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ABSTRACT

Semantic segmentation (i.e. image parsing) aims to annotate each image pixel with its corresponding
semantic class label. Spatially consistent labeling of the image requires an accurate description and
modeling of the local contextual information. Segmentation result is typically improved by Markov
Random Field (MRF) optimization on the initial labels. However this improvement is limited by the
accuracy of initial result and how the contextual neighborhood is defined. In this paper, we develop
generalized and flexible contextual models for segmentation neighborhoods in order to improve pars-
ing accuracy. Instead of using a fixed segmentation and neighborhood definition, we explore various
contextual models for fusion of complementary information available in alternative segmentations of
the same image. In other words, we propose a novel MRF framework that describes and optimizes the
contextual dependencies between multiple segmentations. Simulation results on two common datasets
demonstrate significant improvement in parsing accuracy over the baseline approaches.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Semantic segmentation (i.e. image parsing) is a fundamen-
tal problem in computer vision. The goal is to segment the
image accurately and annotate each segment with its true se-
mantic class. Recent literature has seen two major trends in
this problem. Superpixel-based segmentation and parsing al-
gorithms (Tighe and Lazebnik (2013); George (2015); Tighe
et al. (2015)) are able to achieve much higher accuracy than
similar pixel-based approaches. In superpixel-based segmenta-
tion, the image is segmented into visually meaningful atomic
regions that agree with object boundaries. Then the parsing al-
gorithm assigns the same semantic label to all the pixels of a
superpixel, resulting in a spatially smooth labeling of the whole
image. However, with the advent of deep networks in machine
learning, state-of-the-art accuracy is obtained by dense labeling
of image pixels through the use of convolutional neural network
(CNN) architectures (Shelhamer et al. (2016); Liu et al. (2016);
Liang et al. (2015)). Convolutional nets provide spatially dense
but smooth classification by utilizing multiple pooling and up-
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sampling layers (Shelhamer et al. (2016)).
Detailed but spatially consistent labeling is essential for ac-

curate segmentation of the image. In order to improve parsing
consistency and accuracy, superpixel-based methods typically
incorporate Markov Random Field (MRF) modeling and infer-
ence in superpixel neighborhoods (Nguyen et al. (2015); Yang
et al. (2014)). Conditional Random Fields (CRFs) are also inte-
grated in deep networks for further improvement (Liang-Chieh
et al. (2018); Zheng et al. (2015)). However this improvement is
limited by the accuracy of initial result and how the contextual
neighborhood is defined. In this paper, we claim that commit-
ting to a single segmentation method and fixed neighborhood
definition is rather restrictive for describing the rich contextual
information in an image. Several works have shown before that
parsing performance benefits from the fusion of multiple seg-
mentations (Ak and Ates (2015); Vieux et al. (2012)) and/or
object detectors (Tighe et al. (2015); Nguyen et al. (2016)).
Nevertheless, these approaches fail to address the problem of
contextual inference among alternative descriptions.

In this paper we extend our previous work in (Ates and
Sunetci (2017)) and investigate various adaptive contextual
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models to combine complementary information available in al-
ternative scene segmentations. These models incorporate not
only the spatial neighborhood of adjacent segments/superpixels
within the same segmentation but also the neighborhood of in-
tersecting superpixels from different segmentations. We claim
that these segmentations provide complementary information
about the underlying object classes in the image. The proposed
approach provides a unified framework to fuse the information
obtained from multiple segmentations. In other words, MRF
optimization is used to code contextual constraints both in the
spatial and inter-segmentation neighborhoods for more consis-
tent labeling. As a result, a more flexible description of neigh-
borhood context is achieved, when compared to the fixed con-
text of a single segmentation. In particular, this paper provides
contributions in the following two aspects:

• Alternative labelings of the same image are produced
by using multiple segmentation methods and/or pa-
rameter/feature settings. Tested parsing methods in-
clude superpixel-based SuperParsing (Tighe and Lazeb-
nik (2013)), Fully Convolutional Neural Network (FCN)
(Shelhamer et al. (2016)) and Pyramid Scene Parsing Net-
work (PSP) (Zhao et al. (2017)).

• A generalized model of local context is proposed to en-
code contextual constraints between alternatives and to
fuse complementary information available in different seg-
mentations.

