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ABSTRACT

Motivated by the observation that network-based methods for the automatic prediction of protein func-

tions can greatly benefit from exploiting both the similarity between proteins and the similarity be-

tween functional classes (as encoded, e.g., in the Gene Ontology), in this paper we propose a novel

approach to the problem which is based on the notion of a “graph transduction game.” We envisage a

(non-cooperative) game, played over a graph, where the players (graph vertices) represent proteins, the

functional classes correspond to the (pure) strategies, and protein- and function-level similarities are

combined into a suitable payoff function. Within this formulation, Nash equilibria turn out to provide

consistent functional labelings of proteins, and we use classical replicator dynamics from evolutionary

game theory to find them. To test the effectiveness of our approach we conducted experiments on five

different organisms and three ontologies, and the results obtained show that our approach compares

favorably with state-of-the-art algorithms.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction1

The Automatic Function Prediction of proteins (AFP) con-2

sists in the computational assignment of the biological func-3

tions to the proteins of an organism (Friedberg, 2006). It can4

be modeled as a multi-label classification task, since each pro-5

tein may be associated with multiple functions, and represents6

one of the most challenging problems in the context of com-7

putational biology (Cesa-Bianchi et al., 2012; Radivojac et al.,8

2013; Jiang et al., 2016). The increasing availability of large-9

scale networks constructed from high-throughput biotechnolo-10

gies, representing functional similarities between proteins, such11

as co-expression networks, protein domain similarities, and12

protein-protein interactions just to mention a few, opened the13

avenue of a large class of graph-based algorithms, able to learn14

from the functional similarities between proteins (Sharan et al.,15

2007).16

These methods are able to transfer annotations from pre-17

viously annotated (labeled) nodes to unannotated (unlabeled)18

∗∗Corresponding author: Tel.: +39-041-234-7594; fax: +39-041-234-7589;

e-mail: sebastiano.vascon@unive.it (Sebastiano Vascon),

marco.frasca@unimi.it (Marco Frasca), rocco.tripodi@unive.it

(Rocco Tripodi), valentini@di.unimi.it (Giorgio Valentini),

pelillo@unive.it (Marcello Pelillo)

ones through a learning process inherently transductive in na-19

ture, by exploiting the so-called guilt-by-association principle20

(Oliver, 2000), known also as homophily principle, by which21

proteins topologically close in the graph are likely to share22

their functions. Starting from simple approaches based on lo-23

cal learning strategies (Mayer and Hieter, 2000), several other24

methods have been proposed in literature, able to exploit in25

different ways the overall topology of the functional network.26

Some examples are represented by label propagation algorithms27

based on Markov (Deng et al., 2004) and Gaussian Random28

Fields (Zhu et al., 2003; Zhou et al., 2004; Mostafavi et al.,29

2008), methods that integrate local learning strategies with sim-30

ple weighted combination of diverse information (Chua et al.,31

2007), approaches based on the evaluation of the functional32

flow in graphs (Vazquez et al., 2003), algorithms based on Hop-33

field networks (Karaoz et al., 2004; Frasca et al., 2015), meth-34

ods that exploit relationships between homologous proteins35

to connect networks of different species (Mitrofanova et al.,36

2011), while other approaches applied random walk based37

methods (Lovász, 1996; Kohler et al., 2008) and their kernel-38

ized version by exploiting both local and global learning strate-39

gies (Re et al., 2012; Valentini et al., 2016).40

Despite their large diversity, network-based methods share41

the common property of using some notion of similarity be-42

Manuscript [Word or (La)TeX]
Click here to view linked References

http://ees.elsevier.com/prletters/viewRCResults.aspx?pdf=1&docID=30087&rev=0&fileID=1062322&msid={0AE0D7A5-B167-4C01-B649-63EE26E9A2F6}


2

tween proteins to learn protein functions. The underlying43

assumption is that similar proteins tend to share the same44

functional class, an idea which is reminiscent of the ho-45

mophily principle widely used in social network analysis46

(Easley and Kleinberg, 2010) and which lies at the heart of vir-47

tually all classification algorithms.48

This general approach has well-founded biological moti-49

vation (Sharan et al., 2007), but also the similarity between50

functional classes (i.e. the Gene Ontology – GO terms to51

be predicted) plays a key role in the prediction of protein52

functions, as outlined by the recent CAFA2 (Critical Assess-53

ment of Functional Annotation) challenge for the AFP prob-54

lem (Jiang et al., 2016), since GO terms are not indepen-55

dent, but hierarchically related according to a directed acyclic56

graph (Gene Ontology Consortium, 2013). To our knowledge57

no network-based method has been proposed in the context of58

AFP to jointly consider the similarity between the proteins and59

the similarity between functional classes. We hypothesize that60

network-based methods could significantly enhance their per-61

formance if they were able to contextually learn from both sim-62

ilarity between the examples (the proteins) and the similarity63

between the GO terms associated with the proteins their selves.64

This corresponds to the well-known biological principle for65

which a protein is fully characterized by the entire spectrum66

of its structural and functional properties, coded as a set of GO67

terms (Gene Ontology Consortium, 2013).68

Motivated by this observation, in this paper we present an69

application to AFP of a graph transduction model based on70

game-theoretic principles that conforms to a general classifi-71

cation principle which, assuming the existence of a notion of72

similarity not only at the object but also at the category level,73

prescribes that similar objects should be assigned to similar74

categories. This is in fact a generalization of the standard ho-75

mophily principle which suggests instead that similar objects76

should be placed in the same category.77

Along the lines set forth in Erdem and Pelillo (2012) within78

a standard homophily-based transductive setting, which ig-79

nored potential category-level similarities altogether, the AFP80

problem will be abstracted in terms of a multi-player non-81

cooperative game where the players represent proteins, the82

functional classes correspond to the (pure) strategies, and83

protein- and function-level similarities are combined in a suit-84

able payoff function. Within this formulation, the Nash85

equilibrium concept for non-cooperative games turns out86

to offer a principled solution to the problem of finding a87

“consistent” labeling assignment (Hummel and Zucker, 1983;88

Miller and Zucker, 1991).1 In order to find Nash equilibria of89

our AFP games we use (multi-population) replicator dynamics,90

a well-known class of dynamical systems developed and stud-91

ied in evolutionary game theory (Weibull, 1995).92

Our approach gives us the possibility not only to exploit the93

contextual information of a protein but also to find the most ap-94

propriate functions for the proteins in a determined context. In95

other words, the proposed model exploits two different kinds96

of information: structural and semantic. Structural information97

1See Kleinberg and Tardos (2002) for a different approach based on MRF’s.

