tourists in life jackets in front of the edge 

of a glacier‟, owing to the training of the caption generation 

system where the glacier information is inferred in the output 

description. The scene information is omitted in the attributes 

when a confidence value is not reached. The above two-stage 

deep network implementation is utilized in this research owing to 

the stated improvements over other existing work for the 

generation of sentences that are longer and more descriptive than 

other works. 

3.3. The Deployment to the Robot Platform 

A real-life application of this system has also been initially 

explored, by combining the proposed model with the vision SDK 

of a humanoid robot, NAO NextGen H25. The NAO robot has a 

powerful CPU processor and camera sensors to allow for real-

time image processing and better low light perception. The 

integration of the proposed system with the robot‟s SDK enables 

the robot to conduct health monitoring, e.g. to identify falling 

subjects and describe users‟ environment to promote 

personalized human robot interaction. It also enables the 

evaluation of this proposed system in diverse real-world settings. 

The robot begins the interaction and image description generation 

process upon being verbally asked by the user or a tap on the 

robot‟s head. 

 Although the NAO robot has an incredibly powerful CPU 

processor, it does not have the capacity to run complex models 

like the proposed system in real time. To this end, the robot acts 

essentially as a front end that interacts with the system deployed 

on a more powerful GPU server. The processing procedures are 

as follows. The robot captures an image from its cameras, sends 

it via a LAN to the remote server to be processed, then receives a 

response in the form of raw text and finally verbally outputs the 

generated description of the captured image using its text-to-

speech API. Preliminary experimentation shows that the robot is 

capable of observing, recognizing and describing 

diverse objects (such as cups, fruits, furniture etc) and people, as 

well as their attributes within multiple environments, such as 

„stairway‟, „library‟, „kitchen‟, or „office‟. The server used 

throughout the experiments is based on the Nvidia Deep 

Learning DevBox [29] equipped with 4 GTX TITANS. We will 

also conduct more experiments to explore the efficiency of the 

proposed system integrated with the NAO robot for diverse real-

life settings as one of the future directions.  

As an initial indication of the system efficiency, we deploy the 

robot platform integrated with the proposed deep network to a 

real-life application scenario. Table 2 shows images fed through 

the robot‟s network and the aspects in which the robot reports 

based on image description generation output. The empirical 

results indicate the efficiency of the proposed system in dealing 

with real-life images via the robot platform. In future work, we 

aim to incorporate floor detection methods with the existing 

object and scene recognition to allow the system to detect 

hazards and audibly present this information via the robot 

platform to benefit e.g. healthcare application scenarios. We also 

aim to equip the proposed system with the capabilities of dealing 

with low resolution images to further enhance performance. 

4. Evaluation 

In order to evaluate the efficiency of the proposed system, we 

implement two popular baseline methods, i.e. Google NIC [1] 

and NeuralTalk [2], for comparison. The IAPR TC-12 [23] 

dataset has been used for evaluation. The IAPR TC-12 dataset 

consists of 20,000 images, with each image paired with one 

descriptive sentence or a short paragraph. In the test stage, we ran 

our system on a random selection of ~10,000 images. 

We have trained our RNN-based language models purely on 

two small caption subsets of IAPR TC-12 and MSCOCO, 

respectively, without using the associated images. That is, we 

only use a small number of captions from each dataset for 

training and the training process has not used any images from 

either of these datasets. The baseline methods, i.e. NeuralTalk 

and Google NIC, however, have been trained on these datasets 

(using both captions and images), therefore leading to higher 

evaluation scores. We still provide the evaluation results using 

these datasets in order to indicate the efficiency of the proposed 

model. 

To quantify the performance of the system, the MSCOCO 

IAPR TC-12 [23] BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L SPICE 

Our Work 0.201 0.105 0.053 0.024 0.073 0.216 0.038 

NeuralTalk 0.129 0.069 0.038 0.022 0.065 0.216 0.061 

Google NIC 0.094 0.046 0.034 0.013 0.059 0.205 0.06 

   

 

  

Description 

output 

“two women and six men are sitting behind a wooden table 

in a room with a light yellow wall” 

“a man and three women are walking on a slope with a white ladder and 

bushes behind them, snow covered mountain range in the background” 
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evaluation script, is utilized. The MSCOCO script contains four 

BLEU metrics [30] (i.e. BLEU-1, BLEU-2, BLEU-3 and BLEU-

4) based on the n-gram method of determining string/sentence 

similarity. It is also equipped with other evaluation metrics such 

as, METEOR [31], ROUGE-L [32], and SPICE [33]. The 

detailed results using all of the above metrics for the evaluation 

of the IAPR TC-12 dataset are shown in Table 3. We also 

illustrate example images from the test dataset, along with their 

generated paired descriptions in Fig. 4. 