The proposed MRF models are tested and compared on SIFT
Flow (Liu et al. (2011)) and 19-class subset of LabelMe (Jain
et al. (2010)) datasets. Simulation results demonstrate signif-
icant improvement in parsing accuracy over the baseline ap-
proaches. When compared to (Ates and Sunetci (2017)), this
paper provides substantially better results, due to use of both
CNN features and FCN/PSP networks. Parsing accuracies are
also better than or competitive with the state-of-the-art in se-
mantic scene segmentation.

In the next section we review the related work in contextual
modeling for image parsing and contrast our approach with ex-
isting models. Section 3 develops the general framework of the
proposed MRF contextual model. Section 4 gives the details of
the model and the parsing algorithms. Section 5 provides and
discusses the simulations results. Section 6 concludes the paper
with ideas for future work.

2. Related Work

Context in image parsing is typically introduced in the form
of MRF or CRF models that describe the local and/or global
dependencies among object labels and scene content. Several
CNN-based parsing methods adopt CRFs as a post-processing
step to refine their outputs (Bell et al. (2015); Yu and Koltun
(2016)). Liang-Chieh et al. (2018) employs a fully connected
CRF among pixels to capture both local and global context.
These methods require separate training steps for learning the
CNN and CRF. Recurrent neural networks (RNNs) are also
used to model context among pixels/objects (Byeon et al.

(2015); Li et al. (2016)), hence introducing context informa-
tion into the neural network architecture. Zheng et al. (2015)
shows how to formulate CRF model as an RNN; in this manner
CRF can be combined with any CNN-based parser for end-to-
end training of the whole network.

There exist multi-scale approaches that model multi-scale
context as well (Farabet et al. (2013); Eigen and Fergus (2015);
Liu et al. (2016); Zhao et al. (2017)). Farabet et al. (2013)
uses a multiscale set of segmentations, including superpixels,
to train a deep network, learn hierarchical features and find an
optimal cover of the image out of many segmentations. In the
end, this method also commits to a final fixed segmentation,
which is claimed to be optimal, but does not consider a joint
optimization of alternative representations. Eigen and Fergus
(2015) progressively refine its network output using a sequence
of scales to provide dense labeling. FCN combines coarse layer
features with fine, low-layer features for fusion of contextual
information at different resolutions. Liu et al. (2016) and Zhao
et al. (2017) use pooling of local features at different scales to
capture global context. However network layers are generated
by rectangular convolution and regular downsampling, which
does not comply with the actual geometry of the objects in the
scene.

In spite of the success of CRFs and multi-scale models for se-
mantic scene segmentation, these approaches are computation-
ally costly both for learning and inference. In this paper, we fo-
cus on context models that require minimal training and that can
be optimized efficiently. In literature, several superpixel-based
parsing algorithms use MRF-based post-processing to smooth
out superpixel labels and improve labeling consistency among
neighboring superpixels (Tighe and Lazebnik (2013); Nguyen
et al. (2015)). Then MRF inference is achieved with fast and
effective min-cut/max-flow optimization algorithm. However,
typically, these parsing algorithms commit to a single pre-
segmentation of the image, which is not always consistent with
the boundaries of object classes.

To circumvent the shortcomings of previous models, our gen-
eralized MRF model defines a flexible framework to combine
information coming from multiple segmentations and parsing
methods. The closest work to our proposal is Associative Hi-
erarchical Random Fields (AHRF) of Ladicky et al. (2014).
AHRF provides a hierarchical MRF model for multiple seg-
mentations at different scales. AHRF is introduced as a gener-
alization of different MRF models defined over pixels, super-
pixels or a hierarchy of segmentations (such as Pantofaru et al.
(2008)). While AHRF defines a strict hierarchy between pixels,
segments and super-segments, our model allows for combina-
tion of different segmentations without any fixed parent-child or
coarse-fine scale relationship in between. In addition, we inves-
tigate the fusion of decisions from different (superpixel-based
and CNN-based) parsers, while Ladicky et al. (2014) does not
explain how to extend AHRF to incorporate several different
classifiers.