identifies how the proteins are organized in an organism, se-98

mantic information identifies how the functions of the proteins99

are structured. The integration of these two sources of infor-100

mation in a game theoretic model gives us the possibility to101

predict the combination of functions that are more suited for102

the proteins of a given organism. This is the most important103

methodological contribution of our work, which distinguishes104

it from existing AFP network-based algorithms.105

To assess the effectiveness of the proposed game-theoretic106

approach, we conducted extensive experiments over different107

model organisms and using the ontologies of the GO, including108

thousands of functional classes and predictions for tens of thou-109

sands of proteins. We found that our proposed algorithms sys-110

tematically obtain prediction results that are competitive with111

respect to state-of-the-art network-based methods for protein112

function prediction.113

2. Graph Transduction and Non-Cooperative Games114

2.1. Graph Transduction115

Graph transduction is a semisupervised learning technique116

that aims at estimating a classification function defined over a117

graph of labeled and unlabeled data points. Models based on118

this technique use a graph to represent the data, with nodes119

corresponding to labeled and unlabeled points and edges en-120

coding the pairwise similarity among each pair of nodes. This121

technique works propagating the label information from labeled122

nodes to unlabeled, exploiting the graph structure.123

It was introduced by Vapnik (1998) and motivated by the fact124

that it is easier than inductive learning, because inductive learn-125

ing tries to learn a general function to solve a specific problem,126

while transductive learning tries to learn a specific function for127

the problem at hand.128

Graph transduction consists of a set of labeled objects (xi, yi)129

(i = 1, 2, ..., l), where xi ∈ Rn the real-valued vector describing130

the object i, and yi ∈ (1, ...,m) its label, for i ∈ {1, 2, . . . , n}, and131

a set of k unlabeled objects (xl+1, ..., xl+k). Rather than finding a132

general rule for classifying future examples, transductive learn-133

ing aims at classifying only (the k) unlabeled objects exploiting134

the information derived from labeled ones.135

Within this framework it is common to represent the geome-136

try of the data as a weighted graph. For a detailed description137

of algorithms and applications on this field of research, named138

graph transduction, we refer to (Zhu, 2005). Formally we have139

a graph G = (V, E,w) in which V is the set of nodes repre-140

senting both labeled and unlabeled points, E is the set of edges141

connecting the nodes of the graph and w : E → R≥0 is a weight142

function assigning a non-negative similarity value to each edge143

ǫ ∈ E. The task of transduction learning is to estimate the labels144

of the unlabeled points given the pairwise similarity among the145

data points and a set of possible labels.146

In this article, we follow the approach proposed in147

Erdem and Pelillo (2012) that interprets the graph transduction148

task as a non-cooperative multiplayer game. This choice is mo-149

tivated by the fact that this approach is inherently multiclass150

and for this reason it perfectly adapts to the AFP problem, as151
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defined in previous section. Furthermore it has a solid mathe-152