The proposed architecture is designed and motivated to 

expand upon the short captions produced by existing research. As 

indicated in Table 3, our largest improvement over existing work 

is in the BLEU-1 metric. This could be attributed to the addition 

of attribute prediction, or the prediction of more attributes, in 

comparison with those of the existing methods. On top of this, 

generating individual words that are more likely to be present in 

the reference sentence would increase the lower n-gram BLEU 

score (e.g. BLEU-1), which takes the frequency of the words and 

the length of the description into account for score generation.  

On the other hand, generating words or attributes, which are 

correct, but may not be present within the reference description, 

reduces the score within the higher n-gram metrics, such as 

BLEU-3 or BLEU-4. This effect is most noticeable within the 

ROUGE-L score. Our system has the capability to generate 

multiple attributes for a given object. If the reference description 

only contains one or two attributes, and our system generates 

more than that, our score in the higher n-grams would be 

penalized. A simplified example is given below, which illustrates 

example theoretical descriptions generated by the proposed 

model and a typical existing framework such as Google NIC. 

The proposed model: “a young man wearing a red striped shirt” 

An existing method: “a man wearing a shirt” 

Reference: “a man wearing a red shirt” 

 

The BLEU-1 score is calculated for each word, so, for 

example, each generated word would score a precision of x/(the 

length of the corresponding generated sentence by a specific 

method), depending upon its frequency. Only the word „red’ in 

the above example of the proposed model would receive the 

precision score of this word, whereas the existing method would 

receive 0 owing to the fact that the attribute „red’ is not generated 

by the existing method. Therefore, our model scores well for the 

BLEU-1 metric, however the score suffers with the higher n-

grams, since the correct „red striped’ does not appear in the 

reference. This is attributed to the nature in which our system is 

trained and built. Having trained separately and solely in sections 

of large scale attribute datasets, this enables our model to put 

more focus into attribute annotating than existing methods, even 

if some attributes are not present in the reference corpus. 

4.1. Experimental Results 

 The empirical results for the evaluation of the IAPR TC-12 

dataset indicate that the proposed system outperforms the two 

baseline methods of similar structures. The BLEU-1 score 

obtained by all the methods is lower than the human performance 

of around 0.6, however this is to be expected due to the cross-

dataset evaluation. The BLEU metric provides an insight into the 

similarity comparison of the words‟ and short phrases‟ levels. 

The higher levels of BLEU metrics indicate the comparison of 

longer strings in the source and target sentences.  

The comparatively higher scores throughout all of the BLEU 

metrics show how our work outperforms its competition. 

Specifically, for the BLEU evaluation, our work outperforms 

NeuralTalk by an average of 0.035 and NIC by an average of 

0.053. The proposed system also outperforms the two 

baseline methods for the METEOR measures. In comparison to 

BLEU, the METEOR metric has gained increasing popularity 

owing to the closer correlation between the sentence level 

information, to human performance. 

Moreover, the ROUGE-L metric is also used for evaluation. 

This metric is looking for the longest matching subsets between 

the automatically generated captioning and the human 

annotation. Although the captions generated by the different 

methods show great distinctions, the three systems achieve 

identical ROUGE-L scores. 

The SPICE metric is also used for evaluation. It determines 

the semantic similarity between the pair of a generated 

description and its ground truth annotation. The proposed system 

achieves the lower score for the SPICE metric, in comparison to 

those of other metrics. This could be caused by the lengthy 

descriptions generated by the proposed system which may 

challenge and affect the semantic similarity score calculation in 

SPICE. SPICE utilizes scene graphs. The longer reference and 

generated descriptions could make a greater difference between 

these graphs, making a high similarity harder to achieve. 

Overall, our proposed deep network outperforms systems of a 

similar structure, when all methods have been tested on different 

images to their training sets. This shows that our system has 

sufficient diversity and possesses the ability to generate 

descriptive captions for real-life and staged images. As can be 

seen in Fig. 4, our results are also considerably longer and more 

descriptive, and in many cases correct, in comparison to those 

generated by related methods. 