The main novelty of this paper is the fusion of multiple pars-
ing methods within MRF formalism. Vieux et al. (2012) also
labels segments by late fusion of SVM classifiers over multiple
segmentations; however, fusion is simply performed by taking
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the mean/max/multiplication of classifier probabilities in inter-
secting regions and label smoothing by relaxation labeling is
treated as a post-processing step on the fused result. Methods
such as Dong et al. (2016), Yao et al. (2012), Morales-Gonzalez
et al. (2018) define hierarchical MRF models over multiple seg-
mentations but do not consider segmentations and class scores
coming from alternative methods. In these approaches, since
the segmentations and their unary potentials at different levels
of the hierarchy are not independently generated, there will be
no significant complementary information for fusion over the
hierarchical MRF. As a result, gains in labeling accuracy are
limited. On the other hand, our MRF framework allows for
the fusion of independent segmentations and class likelihoods
coming from much different classifiers.

3. Contextual Modeling of Alternative Segmentations

In superpixel image parsing, a fixed segmentation is typically
used to derive local features, estimate class likelihoods, label
each segment and perform MRF smoothing of labels. Hence
parsing performance heavily depends on how well the size,
shape, boundary and content of superpixels represent the un-
derlying object classes.

In this paper we further develop “Multi-hypothesis MRF
model” of Ates and Sunetci (2017) and show that labeling ac-
curacy could benefit from the joint use of multiple initial seg-
mentations, which are possibly generated by different methods.
In our approach the local context incorporates not only the spa-
tial neighborhood of adjacent superpixels within the same seg-
mentation but also the neighborhood of intersecting superpixels
from different segmentations. These inter-segmentation neigh-
borhoods help fuse alternative representations coming from
multiple segmentations. Hence, the proposed MRF model de-
scribes both intra-segmentation and inter-segmentation contex-
tual information. Intra- neighborhood contains adjacent su-
perpixels of a given segmentation. Inter- neighborhood con-
tains intersecting superpixels from different segmentations. The
MRF model is used to code contextual constraints in both intra-
and inter- neighborhoods for more consistent labeling. We ex-
plore different data and neighborhood models for a more gen-
eralized contextual framework within the MRF formalization.

In the following, the generalized MRF model is described
for two alternative segmentations; but it could be easily gen-
eralized to any number of alternatives. Let the set of seg-
ments/superpixels be defined as S Pm = {sm

i } (m = 1, 2). We
define a third segmentation S P3 = {s3

k} based on the intersec-
tion of the superpixels of the two alternatives (see Figure 1):

s3
k = s1

i ∩ s2
j , ∅, ∀ s1

i ∈ S P1, s2
j ∈ S P2 (1)

For each segmentation, let Nm represent the contextual neigh-
borhood that contains pairs of adjacent superpixels. In addi-
tion to these intra- neighborhoods, we define inter-segmentation
context Nm

n (n,m = 1, 2, 3) as follows:

(sn
i , s

m
j ) ∈ Nm

n if sn
i ∩ sm

j , ∅ (2)

The image is parsed by assigning to each superpixel sm
i a class

label cm
i . Each segmentation produces an alternative parsing

N1

N2

s2

s3

s1

N 3
1

N 3
2

SP1

SP3

SP2

N3

N 2
1

Fig. 1: Multi-hypothesis MRF model

result, cm = {cm
i }. We formulate the labeling problem as an

MRF energy minimization over the whole set of superpixel la-
bels c = {c1, c2, c3} as follows:

J(c) =

3∑
m=1

 ∑
sm

i ∈S Pm

D(sm
i , c

m
i ) + λm

∑
(sm

i ,s
m
j )∈Nm

E(cm
i , c

m
j )


+
∑

(n,m)∈IC

λm
n

∑
(sn

i ,s
m
j )∈Nm

n

E(cn
i , c

m
j ) (3)

where D and E are appropriate data cost and smoothness cost
terms, respectively, of related label assignments; IC is the set of
inter-segmentation neighborhoods (IC = {(1, 2), (1, 3), (2, 3)}),
and λm, λ

m
n are smoothness constants for each corresponding

context. In the next section we discuss the details of the MRF
model, in particular how to define data and smoothness costs
and how to select the smoothness constants.

4. Image Parsing with Multi-hypothesis MRF Model

In the MRF formulation given above, the data cost D(si, c)
represents the confidence with which a superpixel si is assigned
to a class c; the smoothness cost E(ci, c j), on the other hand, is a
measure of likelihood that two neighboring superpixels are as-
signed to distinct class labels ci, c j. Any parsing algorithm can
be integrated into this MRF formulation, as long as it produces
class-conditional likelihood scores that can be used to define
the data costs of the model. In this paper we test three methods,
SuperParsing, FCN and PSP, with optimized parameter settings.