matical foundation rooted in game theory and it does not im-153

pose any constraint on the pairwise similarity function used to154

weight the graph. Classical graph transduction algorithms are155

based on the homophily principle (Joachims, 2003; Zhu et al.,156

2003; Zhou et al., 2004), that simply states that similar data157

points are expected to have the same class. We found this as-158

sumption too strong for the AFP task and for this reason we ex-159

tended it using the approaches proposed in (Tripodi and Pelillo,160

2017; Tripodi et al., 2016) that is reminiscent of the Hume asso-161

ciation principle (Hume, 2000), that states that similar objects162

are expected to have similar properties and hence to belong to163

similar classes. With this approach we are able to exploit two164

sources of information: the similarity among the data points,165

as in classical graph transduction approaches and the similar-166

ity among their classes. With the latter source of information it167

is possible to build structural classifiers that produce consistent168

labeling of the data according to information provided by an169

ontology where it is encoded the information about the classes170

and their reciprocal relations. This turns out to be very useful in171

the context of classification of relation data. Imagine, for exam-172

ple, the case in which you want to classify the functional parts173

of an object, you do not want to assign to them the same class,174

just because they are functionally related (e.g.: the wheel and175

the dumper of a car) but you want to assign to them two coher-176

ent (similar) classes, as encoded in a knowledge base. We will177

see in Sections 3 that this information can be easily embedded178

in a game-theoretical framework as part of the payoff function179

but before we need to introduce some concepts of game theory180

in the next section.181

2.2. Game Theory182

Game theory (GT) was introduced by183

Von Neumann and Morgenstern (1944) in order to develop184

a mathematical framework able to model the essentials of185

decision making in interactive situations. In its normal-form186

representation, it consists of a finite set of players I = {1, .., n},187

a set of pure strategies for each player S = {s1, ..., sm}, and a188

utility function u : S 1 × S 2 ... × S n → R, which associates189

strategies to payoffs. Here we assume that all the players190

have the same set of strategies S , but in the more general191

formulation this is not mandatory. Each player can adopt a192

strategy in order to play a game and the utility function depends193

on the combination of strategies played at the same time by the194

players involved in the game, not just on the strategy chosen195

by a single player. An important assumption in game theory is196

that the players try to maximize their utility u. Furthermore,197

in non-cooperative games, the players choose their strategies198

independently, considering what other players can play in order199

to find the best strategy profile to employ in a game.200

Nash Equilibria (NE) (Nash, 1951) represent the key concept201

of game theory and can be defined as those strategy profiles in202

which each strategy is the best response to the strategy of the203

co-player and in which no player has the incentive to unilater-204

ally deviate from his decision (the players are in equilibrium).205

The NE of a game exist in two forms: i) pure-strategy and ii)206

mixed-strategy. In a pure-strategy NE each player adopts only207

one strategy while in the latter case is a probability distribution208

among the possible strategies. A mixed strategy for a player is209

defined as a stochastic column vector x = (x1, . . . , xm) ∈ ∆m,210

where m is the number of pure strategies and each component211

xh denotes the probability that a particular player chooses its h-212

th pure strategy. Each mixed strategy corresponds to a point in213

the m-dimensional simplex ∆m defined as,214

∆m =
{

x ∈ R :

m
∑

h=1

xh = 1, xh ≥ 0,∀h
}

, (1)

whose corners correspond to pure strategies (pure strategy215

NE can be seen as an extremal case of mixed-strategies).216

In a two-player game, a strategy profile can be defined as a pair217

(xi, x j) where xi ∈ ∆m and x j ∈ ∆m. The expected payoff for218

this strategy profile is computed as:219

u(xi, x j) = xT
i Ai jx j

u(x j, xi) = xT
j A jixi (2)

where Ai j (conversely A ji) is the m × m payoff matrix of the

game between player i and j. Each entry (h, k) of the payoff

matrix Ai j corresponds to the gain received by player i when he

plays strategy h against strategy k.

The strategy space of each player i is defined as a mixed

strategy xi, as defined above. The payoff corresponding to the

h-th pure strategy can be computed as:

u(xh
i ) =

n
∑

j=1

(Ai jx j)
h (3)

while the expected payoff of the entire mixed-strategy for220

player i is:221

u(xi) =

n
∑

j=1

xT
i Ai jx j (4)

where n is the number of players with whom i plays and Ai,222

is their payoffmatrix of the game. Given these two functions is223

possible to find the NE of the game, and to do so we will use224

a result in the domain of Evolutionary Game Theory (EGT).225

The EGT, introduced by Maynard Smith and Price (1973), is a226

branch of game theory which aims to use the notions of GT to227

model the evolution of behavior in animal conflicts. In EGT228

we have a set of agents which play games repeatedly with their229

neighbors and update their beliefs on the state of the system230

choosing their strategy according to what has been effective and231

what has not in previous games. This loop is repeated until the232

system converges, which means that no player need to update233

its strategies because there is no way to do better.234

To find those states, which correspond to the NE of the game,235

we use the replicator dynamics (Weibull, 1995):236

xh
i (t + 1) = xh

i (t)
u(xh

i
)

u(xi)
∀h ∈ S (5)

This equation allows better than average strategies to grow at237

each iteration and we can consider each iteration of the dynam-238

ics as an inductive learning process, in which the players learn239
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from the others how to play their best strategy in a determined240

context (see bottom part of Fig.1). The complexity of each step241

of the replicator dynamics (Eq.5) is quadratic but there are dif-242

ferent dynamics that can be used with our framework to solve243

the problem more efficiently, such as the recently introduced244

infection and immunization dynamics (Rota Buló et al., 2011)245

that has a linear-time/space complexity per step and it is known246

to be much faster then, and as accurate as, the replicator dy-247

namics.248

3. Automatic Function Prediction Game249

In this section the specific model for the AFP problem is250

explained in detail. We represent the proteins of an organism251

as players and their functions as strategies. The games are252

played between similar players, imposing only pairwise inter-253

actions. The payoffmatrix is computed using a similarity func-254

tion among GO terms and is weighted by the structural similar-255

ity between the proteins. The payoff function for each player is256

additively separable and is computed as described in Section 2.257

Formulating the problem in this way we can apply equation258

(5) to compute the equilibrium state of the system, which corre-259

sponds to a consistent labeling of the data (Miller and Zucker,260

1991). In fact, once stability is reached, all players play the261

strategy with the highest payoff. Each player arrives to this state262

not only considering its own strategies but also the strategies263

that other players are playing.264

Our framework (see Fig. 1) require: a) the network that de-265

scribe the interactions among the players, b) the similarity be-266

tween the functions, c) the strategy space of the game and d)267

the payoff function.268

3.1. Network of interactions:269

The network of interactions models the interactions among

the players and is represented as a weighted graph G = (V, E, ω)

where the set of nodes V = {1, . . . , n} are the players/proteins

and E ⊆ V ×V the affinity between them weighted by the func-

tion ω. The edges E of G represents the affinity of the players,

highest the value of an edge the more likely the two connected

players will play together. The graph G is thus represented with

an affinity matrix W = n × n, and its role is to encapsulate the

similarities (structural, functional, etc.) between pairs of pro-

teins motivated by the fact that similar or interacting proteins

should share common functional annotations, such as the par-

ticipation to the same biological process, the catalysis of similar

biochemical reactions or the location inside the same cellular

organelle. The crucial point here is having a good similarity

measure sim(·, ·) → R≥0 that represent the closeness of pairs i

and j:

wi, j = simW (i, j) ∀i, j ∈ V (6)