5. Conclusion and Future Work 

In this research, we have proposed a novel deep network 

architecture for region annotations and full image description 

generation. The proposed model consists of a set of deep 

networks, including the regional proposal generator, CNNs and 

RNN-based encoder-decoder, to achieve a high level of quality 

for image description generation. By employing a regional 

approach, the proposed system is able to collect, annotate and 

describe a large number of details overlooked by other typical 

methods. It also requires dramatically fewer training images. The 

proposed framework has also shown its significance in dealing 

with out-of-domain datasets, which challenge other state-of-the-

art methods significantly, as shown in the evaluation of the IAPR 

TC-12 dataset. The overall architecture of our model is complex, 

combining multiple techniques and procedures to deliver 

effective image description generation. In future work, 

exploration in reducing the number of layers, model stages, and 

the feature complexity will be conducted to improve the system 

efficiency and runtime, and potentially the results. 

In future work, we aim to explore another advanced deep 

network, i.e. Generative Adversarial Networks (GANs) [34], 

because of its superior capability for image generation. We aim 

to explore its adaptation for image description generation owing 

to its unique style of training. Specifically, GANs are composed 

of two models i.e. the generative and discriminative models, 

which are trained simultaneously. The latter estimates that some 

data belongs to the training set, or some generated by the 

generative model. The generative model is trained to maximize 

the probability of the discriminative model making a mistake. 

Such training mechanisms may benefit image description 

generation tasks as well. We also intend to incorporate an 

attention or saliency mechanism into the region proposal 

generation stage to improve upon the quality of the generated 

regions of interest.  
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Finally, we also aim to produce a large-scale image 

description dataset that is more descriptive and discriminative 

than existing publicly available datasets. This would allow for 

not only a more accurate representation and evaluation of our 

model, but also further research into the descriptive caption 

generation rather than the typically available short captions. 

References  

[1]. O. Vinyals, A. Toshev, S. Bengio and D. Erhan, 2015. 

Show and tell: A neural image caption generator. In Proc. 

IEEE conf. Computer Vision and Pattern Recognition. 

Boston. Massachusetts. 3156-3164 

[2]. A. Karpathy and L. Fei-Fei. 2015.  Deep visual-semantic 

alignments for generating image descriptions. In Proc. 

IEEE conf. Computer Vision and Pattern Recognition.  

Boston. Massachusetts. 3128-3137. 

[3]. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. 

Gradient-based learning applied to document recognition. 

Proceedings of the IEEE, 86(11), 2278-2324. 

[4]. T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. 

Khudanpur, (2010, September). Recurrent neural network 

based language model. In Interspeech (Vol. 2, p. 3). 

[5]. A. Graves and J. Schmidhuber, 2005. Framewise phoneme 

classification with bidirectional LSTM and other neural 

network architectures”. IEEE Trans. Neural Netw. 18. 602-

610 

[6]. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. (2014). 

Empirical evaluation of gated recurrent neural networks on 

sequence modeling. Unpublished. arXiv preprint 

arXiv:1412.3555. 

[7]. S. Ren, K. He, R. Girshick and J. Sun., 2015. Faster r-cnn: 

Towards real-time object detection with region proposal 

networks. In Advances in neural information processing 

systems (pp. 91-99) 

[dataset] [8]. P. Young, A. Lai, M. Hodosh, J. Hockenmaier, 

2014, From image descriptions to visual denotations: New 

similarity metrics for semantic inference over event 

descriptions”, Transactions of the Association for 

Computational Linguistics. 67-78. 

[dataset] [9]. T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. 

Perona, D. Ramanan, P. Dollár, and C.L. Zitnick, 2014. 

Microsoft coco: Common objects in context”. In Computer 

Vision–ECCV 2014 (pp. 740-755). 

[dataset] [10]. R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. 

Hata, J. Kravitz, S. Chen, Y. Kalantidi, L. Li, D.A. Shamma, M. 

Bernstein, L. Fei-Fei, 2016. Visual Genome: Connecting 

Language and Vision Using Crowdsourced Dense Image 

Annotations. Unpuplised. Available at: 

https://arxiv.org/abs/1602.07332 

[11]. K. Xu, J.L. Ba, R. Kiros, K. Cho et al, 2015. Show, Attend 

and Tell: Neural Image Caption Generation with Visual 

Attention”. In Proc. Conf. International Conference on 

Machine Learning. 2048 - 2057 

[12]. G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A.C. 

Berg and T.L. Berg, (2011). Baby talk: Understanding and 

generating image descriptions. In Proceedings of CVPR. 