SuperParsing is a data-driven, nonparametric parsing algo-
rithm that tries to match the superpixels of a test image with the
superpixels of a suitable subset of the training images, i.e. “re-
trieval set” (Tighe and Lazebnik (2013)). A scene-level com-
parison is performed to find a good retrieval set that contains
images similar to the tested image. For each test superpixel, a
rich set of features are computed and matched with the super-
pixels from the retrieval set. The labels of these matching su-
perpixels are used to compute class-conditional log-likelihood
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(a) (b)

boat
mountain
person
rock
sand
sea
sky

(c)

Fig. 2: FCN segmentation: (a) Original image; (b) FCN labels; (c) FCN super-
pixels (colored by mean value of their pixels).

ratio scores, L(si, c), for each class c. Then the data term is
defined as D(si, c) = wiσ(L(si, c)), where wi is the superpixel
weight, and σ(·) is the sigmoid function. Here wi = |si|/µs,
where |si| is the number of pixels in si, µs is the mean of |si| (see
Tighe and Lazebnik (2013) for details).

FCN/PSP architectures provide dense pixel-level class scores
and labels at the output layer. These scores change smoothly
between neighboring pixels, due to the interpolation at the de-
convolution layers. We determine the connected components of
the FCN/PSP outputs, where neighboring pixels with the same
class label are assigned to the same component/segment (see
Fig. 2). Then the segment score is set equal to the mean score
of its pixels. These scores are used to define the data terms
of the MRF model, as described above. As seen in Fig. 2(c),
when the connected components are very large, intra- and inter-
segmentation neighborhoods will also be large and therefore
will not capture the local context effectively. To overcome this,
we intersect these connected components with superpixels of
the image and test the use of intersecting regions in the MRF
model, as well.

The smoothness costs for S P1 and S P2 are based on proba-
bilities of label co-occurrence, as given in Tighe and Lazebnik
(2013):

E(ci, c j)=− log[(P(ci|c j) + P(c j|ci))/2] × δ(ci , c j), (4)

where P(c|c j) is the conditional probability of one superpixel
having label c given that its neighbor has label c j, estimated by
counts from the training set. The delta function δ(ci , c j) is
used to assign zero cost when ci = c j.

Since S P3 is generated from the other two segmentations, its
data and smoothness costs are defined as functions of the cor-
responding costs in S P1 and S P2. In order to fuse the comple-
mentary information coming from the two segmentations, we
differentiate the set of classes in segment S P1 and S P2 and se-
lect from the union of those two sets for segment S P3. In other
words, there are two separate labels in S P3, c(1) and c(2), which
correspond to the semantic class c coming from S P1 and S P2,
respectively (Note that, cm

i represents the class label assigned
to superpixel sm

i , while c(m) represents any given class of seg-
mentation S Pm). Then the data cost for s3

k ∈ S P3 is given by
(m = 1, 2):

D(s3
k , c

(m)) = fm(D(s1
i , c),D(s2

j , c)), (5)

where (s1
i , s

3
k) ∈ N3

1 and (s2
j , s

3
k) ∈ N3

2 . Likewise, the smooth-
ness costs in inter- neighborhoodsNm

n are based on the costs in

N1 and N2 as follows:

E(c(1)
i , c(2)

j ) = g(E(c(1)
i , c(1)

j ), E(c(2)
i , c(2)

j )) (6)

The specifics of fm and g will be discussed in the next section.
The smoothness constants λm, λ

m
n control the level of contex-

tual dependency in different neighborhoods of the MRF model
in Eq. (3). These values are determined from the training set by
a leave-one-out strategy: each training image is removed from
the training set, and then parsed by the proposed algorithm to
obtain its labeling accuracy under different parameter settings.
Then, the set of parameters that maximize the mean pixel accu-
racy in the training set is chosen.

The MRF energy function is minimized by the α-expansion
method of Boykov and Kolmogorov (2004). The outcome leads
to three alternative labelings c = {c1, c2, c3}. The set of labels
c3 of the segmentation S P3 is selected as the final labeling of
the image.