In our experiments the networks of interactions have been270

constructed combining together 8 different protein networks or271

directly using networks that natively combine different sources272

of data (Section 4.1).273

On top of this network a neighbouring functionN is applied274

for each player in order to sparsify the net and keeping only the275

more similar players for each one. The game-theoretic rationale276

that guided this choice is to select the subset of best matching277

co-players, while from a labeling perspective task this means278

to select the set of k neighbours of a point that weighs more279

in the labeling. Deciding the number of neighbours is often a280

tedious and stressful task which appears also in other methods,281

i.e. in k-NN classifier or in k-means clustering. To deal with this282

problem we decided to use two principles heuristics which are283

used in similar graph-theoretic methods. Given n the number of284

nodes in the protein graph, we propose these heuristics for the285

value k:286

GC which stands for Graph Connectivity. The rationale is287

that by fixing k = ⌊log2(n) + 1⌋ we guarantees that the288

underlying graph is statistically connected von Luxburg289

(2007). Being connected, from a game-theoretic per-290

spective, means that all the players, directly or indirectly291

through a common neighbour, have the chances to influ-292

ence the others choices.293

k-NN with this heuristics we set k = ⌊
√

n⌋. This rule of thumb294

is used in k-NN classifier to automatically tune the param-295

eter k Duda et al. (2000). The rationale is that the graph-296

transduction game and the k-NN classifier are based on297

the same homophily principles where the labels are prop-298

agated from k labeled nodes to the unlabeled ones. If the299

heuristics holds for k-NN it should also for our method.300

Given a value for k, found with the two methods above, the301

neighboursNi of protein i is the set of j ∈ {1...n} s.t. wi, j ≥ αi302

where αi is the weight of the k-th most similar element to i 2.303

Building the neighbouring set in this way is obviously asym-304

metric. In order to make it symmetric we use the following305

policy: given two protein i, j if j ∈ Ni while i < N j then306

N j = N j ∪ {i}.307

3.2. Function similarity graph308

The function similarity graph models the similarity between

pairs of GO terms from the used ontology. It is a weighted

graph G = (V, E, ω) with self loop in which ω(i, j) → R≥0

weighs the similarity of the GO terms i and j. The graph G is

represented as an m × m matrix Z:

Zh,k = simZ(h, k) (7)

For the details of our implementation see Section 4.1.309

3.3. Strategy space310

The role of the strategy space X is to define all the possi-311

ble associations between the n proteins and the m functions re-312

trieved from an ontology. The space X is thus modelled as a313

n×m matrix in which each row corresponds to a mixed strategy314

xi and each component xh
i

represents the strength of the associ-315

ation between the player (protein) i and the strategy (function)316

h. The strategy space X is the starting point of the game and317

can be initialized in different ways based on the fact that some318

2wi,: is sorted in descendent order and αi correspond to the value at position

k
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prior knowledge exists or not. Here we distinguish the initial-319

ization based on the type of protein, labeled or unlabeled. For320

the labeled proteins, since their functions are known, we use the321

following method:322

xh
i =















1
fi
, if i has function h.

0, if protein i does not have function h.
(8)

where fi is the number of terms associated with protein i.323

For the testing proteins (the ones with no labels) we propose324

and evaluate two different initialization methods:325

326

Without priors:. with this initialization all the GO terms have

the same probability of being associated to a protein:

xh
i =

1

m
∀h = {1 · · ·m} (9)

With k-priors:. the rationale of this prior is to emphasize the

labels assigned to the neighbouring set of a certain protein

with the idea that similar protein should be assigned to similar

classes. Given a protein i and its set of neighbouring proteins

Ni (with labels), the prior is composed as follow:

xh
i =

1

m
+
∑

j∈Ni

xh
j ∀h = {1 · · ·m} (10)

and then xi is normalized such that it add up to 1

(

xh
i
=

xh
i

∑m
h=1 xh

i

)

327

and remains in the m-dimensional simplex. The first term ( 1
m

)328

gives the chances also to other functionalities to emerge. If329

it was set to 0 this possibility would have been lost and the330

method will focus only on the function that are assigned in the331

neighborhood.332

3.4. Payoff Function333

The payoff function has the role of assigning the gain that334

a certain player i receive when plays a strategy h (in graph-335

theoretic terms is the compatibility of assigning the function h336

to the protein i). The rationale is that we want to boost the as-337

sociation between similar players and similar GO terms. What338

we want for i, when plays with j, is that their labels are mutu-339

ally affected, including the choice of i and j and also the set of340

similar labels to the ones associated to both the proteins. The341

set of similar functions is included with the idea that the correct342

labels could be received also from similar functions. This turns343

out to be:344

u(xh
i ) =
∑

j∈Ni

((

wi jZ
)

x j

)h
(11)

and the expected payoff as,

u(xi) =
∑

j∈Ni

xT
i

(

wi jZ
)

x j (12)

In this way we weight the influence that each protein receive345

from its neighbors. According to eq. 12, we assumed that the346

Fig. 1: The picture dissects the payoff function in order to understand what

are the single components (three graphs on top) and what is happening to the

assignment during the iteration of the dynamical system (eq 5). Consider the

following situation: two similar proteins A and C (A ∈ NC ) in which C has

no prior on the functions (eq. 9) while A has the functions 2, 4 assigned to it

(eq. 8). In the first iteration is already possible to note how the labeling for C

changes and becomes more similar to A.

