
1

Principal Component Analysis with Tensor Train
Subspace

Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron

Abstract—Tensor train is a hierarchical tensor network struc-
ture that helps alleviate the curse of dimensionality by parame-
terizing large-scale multidimensional data via a set of network of
low-rank tensors. Associated with such a construction is a notion
of Tensor Train subspace and in this paper we propose a TT-
PCA algorithm for estimating this structured subspace from the
given data. By maintaining low rank tensor structure, TT-PCA
is more robust to noise comparing with PCA or Tucker-PCA.
This is borne out numerically by testing the proposed approach
on the Extended YaleFace Dataset B.

I. INTRODUCTION

Robust feature extraction and dimensionality reduction are
among the most fundamental problems in machine learning
and computer vision. Assuming that the data is embedded
in a low dimensional subspace, popular and effective meth-
ods for feature extraction and dimensionality reduction are
the Principal Component Analysis (PCA) [3], [11], and the
Laplacian eigenmaps [2]. In this paper we consider structured
subspace models, namely tensor subspaces to further refine
these subspace based approaches, with significant gains on
processing and handling multidimensional data.

Most of the real-world data is multidimensional, i.e. it
is a function of several independent variables, and typically
represented by a multidimensional array of numbers. These
arrays are often referred to as tensors, terminology borrowed
from multilinear algebra [7]. For example, a color image can
be considered as a third-order tensor, two of the dimensions
(rows and columns) being spatial, and the third being spectral
(color), while a color video sequence can be considered as
an four-order tensor, time being the fourth dimension besides
spatial and spectral.

A very popular tensor representation format namely the
Tucker format has shown to be useful for a variety of ap-
plications [7], [8], [13], [18], [23]. However, for large ten-
sors, Tucker representation can still be exponential in storage
requirements. In [10] it was shown that hierarchical Tucker
representation, and in particular Tensor Train (TT) representa-
tion can alleviate this problem. Nevertheless, the statistical and
computational tradeoffs of such reduced complexity formats,
such as the TT, have not been studied so far.

In this paper, we begin by showing that TT decompositions
are associated with a structured subspace model, namely the

W. Wang and V. Aggarwal are with Purdue University, West Lafayette,
IN 47907, email: {wang2041,vaneet}@purdue.edu. S. Aeron is with Tufts
University, Medford, MA 02155, email: shuchin@ece.tufts.edu.

The work of W. Wang and V. Aggarwal was supported in part by the U.S.
National Science Foundation under grant CCF-1527486. The work of S. Aeron
was supported in part by NSF CAREER Grant # 1553075

Tensor Train subspace. Based on this model, the problem of
finding the Tensor Train subspace and the representation of the
data is formulated as an extension of the Tucker and traditional
PCA based technique. An algorithm to solve this non-convex
problem is provided, and is referred to as TT-PCA. We show
that if the data admits a TT representation, then TT-PCA
significantly reduces storage and complexity as compared to
the standard PCA and the Tucker-PCA (T-PCA). We use TT-
PCA for classification on Extended YaleFace Dataset B [9],
[12], where different images of 38 humans are classified. We
see that TT-PCA is able to exploit the structure better than
the standard PCA and the T-PCA approaches and achieves the
lowest classification error at a lower amount of compressed
data dimension.

The rest of the paper is organized as follows. The technical
notations and definitions are introduced in Section II. The
tensor train subspace (TT-subspace) model is described in
Section III, and TT-PCA algorithm is proposed in Section IV.
Section V provides the numerical results for the proposed al-
gorithms on Yale Face and MNIST databases. Finally, Section
VI concludes the paper.

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce the notations that will be exten-
sively used in this paper. Vectors and matrices are represented
by bold face lower letters (e.g. x) and bold face capital letters
(e.g. X), respectively. An identity matrix of r rows is denoted
as Ir. Transpose of matrix X is denoted by XT . An nth order
tensor is denoted by calligraphic letter X ∈ RI1×I2×...×In ,
where Ii:i=1,2,...,n is the dimension along the ith mode. An
entry inside a tensor X is represented as X(i1, i2, · · · , in),
where ik:k=1,2,..,n is the location index along the kth mode. A
colon is applied to represent all the elements of a mode in a
tensor, e.g. X(:, i2, · · · , in) represents the fiber along mode 1
and X[:, :, i3, i4, · · · , in] represents the slice along mode 1 and
mode 2 and so forth. V(·) is a tensor vectorization operator
such that X ∈ RI1×···×In maps to a vector V(X) ∈ RI1···In .

Under tucker format [6], any entry insider a tensor is
represented by the Tucker Decomposition

X(i1, · · · , in)

=

r1∑
j1=1

· · ·
rn∑

jn=1

C(j1, · · · , jn)U1(i1, j1) · · ·Un(in, jn),

where C ∈ Rr1×···×rn is the core tensor and Ui ∈ RIi×ri

are the set of orthonormal linear transformation that defines
the tucker structure. The Tucker-Rank is denoted by the
vector of ranks (r1, · · · , rn) in the Tucker Decomposition. The

ar
X

iv
:1

80
3.