5. Simulations and Discussions

5.1. Implementation Details
The smoothness constants of the MRF model are selected

from the set {lλ| l ∈ {0, 1, 2}; 5 ≤ λ ≤ 25, λ ∈ Z}. The function
g is set as g(x, y) = 0.5x + 0.5y. For data costs of S P3, we test
two alternatives :

• DC1: (m = 1, 2)

D(s3
k , c

(m)) = β1
wk

w1
i

D(s1
i , c) + β2

wk

w2
j

D(s2
j , c) (7)

• DC2:
D(s3

k , c
(1)) =

wk

w1
i

D(s1
i , c)

D(s3
k , c

(2)) =
wk

w2
j

D(s2
j , c)

(8)

where wk = 0.5|s3
k |(1/|s

1
i | + 1/|s2

j |) and β1 + β2 = 1.
The first model uses a weighted average of two data costs

from S P1 and S P2 for superpixels of S P3 and does not dif-
ferentiate labels c(1) and c(2). The second model assigns two
different data costs to the labels c(1) and c(2) of the same class
c under two different hypotheses of S P1 and S P2. Therefore
the second model enables the algorithm to choose between the
two hypotheses, depending on the contextual information. The
superpixel weight wk is set proportional to the relative size of
s3

k with respect to s1
i and s2

j ; if the intersection of the two su-
perpixels is small, then the data cost for s3

k is assigned lower
weight since it is deemed unreliable for labeling s3

k . The data
weights βm represent the confidence in the segmentation result
of the two hypotheses; hence the better algorithm is assigned a
higher weight.

SuperParsing uses graph-based superpixel segmentation
(Felzenszwalb and Huttenlocher (2004)). In this algorithm, pa-
rameter K controls superpixel color consistency and S deter-
mines the smallest superpixel size. R is the number of nearest
neighbor matches for each superpixel feature. Several super-
pixel features, including shape (e.g. superpixel area), location
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(e.g. superpixel mask), texture (e.g. SIFT), color (e.g. color
histogram) descriptors, are used to find matching superpixels
from the retrieval set. There are six SIFT features that are de-
fined over different subregions of the superpixel. These SIFT
features are encoded using LLC (Locality-constrained Linear
Coding) (Wang et al. (2010)) or KCB (Kernel Codebook En-
coding) (van Gemert et al. (2008)) algorithms.

In addition, we use CNN features both for global matching
to determine the retrieval set and for local superpixel match-
ing. These are learned features extracted from the last layer of
the network before the final classification layer. CNN features
are extracted from the trained networks of VGG-F (Chatfield
et al. (2014)) and AlexNet (Krizhevsky et al. (2012)), which
are trained on ILSVRC ImageNet dataset (Deng et al. (2009)).
For each superpixel, its CNN feature is obtained by setting the
whole image to zero except for the superpixel region and com-
puting the network output.

In the following section, simulation results are provided for
the following three alternative segmentations:

• Seg1: SuperParsing (K=200, S=100, R=30). VGG-
F/AlexNet features are used both for global matching and
for superpixel matching.

• Seg2: FCN-8s segmentation (Shelhamer et al. (2016)) is
used to define superpixels and data costs, as described in
the previous section.

• Seg3: PSP segmentation, no cropping, single scale evalu-
ation (Zhao et al. (2017)), usage similar to FCN-8s.

5.2. Results and Comparisons
The proposed models are evaluated on two well-known

datasets, namely SIFT Flow (Liu et al. (2011)) and 19-class
subset of LabelMe (Jain et al. (2010)). In experiments overall
pixel-level classification accuracy (i.e. correctly classified pixel
percentage) and average per-class accuracies are compared.

SIFT Flow dataset contains 2,688 images and 33 labels. This
dataset includes outdoor scenery such as mountain view, streets,
etc. There are objects from 33 different semantic classes, such
as sky, sea, tree, building, cars, at various densities. There are
also 3 geometric classes, which are not considered in our sim-
ulations. Dataset is separated into 2 subsets; 2,488 training im-
ages and 200 test images. The retrieval set size is set at 200
images, as in original SuperParsing. LLC encoding is used for
SIFT features.

Table 1 reports the pixel-level and average per-class labeling
accuracies of DC1 and DC2 models with optimized parame-
ter settings. We also provide Seg1, Seg2 and Seg3 results with
MRF smoothing, but without using the inter- neighborhoods
(i.e. λm

n = 0, ∀(n,m) ∈ IC). For comparison, results are pro-
vided for original SuperParsing, original FCN-8s, PSP and for
some other recent superpixel-based and CNN-based methods
evaluated on SIFT Flow dataset.