[13]. J. Johnson, A. Karpathy, and L. Fei-Fei, 2016. Densecap: 

Fully convolutional localization networks for dense 

captioning. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition 4565-4574 

[14]. Y.H. Tan, and C.S. Chan, 2016. phi-LSTM: A Phrase-

based Hierarchical LSTM Model for Image Captioning. 

arXiv preprint arXiv:1608.05813 

[15]. E. Matsuo, I. Kobayashi, S. Nishimoto, S. Nishida, and H. 

Asoh, (2016). Generating Natural Language Descriptions 

for Semantic Representations of Human Brain Activity. 

ACL 2016, 22 

[16]. H. Fang, S. Gupta, F. Indola, R. Srivastava et al. 

2015. From Captions to Visual Concepts and Back”. In 

Proc. IEEE conf. Computer Vision and Pattern 

Recognition.  Boston. Massachusetts. 1473-1482 

[17]. K. Tran, X. He, L. Zhang, J. Sun, C. Carapcea, C. 

Thrasher, C. Buehler and C. Sienkiewicz, 2016. Rich 

image captioning in the wild. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition 

Workshops (pp. 49-56) 

[18]. Y. Sugano and A. Bulling, 2016. Seeing with humans: 

Gaze-assisted neural image captioning. Unpublished. arXiv 

preprint arXiv:1608.05203 

[dataset] [19]. D. Elliott, S. Frank, K. Sima‟an, and L. Specia, 

2016. Multi30K: Multilingual English-German Image 

Descriptions. arXiv preprint arXiv:1605.00459. Unpublished 

[20]. A. Krizhevsky, I. Sutskever and G.E. Hinton, 2012. 

Imagenet classification with deep convolutional neural 

networks”. In Advances in neural information processing 

system. 1097-1105 

[dataset] [21]. O. Russakovsky and L. Fei-Fei, 2010. Attribute 

learning in large-scale datasets”. In Trends and Topics in 

Computer Vision. 1-14 

[dataset] [22]. N. Kumar, A.C. Berg, P.N. Belhumeur and S.K. 

Nayar, 2009. Attribute and simile classifiers for face 

verification”. In Proc. IEEE Int. Conf. Computer Vision. 365-

372.  

[dataset] [23]. M. Grubinger, P. Clough, H. Müller and T. 

Deselaers, 2006. The iapr tc-12 benchmark: A new evaluation 

resource for visual information systems”. In Int. Workshop 

OntoImage (5)10. 

[dataset] [24]. J. Xiao, J. Hays, K A. Ehinger, A. Oliva and A. 

Torralba, 2010. Sun database: Large-scale scene recognition 

from abbey to zoo. In Computer vision and pattern recognitio. 

3485-3492. 

[25]. D. Bahdanau, K. Cho, and Y. Bengio, 2014. Neural 

machine translation by jointly learning to align and 

translate”. arXiv preprint arXiv:1409.0473. Unpublised. 

[26]. P. Koehn, 2009. Statistical machine translation. Cambridge 

University Press 

[27]. I. Sutskever, O. Vinyals and Q.V. Le, 2014. Sequence to 

sequence learning with neural networks. In Advances in 

neural information processing systems (pp. 3104-3112) 

[28]. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, 

F. Bougares, H. Schwenk and Y. Bengio, 2014. Learning 

phrase representations using RNN encoder-decoder for 

statistical machine translation. arXiv preprint 

arXiv:1406.1078 

[29]. NVIDIA DIGITS DevBox. Available: 

https://developer.nvidia.com/devbox. Last accessed 25th 

Jan 2017. 

[30]. K. Papineni, S. Roukos, T. Ward and W.J. Zhu, 2002. 

BLEU: a method for automatic evaluation of machine 

translation”. In Proc.of the 40th Annual meeting on 

association for computational linguistics. ACL. 311-318. 

[31]. S. Banerjee and A. Lavie, 2005. METEOR: An automatic 

metric for MT evaluation with improved correlation with 

human judgments”. In Proc. of the ACL workshop on 

intrinsic and extrinsic evaluation measures for machine 

translation and/or summarization. (29) 65-72. 

[32]. C.Y. Lin, 2004. Rouge: A package for automatic 

evaluation of summaries”. In Text summarization branches 

out: Proc. of the ACL-04 workshop (8) 

[33]. P. Anderson, B. Fernando, M. Johnson and S. Gould, 2016, 

October. Spice: Semantic propositional image caption 

evaluation. In European Conference on Computer Vision 

(pp. 382-398) 

[34]. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, Warde-

D. Farley, S. Ozair, A. Courville and Y. Bengio, 2014. 

Generative adversarial nets. In Advances in neural 

information processing systems (pp. 2672-2680). 