05
02

6v
1 

 [
cs

.L
G

] 
 1

3 
M

ar
 2

01
8



2

multilinear subspace is defined by the span of a given set of
core tensors after the set of linear transformation given by Ui.
In this paper, we refer the method to recover the multilinear
subspace, or the Tucker Subspace, as Tucker PCA (T-PCA).

Tensor train decomposition [10], [16] is a tensor factoriza-
tion method that any elements inside a tensor X ∈ RI1×···×In ,
denoted as X(i1, i2, · · · , in), is represented by

X(i1, · · · , in)
= U1(i1, :)U2(:, i2, :) · · ·Un−1(:, in−1, :)Un(:, in),

where U1 ∈ RI1×r1 , Un ∈ Rrn−1×In are the boundary
matrices and Ui ∈ Rri−1×Ii×ri , i = 2, · · · , n − 1 are
middle decomposed tensors. Without loss of generality, we
can define U1 ∈ R1×I1×r1 as the tensor representing U1,
and Un ∈ Rrn−1×In×1 representing Un. The TT-Rank of a
tensor is denoted by the vector of ranks (r1, · · · , rn−1) in the
tensor train decomposition. We let r0 = 1. We note that the
representation of a tensor as the product of tensors is called
the Matrix Product State Structure, and the different Ui are
called Matrix Product States (MPS) [17].

We next define the mode-i unfolding of a tensor as follows.

Definition 1. (Mode-i unfolding [5]) Let X ∈ RI1×···×In be
a n-mode tensor. Mode-i unfolding of X, denoted as X[i],
matrized the tensor X by putting the ith mode in the matrix
rows and remaining modes with the original order in the
columns such that

X[i] ∈ RIi×(I1···Ii−1Ii+1···In). (1)
Next, we define the notion of left-unfolding for third order

tensors.
Definition 2. (Left Unfolding [10]) Let X ∈ Rri−1×Ii×ri be a
third order tensor, the left unfolding is the matrix obtained
by taking the first two modes indices as rows indices and
the third mode indices as column indices such that L(X) ∈
R(ri−1Ii)×ri , and is given as L(X) = (X[3])

T .
(Left Refolding) Left refolding operator L−1 is the reverse

operator of left unfolding L, which reshapes a R(ri−1Ii)×ri

matrix to a Rri−1×Ii×ri tensor.
Similar to left unfolding and refolding, right unfolding is

R(X) = X[1] ∈ Rri−1×(Iiri).
Definition 3. (Tensor Connect Product [20]) Let Ui ∈
Rri−1×Ii×ri , i = 1, · · · , n be n third order tensors. The tensor
connect product U1 · · ·Un is defined as

U = U1 · · ·Un ∈ Rr0×(I1···In)×rn , (2)
where for any two adjacent third-order tensor, the tensor
connect product satisfies

UjUj+1 ∈ Rrj−1×(IjIj+1)×rj+1

= L−1
(
I(Ij+1) ⊗ L(Uj)× L(Uj+1)

)
.

(3)

Tensor connect product is the tensor product for third order
tensors, and matrix product for second order tensors (matri-
ces).

III. TENSOR TRAIN SUBSPACE (TTS)

A tensor train subspace, STT ⊆ RI1···In , is defined as the
span of a matrix that is generated by the left unfolding of a

tensor, such that

STT =∆ span(L(U1U2...Un))

= {L(U1U2...Un)a|∀a ∈ Rrn}.
(4)

We note that a tensor subspace is determined by
U1,U2, · · · ,Un, where Ui ∈ Rri−1×Ii×ri , r0 = 1 [21]. In
a special case when n = 1, the proposed tensor train subspace
is reduced to the linear subspace model under matrix case.

The next result shows that for the given U1,U2, · · · ,Un,
STT is a subspace.

Lemma 1. (Subspace Property [21]) STT is a subspace of
RI1···In for given U1,U2, · · · ,Un.

We next give some properties of the TT decomposition that
will be used in this paper.

Lemma 2. (Left-Orthogonality Property [10, Theorem 3.1])
For any tensor X of TT-rank r, the TT decomposition can be
chosen such that L(Ui) are left-orthogonal for all i = 1, · · ·n,
or L(Ui)

TL(Ui) = Iri ∈ Rri×ri .
We next show that if L(Ui) is left-orthogonal for all i =

1, · · · , n, then L(U1 · · ·Un) is left-orthogonal.

Lemma 3. (Left-Orthogonality of Tensor Connect Product
[21]) If L(Ui) is left-orthogonal for all i = 1, · · · , n, then
L(U1 · · ·Uj) is left-orthogonal for all 1 ≤ j ≤ n.

Thus, we can without loss of generality, assume that L(Ui)
are left-orthogonal for all i. Then, the projection of a data
point y ∈ Rrn on the subspace STT = span(L(U1U2...Un))
is given by L(U1 · · ·Un)

Ty.