Table 1 includes results for two alternatives, i.e. (Seg1,Seg2)
and (Seg2,Seg3). (Seg1,Seg3) combination is inferior to (Seg2,
Seg3) and hence not reported. For (Seg1,Seg2), DC2 improves
the pixel accuracy of FCN-8s by 1.3% through the use of pro-
posed multi-hypothesis MRF model. DC1 accuracy is 0.4%

Table 1: Per-pixel and average per-class labeling accuracies for SIFT Flow
dataset

Percentage Accuracy
Method Per-pixel (%) Per-class (%)

DC1 (Seg1,Seg2) 86.8 50.8
DC2 (Seg1,Seg2) 87.2 50.4
DC1 (Seg2,Seg3) 88.7 55.2
DC2 (Seg2,Seg3) 88.4 54.2
Seg1+MRF 80.9 37.2
Seg2+MRF 86.0 51.6
Seg3+MRF 87.8 50.0
SuperParsing 76.2 29.1
FCN-8s (Seg2) 85.9 53.9
PSP (Seg3) 87.7 51.7
Ates and Sunetci (2017) 80.6 31.8
George (2015) 81.7 50.1
Nguyen et al. (2016) 83.3 49.4
Liu et al. (2016) 86.8 52.0
Cheng et al. (2017) 86.4 49.4
Shuai et al. (2016) 85.3 55.7

lower than DC2, showing that it is more effective to keep data
costs separate when fusing the complementary information of
the two hypotheses. Note that, without the inter- neighbor-
hoods, Seg2+MRF could only achieve 0.1% improvement over
FCN-8s through MRF smoothing. This shows that our pro-
posed MRF framework successfully fuses the segmentation de-
cisions of alternative methods. In addition, when compared to
our previous results in Ates and Sunetci (2017), parsing accu-
racy is substantially better, due to use of CNN features and FCN
segmentation.

For (Seg2,Seg3), DC1 is the better model and improves the
pixel accuracy of PSP by 1.0%. DC2 accuracy is 0.3% lower
than DC1 this time. When combining FCN and PSP results, the
connected components are intersected with superpixels of Seg1
to provide finer segmentation, as explained in Section 4. This
improves both pixel accuracy and average per-class accuracy of
MRF fusion. The accuracy of Seg3+MRF is much lower than
our results, once again showing the importance of inter- neigh-
borhoods in the model. As seen from Table 1, DC1(Seg2,Seg3)
outperforms other recent superpixel-based and CNN-based seg-
mentation methods in terms of per-pixel labeling accuracy,

The average per-class accuracy of DC1(Seg2,Seg3) is 1.3%
better than FCN-8s and 3.5% better than PSP. However, for
(Seg1,Seg2), the average per-class accuracies of both DC2 and
DC1 are lower than that of FCN-8s, both due to the spatial
smoothing of labels by MRF optimization and also because
mean class accuracy of Seg1 is significantly lower and there-
fore not helping to boost the overall performance.

Note that using MRF smoothing alone on both FCN and PSP
outputs reduces mean class accuracies with marginal improve-
ment on per-pixel accuracies. This is because MRF optimiza-
tion favors dominant classes covering large areas (such as sky,
building) and smooths out rare classes with smaller areas (such
as car, window). As a result per-class accuracies of dominant
classes are slightly increased at the expense of significant drop
in per-class accuracies of rare classes. On the other hand, our
MRF framework is capable of increasing both per-pixel and
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per-class accuracies, when smoothness constants in the model
are carefully selected and when both hypotheses have compa-
rable performance. Therefore we believe that per-class accu-
racy of (Seg1,Seg2) could also be improved within the proposed
MRF framework, if Seg1 is assigned to a better performing
superpixel-based parsing algorithm (such as George (2015)).

Table 2 lists per-class accuracies of the tested algorithms
for some dominant (sky, building) and rare (car, window, per-
son) classes. As explained above, MRF smoothing improves
the parsing performance of dominant classes that cover large
regions in tested images; however many segments from rare
classes are also mistakenly assigned to labels of their dominant
neighbors (e.g. window vs. building), which decreases the ac-
curacies of these rare classes. While (Seg1,Seg2) also suffers
from this problem due to the poor performance of Seg1, rare
class accuracies of (Seg2,Seg3) are generally better than those
of both FCN and PSP. Therefore our MRF framework is effec-
tive in combining the best of both segmentations without over-
smoothing the label assignments.