payoff of protein i depends on: wi j, i.e. the similarity with its347

neighborhood proteins j ∈ Ni; Z, the similarities among the348

functional terms; x j, the preferences of neighborhood protein349

j ∈ Ni and the preferences xi of the protein i itself. With u(xh
i
)350

and u(xi) we can start the dynamics of the game according to351

equation (5). During each phase of the dynamics, a process of352

selection allows strategies with higher payoff to emerge and at353

the end of the process each player chooses its functionalities ac-354

cording to these constraints, which make the labeling consistent355

(for an example see Fig.1).356

4. Experiments357

We applied different variants of our graph transduction game358

method (GTG ) (see Section 4.4 for more details)359

to the prediction of the Cellular Component (CC), Molecular360

Function (MF) and Biological Processes (BP) ontologies of the361

GO considering different model organisms, ranging from the362

human to the fruit fly and the zebrafish, involving thousands of363

functional classes (see Table 2).364

4.1. Data365

We constructed five networks representing the functional366

similarity between proteins. Two networks include phylogenet-367

ically related organisms: a) the DanXen network encompasses368

Danio rerio (zebrafish) and Xenopus laevis (a small austral369

frog); b) the SacPomDic network includes Saccharomyces cere-370

visiae, Schizosaccharomyces pombe and Dictyostelium dis-371

coideum (unicellular eukaryotes). The third network (Dros) is372

reserved to Drosophila melanogaster (fruit-fly), the model or-373

ganism for insects.374
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Table 1: Data base and type of data used to construct the integrated protein similarity network for DanXen, SacPomDic and em Dros

Database Type of data

PRINTS (Attwood et al., 2003) Motif fingerprints

PROSITE (Hulo et al., 2006) Protein domains and families

Pfam (Finn et al., 2006) Protein domain

SMART(Letunic et al., 2006) Simple Modular Architecture Research Tool (database annotations)

InterPro (Mulder et al., 2007) Integrated resource of protein families, domains and functional sites

Protein Superfamilies(Gough et al., 2001) Structural and functional annotations

EggNOG (Muller et al., 2010) Evolutionary genealogy of genes: Non-supervised Orthologous Groups

Swissprot (Consortium, 2015) Manually curated keywords describing the function of the proteins

at different degrees of abstraction

Such networks are constructed by integrating 8 different375

sources of information from public databases (Table 1), as376

briefly described in the following.377

At first, we obtained different profiles for each protein by as-378

sociating for each source of data a binary feature vector, whose379

elements are 1 or 0 according to the protein annotation for a380

specific feature (e.g. whether or not a protein includes a specific381

domain, or a specific motif). Then the protein profiles have been382

used to construct a set of similarity networks (one for each data383

type) with edge scores based on the computation of the clas-384

sical Jaccard similarity coefficient between each possible pair385

of protein profiles, thus obtaining 8 different protein networks.386

Finally the networks have been combined by unweighted mean387

integration (Valentini et al., 2014).388

The remaining two networks contain proteins belonging to389

Mus musculus (Mouse) and Homo sapiens (Human) organ-390

isms, and have been retrieved from the STRING database, ver-391

sion 10.0 (Szklarczyk et al., 2015). The STRING networks are392

highly informative networks merging several sources of infor-393

mation about proteins, coming from databases collecting exper-394

imental data like BIND, DIP, GRID, HPRD, IntAct, MINT or395

from databases collecting curated data such as Biocarta, Bio-396

Cyc, KEGG, and Reactome.397

Each of these networks are then used in Sec.3.1 to define the398

interactions between the players (protein).399

400

As class labels (groundtruth) for the proteins included in our401

networks we used the Gene Ontology CC, MF and BP experi-402

mental annotations extracted from the Swissprot database3.403

In order to enlarge the number of GO terms to be predicted,404

while preserving at the same the minimum information needed405

for the functional predictions, we removed only GO terms hav-406

ing less than two annotations, thus resulting in a number of407

classes ranging from 125 (CC ontology in DanXen) to 7309408

(BP ontology in Mouse – Table 2).409

The similarity between the GO terms for each integrated net-410

work and each ontology could be in principle computed using411

semantic similarity measures based e.g. on the the Resnick or412

Lin measures or other recently proposed variants (Caniza et al.,413

2014), but to show the applicability of our proposed method we414

3http://www.expasy.org/ checked 19th May 2016

adopted a simple Jaccard similarity measure between the anno-415

tations of each GO term. These similarities corresponds to the416

entries Zi j in Eq.7.417

4.2. State-of-the-art methods compared with GTG418

We compared GTG with several classical and state-of-the-art419

graph-based algorithms just applied to the the AFP problem:420

Random Walk (RW) and Random Walk with Restart (RWR),421

the guilt-by-association method (GBA), the label propagation422

algorithm (LP), three methods based on Hopfield nets, the423

Gene Annotation using Integrated Networks (GAIN), the Cost-424

Sensitive Neural Network (COSNet) and the COSNet Multi-425

functionality-based ranking (COSNetM), the Multi-Source k-426

Nearest Neighbors (MS-kNN), and the RAnking of Nodes with427

Kernelized Score Functions (RANKS). The compared algo-428

rithms are briefly described below.429

RW A t-step random walk algorithm (Lovász, 1996) associates430

a protein i ∈ V with a score corresponding to the probabil-431

ity that a random walk in G starting from positive nodes432

ends at node i after t random steps. The iterative proce-433

dure to update the probabilities uses at each step a transi-434

tion matrix T obtained from W by row normalization, i.e.435

T = D
−1

W, where D is a diagonal matrix Dii|ni=1
, with436

Dii =
∑

j wi j.437

RWR After many steps the random walker in the RW algo-438

rithm may forget the prior information coded in the initial439

probability vector (0 for nodes in V \ V+ and 1/|V+| for440

nodes in V+, where V+ is the set of positive proteins for441

the current GO term). Thus, the RWR algorithm at each442

step allows the walker to move another random step with443

probability 1−θ, or to restart from its initial condition with444

probability θ.445

GBA Family of algorithms relying upon the guilt-by-446

association principle, asserting that similar proteins are447

more likely to share similar functions (Schwikowski et al.,448

2000). Usually, the GBA discriminant score of a protein i449

for a given GO term is obtained as the maximum of the450

weights connecting i to neighboring proteins associated451

with that term (that is the positive proteins).452

LP The label propagation algorithm, based on Gaussian ker-453

nels, iteratively propagates labels from labeled proteins to454

http://www.expasy.org/
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Table 2: Number of proteins and GO terms with at least 2 annotations in each protein network.