19-class LabelMe dataset contains 350 images with 19
classes (such as tree, field, building, rock, etc.). The dataset
is split into 250 training images and 100 test images. The re-
trieval set size is set at 50 images, due to the smaller size of
training set. KCB encoding is used for SIFT features. FCN-
8s network architecture is transferred from SIFT Flow, adapted
for 19-class evaluation and re-trained with the given 250 image
LabelMe training set. PSP architecture is not tested due to the
small size of training set.

Table 3 reports the pixel-level and average per-class labeling
accuracies of (Seg1,Seg2) using DC1 and DC2 for LabelMe.
Results from literature are provided for Nguyen et al. (2016),
Nguyen et al. (2015), Myeong and Lee (2013) and our initial
work in Ates and Sunetci (2017). Our proposed algorithms sur-
pass the state-of-art in this dataset, improving pixel accuracy
by 4.9% and mean class accuracy by 12.9% over Nguyen et al.
(2016). We also outperform FCN-8s result by 3.5% and 6.1%
in pixel and mean class accuracies, respectively.

For LabelMe dataset, DC1 is better than DC2 by 0.5% in
pixel accuracy, but DC2 gives higher mean class accuracy. DC1
improves the pixel and mean class accuracies of Seg2+MRF
by 1.4% and 3.0%, respectively. This result indicates the im-
portance of inter- neighborhoods in combining the complemen-
tary information of alternative methods. As opposed to SIFT
Flow, (Seg1,Seg2) provides improvement in mean class accu-
racy in this dataset. This implies that, when both Seg1 and
Seg2 have comparable performance, our multi-hypothesis MRF
framework boosts not only the pixel accuracies but also the
mean class accuracies of the tested methods.

At Figure 3, parsing results of Seg1+MRF, Seg2+MRF and
DC2(Seg1,Seg2) are compared visually for some selected test
images from SIFT Flow. DC2 labelings are generally more
consistent and accurate than those of both Seg1+MRF and
Seg2+MRF. In the top figure, field is correctly identified, even
though both tested methods label the area as grass. In the
other three figures, and typically throughout the SIFT Flow
dataset, DC2 outcome is at least as good as the better result
of Seg1+MRF and Seg2+MRF. In other words, the proposed

approach manages to select correctly the more probable label
between the two hypotheses by making use of the intricate con-
textual constraints in intra- and inter- neighborhoods.

5.3. Computational Cost

The time complexity of the proposed approach is dominated
by the running times of individual parsing algorithms. MRF
optimization is carried out by the fast α-expansion method of
Boykov and Kolmogorov (2004). The computational cost of
this optimization is proportional to the total number of super-
pixels in S P1, S P2 and S P3.

Simulations are carried out on a single PC with 4-core CPU at
3.70 GHz and 16 GB RAM. Caffe implementations of FCN and
PSP are used for testing. For SIFT Flow dataset, FCN and PSP
take 2.2 and 5.9 secs, respectively, per image. SuperParsing la-
bels images in 8 secs on average, using its unoptimized and un-
parallelized MATLAB implementation. Multi-hypothesis MRF
model optimization takes merely 0.25 secs on average, using
unoptimized MATLAB interface. Hence the proposed frame-
work provides fast inference for contextual modeling and fu-
sion of parsing algorithms with different levels of performance
and complexity.

6. Conclusion

In this paper a novel contextual modeling framework is in-
troduced for semantic scene segmentation. This framework
defines contextual constraints over inter- and intra- neighbor-
hoods for multiple segmentations of the same image. In ad-
dition to producing spatially more consistent parsing results,
the proposed approach carries out labeling at a finer scale over
the intersecting regions of alternative segmentations. We have
shown that, when both alternatives have comparable labeling
performance, our contextual models improve both the pixel
and the mean class accuracies of tested methods. We have
used this framework as a post-processing step at the outputs of
deep FCN-8s and PSP architectures and obtained state-of-the-
art parsing results in two well-known datasets.

As future work, we plan to advance our contextual infer-
ence approach using more advanced data cost and smoothness
models. Other CNN architectures and superpixel-based parsing
methods could be tested within the given framework. Also this
MRF framework could be integrated into the CNN architecture
and the model parameters could be learned using end-to-end
training of the whole system.
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