Network Proteins CC terms MF terms BP terms

DanXen 6250 125 198 1502

SacPomDic 15836 858 1331 3934

Dros 3195 414 485 2985

Mouse 20648 701 1313 7309

Human 19247 860 1688 6298

the unlabeled ones until convergence (Zhu et al., 2003).455

During the label propagation the initial known labels are456

preserved.457

GAIN An algorithm assigning labels to unlabeled pro-458

teins by minimizing the energy function of a Hop-459

field net (Hopfield, 1982) associated to the protein net-460

work (Karaoz et al., 2004). The net dynamics involves461

solely the unlabeled proteins, whose activation thresholds462

are set to 0, and whose initial state is set according to the463

labeling provided by the current GO term. The equilibrium464

point reached by the dynamics provides the binary label-465

ing of unlabeled proteins. To provide even a ranking of466

proteins, in the present work the neuron energy at equilib-467

rium is adopted as ranking score, following the approach468

presented in Frasca and Pavesi (2013).469

COSNet Suitable for unbalanced data like the GO term an-470

notations, this algorithm extends GAIN by substituting471

the classical Hopfield net with a parametric Hopfield472

net (Bertoni et al., 2011). The parameters, namely the473

neuron activation values and thresholds, are automati-474

cally learned in order to cope with the labeling imbal-475

ance (Frasca et al., 2013).476

COSNetM An extension of COSNet exploiting the multifunc-477

tional properties of genes (Frasca, 2015).478

MS-kNN One of the top-ranked methods in the recent CAFA2479

international challenge. MS-kNN integrates several pro-480

teins sources/networks by applying the k-Nearest Neigh-481

bours algorithm (Altman, 1992) to each network in-482

dependently, and then averages the obtained individual483

scores (Lan et al., 2013).484

RANKS A ranking method adopting a suitable kernel matrix485

so as to extend the similarity between two proteins also to486

non neighboring proteins (Re et al., 2012). The score of487

each protein i for a given GO term is defined through a a488

local function that takes into account the neighborhood of489

each protein in the projected Hilbert space, according to490

the global topology of the underlying network.491

For COSNet and RANKS we used the source code pub-492

licly available as R package (Frasca and Valentini, 2017;493

Valentini et al., 2016), and for the other methods we used the494

code provided by the authors or our in-house software imple-495

mentations. The parameters required by our GTG approach and496

the other considered methods in this work have been learned497

through internal tuning on a small subset of training data.498

4.3. Experimental setup499

To evaluate the generalization performance of the compared
methods we applied a 5-fold cross-validation experimental set-
ting. According to the recent CAFA2 international challenge,
to compare the results we considered both the “per class” Area
Under the Precision Recall Curve (AUPRC), and the “per-
example” multiple-label F-score. More precisely if we indicate
as T P j(t), T N j(t) and FP j(t) respectively the number of true
positives, true negatives and false positives for the protein j at
threshold t, we can define the “per-example” multiple-label pre-
cision Prec(t) and recall Rec(t) at a given threshold t as:

Prec(t) =
1

n

n
∑

j=1

T P j(t)

T P j(t) + FP j(t)
Rec(t) =

1

n

n
∑

j=1

T P j(t)

T P j(t) + FN j(t)

(13)

where n is the number of examples (proteins). In other words

Prec(t) (resp. Rec(t)) is the average multi-label precision (resp.

recall) across the examples. The F-score multi-label depends on

t and according to CAFA2 experimental setting, the maximum

achievable F-score (Fmax) is adopted as the main multi-label

“per-example” metric:

Fmax = maxt

2Prec(t)Rec(t)

Prec(t) + Rec(t)
(14)

To have a fair comparison, the cross validation has been per-500

formed by adopting a non-stratified partition of proteins in folds501

unique for all methods. The AUPRC results have been averaged502

across folds having at least one annotated protein (otherwise the503

AUPRC by definition is meaningless).504

4.4. GTG variants and settings505

In our experiments we applied different variants of the506

GTG method, depending on the choice of the neighboring func-507

tion (Section 3.1) and of the priors used to initialize the strategy508

space (Section 3.3) – see Table 3 for more details.509

Table 3: Variants of GTG . The column name contains the name used for the

particular setting in the paper; neighbour size refers to the sec. 3.1; symmetric

if yes the neighbourhood is symmetrized; prior if yes the k-prior defined in

sec. 3.3 to initialize the strategy space is used, otherwise no informative prior

(uniform distribution) is used.

Name Neighbour size Symmetric Prior

GTG α GC No No

GTG β GC Yes No

GTG γ GC Yes Yes

GTG δ k-NN Yes Yes
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5. Results510

We performed an extended experimental comparison be-511

tween GTG α , GTG β , GTG γ and GTG δ methods and nine512

other state-of-the-art network-based algorithms using 5 differ-513

ent networks (DanXen, SacPomDic, Dros, Mouse and Human)514

labelled with terms of the three GO ontologies (BP, MF and515

CC). In this section we present and discuss the average results516

across classes (using the AUPRC metric) and across proteins517

(using the Fmax metric) for each network, considering sepa-518

rately the BP, MF and CC ontologies, thus resulting in 15 sets519

of average results involving thousands of functional classes and520

tens of thousands of proteins of different model organisms.521

Multi-label Fmax results are summarized in Table 4. In-522

dependently of the model organism and the biological ontol-523

ogy considered, our proposed game theory-based transductive524

methods largely outperform the other methods (Table 4). In par-525

ticular GTG γ and GTG δ achieve better results than the other526

methods (see the last two rows in Table 4). In several cases the527

relative improvement with respect to the best competing state-528

of-the-art method is close or larger than 50%: for instance with529

the MF ontology in DanXen, Dros, SacPomDic and Mouse net-530

works, or with the BP ontology in DanXen, Human and Mouse.531

Also with the other ontologies and the other model organisms532

considered in this work the improvement with respect to the533

other network-based methods is impressive.534

The only method that attains comparable results (but only535

limited to the CC ontology in Human) is the MS-kNN algorithm,536

one of the top ranked methods in the recent CAFA2 challenge537

for protein function prediction (Jiang et al., 2016) (Table 4).538

Note that GTG α and GTG β , which uses an uniform distri-539

bution to initialize the strategy space X, usually obtain worse540

results that the other proposed variants GTG γ and GTG δ that541

adopt “neighborhood-aware”priors to initialize X (Section 3.3).542

Nevertheless, in most cases GTG α and GTG β too achieve543

comparable or significantly better results than all the other com-544

peting methods (Table 4).545

Considering the AUPRC per-class metric, our proposed546

methods and in particular GTG α and GTG β achieve compet-547

itive results with respect to the other state-of-the-art network548

based algorithms, even if the results are not so compelling as549

with the per-example metric. Indeed average AUPRC results of550

GTG α better with respect to all the other competing methods551

(boldfaced in Table 5) are achieved in 11 out of the 15 pairs of552

network/ontology considered in this experimental comparison,553

while GBA, the second best method, is equal or better than all554

the other algorithms in 4 out of the 15 network/ontology pairs.555

Nevertheless we outline that our methods behave largely bet-556

ter with the Fmax per-example metric, since both GTG γ and557

GTG δ achieve better average results in 14 network/ontology558

pairs (Table 4).559

This is not so surprising, since our graph-based transductive560

approach is conceived for a per-example multi-label learning:561

for each protein the labels (GO terms) are learned together in562

the same learning process taking into account the relationships563

between GO terms coded in the payoff function (eq. 12) used to564

compute the payoff ui for each protein i ∈ I (Section 2). Hence565

it is quite natural that our approach obtains better results with566

the hierarchical Fmax score, by which we take into account the567

multi-labels (i.e. the entire set of GO terms) correctly predicted568

for each protein, while reasonable but not so compelling results569

are obtained with the AUPRC metric computed on a per-class570

basis. Moreover, from a biological standpoint, in most cases571

biologists are more interested in the set of GO terms associated572

with a specific protein or a set proteins, than in the predictions573

for a specific term, since the functional and structural character-574

istics of a given protein are captured by the entire set of func-575

tions (GO terms) associated with the protein under study.576

We note that for the per-class metric we did not report577

the classical AUROC (Area Under the Receiver Operating578

Characteristic curve), but the AUPRC instead. Indeed in579

the context of the protein function prediction, most of the580

GO terms are imbalanced, with a number of positive ex-581

amples very low with respect to the total number of exam-582

ples (proteins). In this imbalanced setting, from both a ma-583

chine learning (Davis and Goadrich, 2006) and a bioinformat-584

ics standpoint (Saito and Rehmsmeier, 2015) it is well-known585

the AUPRC provides a more reliable metric to assess the over-586

all performance of the prediction methods.587

Summarizing, GTG α results in terms of AUPRC, and in par-588

ticular GTG γ and GTG δ results in terms of the multi-label589

Fmax score, show that our game-theoretic-based approach590

can introduce significant improvements in network-based algo-591

rithms for AFP problems. The motivation of the success of592

the proposed approach is likely due to the fact that the game-593

theoretic model mimics, in a mathematical framework, the driv-594

ing principle of the “guilt-by-association”, and extends it by595

embedding in the learning process not only the similarities be-596

tween proteins, but also the similarities between the functional597

terms of the GO. From a graph-learning standpoint this trans-598

lates into a network-based semi-supervised approach by which599

the transductive process contextually learns all the labels (GO600

terms) associated with a specific protein, thus exploiting at601

the same time the relationships between both GO terms and602

proteins. Furthermore the experimental evidence suggests us603

the following rule-of-thumb: if one is interested in optimizing604

a per-example metric (like Fmax) prior knowledge should be605

added to the strategy space (see Sec.3.3) and the neighborhood606

should be symmetric 3.1. To optimize a per-class metric (like607

the AUPRC) using an uniform distribution in the strategy space608

and an asymmetric neighbouring system improve the results. In609

the first case this is explained by the fact that each testing sam-610

ple is treated independently focusing more on the set of possible611

functions assigned to the neighbouring proteins. In the latter612

case we are interested in a (more) global metric, so assuming613

no prior knowledge for each sample let the protein-function as-614

signment to naturally emerge from the data, thus capturing phe-615

nomena that span across the samples.616

6. Conclusions617

In this paper we have introduced a new game-theoretic per-618

spective to the protein function prediction problem, which619

is motivated by the observation that network-based methods620

should take advantage not only of similarity information at the621
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Table 4: Fmax results across the terms of the CC, MF and BP ontology for DanXen, Dros, SacPomDic, Human and Mouse integrated protein networks. For each

ontology and network the best results are highlighted in bold.

Danxen Dros SacPomDis Human Mouse

CC MF BP CC MF BP CC MF BP CC MF BP CC MF BP

RANKS 0.5418 0.5075 0.4402 0.5483 0.3522 0.3201 0.6893 0.2951 0.4021 0.2804 0.1157 0.1467 0.2970 0.1354 0.1197

RWR 0.2588 0.2860 0.1156 0.1235 0.2237 0.0744 0.0718 0.1263 0.0662 0.0604 0.0374 0.0493 0.0545 0.0453 0.0367

COSNet 0.6055 0.4849 0.4542 0.5698 0.3811 0.2946 0.7128 0.4735 0.3364 0.1089 0.0847 0.0494 0.5694 0.3819 0.2292

COSNetM 0.6031 0.4831 0.4547 0.4405 0.3262 0.1820 0.5857 0.3953 0.2356 0.1953 0.1369 0.1572 0.4006 0.1958 0.1601

GAIN 0.3346 0.1796 0.2603 0.6215 0.1782 0.3642 0.7093 0.1054 0.1930 0.6015 0.5517 0.0828 0.5934 0.1118 0.0808

GBA 0.6572 0.5336 0.3314 0.5152 0.4532 0.2509 0.5002 0.5138 0.3746 0.3072 0.2365 0.1914 0.3285 0.2327 0.1544

LP 0.6678 0.5513 0.4328 0.6473 0.3687 0.4005 0.7244 0.2411 0.3006 0.6225 0.5361 0.263 0.6114 0.2535 0.2475

MS-kNN 0.3517 0.3574 0.2769 0.7120 0.5361 0.5138 0.8173 0.5386 0.5332 0.6419 0.5498 0.2276 0.6325 0.4055 0.2123

RW 0.2322 0.2767 0.0943 0.0962 0.1220 0.0562 0.0436 0.0573 0.0261 0.0481 0.0271 0.0374 0.0420 0.0335 0.0282

GTG α 0.6589 0.5516 0.3698 0.6315 0.5762 0.4037 0.7254 0.6650 0.4622 0.5856 0.5916 0.3248 0.5959 0.5730 0.3108

GTG β 0.6670 0.5602 0.3814 0.6403 0.5966 0.4119 0.7313 0.6126 0.4427 0.5852 0.5966 0.3278 0.5939 0.5832 0.3127

GTG γ 0.8107 0.7188 0.6316 0.8283 0.7627 0.5881 0.8956 0.7953 0.6830 0.6389 0.6382 0.3902 0.6531 0.6301 0.3643

GTG δ 0.8138 0.7088 0.5973 0.8184 0.7489 0.5848 0.8989 0.7728 0.6694 0.6397 0.6346 0.3804 0.6568 0.6119 0.3521

Table 5: Mean AUPRC results averaged across the terms of the CC, MF and BP ontology for DanXen, Dros, SacPomDic Human and Mouse integrated protein

networks. For each ontology and network the best results are highlighted in bold.

Danxen Dros SacPomDis Human Mouse

CC MF BP CC MF BP CC MF BP CC MF BP CC MF BP

RANKS 0.3014 0.266 0.1672 0.2972 0.3038 0.1879 0.2808 0.2183 0.1666 0.3061 0.0988 0.1109 0.2376 0.0933 0.0848

RWR 0.2318 0.2977 0.1399 0.1060 0.2400 0.0979 0.0920 0.2260 0.0880 0.219 0.0630 0.0650 0.157 0.0630 0.0530

COSNet 0.2556 0.2409 0.1469 0.2347 0.2389 0.1398 0.2526 0.1890 0.1240 0.1894 0.0319 0.0452 0.1726 0.072 0.0575

COSNetM 0.2473 0.2400 0.1475 0.2225 0.2363 0.1373 0.2558 0.1860 0.1220 0.1870 0.0317 0.0446 0.1713 0.0716 0.0577

GAIN 0.0216 0.0271 0.0099 0.0332 0.012 0.0145 0.0186 0.0017 0.0044 0.0199 0.0027 0.0022 0.0179 0.0017 0.0024

GBA 0.3213 0.4951 0.2203 0.2746 0.4577 0.1899 0.3074 0.5036 0.2115 0.3314 0.1129 0.1293 0.2573 0.1161 0.1024

LP 0.0308 0.0302 0.0187 0.0532 0.0279 0.0359 0.0256 0.0054 0.0112 0.2228 0.0692 0.065 0.1528 0.0563 0.0447

MS-kNN 0.1550 0.1297 0.0833 0.1475 0.1724 0.083 0.2009 0.1496 0.0987 0.1837 0.0109 0.0244 0.1337 0.0105 0.0136

RW 0.1998 0.3903 0.1347 0.0744 0.1476 0.0724 0.0312 0.0903 0.0318 0.1248 0.0402 0.0382 0.0938 0.0383 0.0336

GTG α 0.4325 0.5462 0.2698 0.3904 0.5448 0.2379 0.5030 0.5735 0.3131 0.3805 0.1025 0.1194 0.2739 0.1076 0.0884

GTG β 0.4614 0.5565 0.2747 0.4151 0.5760 0.2448 0.5326 0.5002 0.2916 0.3289 0.0933 0.1046 0.2311 0.1017 0.0733

GTG γ 0.3169 0.3534 0.2357 0.2988 0.4626 0.2283 0.3632 0.3933 0.2684 0.2593 0.0692 0.0761 0.1508 0.0632 0.0427

GTG δ 0.3364 0.4068 0.2300 0.3213 0.4554 0.2349 0.4439 0.4238 0.2746 0.2878 0.0721 0.0819 0.1855 0.0674 0.0490

level of proteins, as they usually do, but also of similarities be-622

tween functional classes, which are available, e.g., in the Gene623

Ontology. Accordingly, we set up an abstract game whereby624

proteins (the players) have to choose a strategy (a functional625

class), in a non-cooperative manner, to get a payoff which is626

related to both protein-level and function-level similarities. It627

turns out that the Nash equilibria of this AFP game are related628

to a well-known notion of “consistency” in a contextual label-629

ing problem (Hummel and Zucker, 1983; Miller and Zucker,630

1991).631

The results of extensive experiments confirm our original in-632

tuition that it does pay to incorporate functional-class similari-633

ties into network-based prediction algorithms, and demonstrate634

the power of simple game-theoretic dynamics to address this635

kind of problems.636
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