IV. TENSOR TRAIN PCA

Given a set of tensor data Xi ∈ RI1×···×In , i = 1, · · · , N ,
we intend to find rn principal vectors that convert a set of
observations of possibly correlated variables into a set of val-
ues of linearly uncorrelated variables. The rn principal vectors
can be stacked as a matrix L(U1U2 · · ·Un) ∈ RI1···In×rn

such that Ui ∈ Rri−1×Ii××ri , with r0 = 1. The objective of
Tensor Train PCA (TT-PCA) is to find such U1,U2, · · · ,Un

such that the distance of the points from the TTS formed by
U1,U2, · · · ,Un is minimized. We note that for n = 1, this is
the same objective as that for standard PCA [19].

Given N data points Xi ∈ RI1×···×In , i = 1, · · · , N ,
let D ∈ RI1···In×N be the matrix that concatenates the N
vectorizations such that the ith column of D is V(Xi). The
goal then is to find U1,U2, · · · ,Un such that the distance of
points from the subspace is minimized. More formally, we
wish to solve the following problem,

min
Ui,i=1,··· ,n,A

‖L(U1 · · ·Un)A−D‖2F . (5)

A. Algorithm
This optimization problem in (5) is a non-convex problem.

We however note that the problem is convex w.r.t. each of the
variables (Ui, i = 1, · · · , n,A) when the rest are fixed. Thus,
one approach to solve the problem is to alternatively minimize
over the variables when the rest are fixed.



3

In this paper, we propose an alternate approach that is based
on successive SVD-algorithm for computing TT Decomposi-
tion in [10]. The algorithm steps are given in Algorithm 1.
The algorithm steps assume that rank vector is not known,
and estimates the ranks based on thresholding singular values.
However, if the ranks are known, the threshold will be at
the ri number of singular values rather than at τ fraction of
the maximum singular value. The proposed algorithm goes
from left to right and find the different Uis. We note that
this algorithm extends computing TT Decomposition in [10]
by thresholding over the singular values, which tries to find
the low rank approximation since the data is not exactly low
rank. Such approaches for thresholding singular values for data
approximation to low rank have been widely used for matrices
[4], [8].

The advantage of the approach include the following: (i)
There are no iterations like in Alternating Minimization based
approach, and the complexity is low. (ii) The obtained L(Ui)
is left-orthogonal for all i = 1, · · · , N . Due to this property,
we have by Lemma 3 that L(U1 · · ·Un) is left-orthogonal.
Thus, the projection of a data point D ∈ RI1×···×In onto the
TT subspace formed is (L(U1 · · ·Un))

TV(D) .

Algorithm 1 Tensor Train Principle Component Analysis (TT-
PCA) Algorithm
Input: N tensors Xi ∈ RI1×I2×···×In , i = 1, · · · , N , thresh-

old parameter τ
Output: Decomposition for tensor train subspace

U1,U2, · · · ,Un and the representation A
1: Form Y as an order n+1 tensor s.t. Y ∈ RI1×I2×···×In×N ,

which is formed by concatenating all data points Xi in the
last mode.

2: Set X1 to be the Y[1] ∈ RI1×(I2···InN) and apply SVD
to Y1 such that Y1 = U1S1V

>
1 . Threshold singular

values in S1 by maintaining the singular value larger
than τσmax1

, where σmax1
is the largest singular value

of S1, to get S̃1 and the number of non-zero singular
values in S̃1 as r1, calculate X2 = S̃1V

> and set
U1 = L−1(U1) ∈ R1×I1×r1 .

3: for i = 2 to n do
4: Reshape Xi ∈ Rri−1×(Ii···InN) to Yi ∈

R(ri−1Ii)×(Ii···InN) and apply SVD to Yi such that
Yi = UiSiV

>
i

5: Threshold singular values in Si by maintaining the
singular value larger than τσmaxi

to get S̃i and the number
of non-zero singular values in S̃i as ri.

6: Set Ui = L−1(Ui) ∈ Rri−1×Ii×ri and Xi+1 = S̃iV
>
i

7: end for
8: Set A = Xn+1

B. Classification Using TT-PCA
In order to use TT-PCA for classification, we assume that

we have Ntr data points Xi ∈ RI1×I2×···×In , i = 1, · · · , Ntr
for training, each having label li ∈ {1, · · · , C} that identify
the association of the data points to the C classes, and let Nte
data points as test data points that we wish to classify into the
C classes. The first step is to perform TT-PCA for each of the

C classes based on the data points that have that particular
label among the N training data points. Let the corresponding
Ui:i=1,··· ,n for class j be denoted as U

(j)
i:i=1,··· ,n. Further, let

U(j) = L(U
(j)
1 · · ·U

(j)
n ). For a data point in the testing set

Y ∈ RI1×···In , we wish to decide its label based on its distance
to the subspace. Thus, the assigned label is given by
Label(Y) = argminj=1,··· ,C‖U(j)U(j)>V(Y)−V(Y)‖22. (6)

C. Storage and Computation Complexity
In this subsection, we will give the amount of storage

needed to store the subspace, and complexity for doing TT-
PCA and classification based on TT-PCA. For comparisons,
we consider the standard PCA and Tucker based PCA (T-
PCA) algorithm [7]. We let d = I1 · · · In be the dimension
of each vectorized nth order tensor data. Suppose we have N
data points. We assume that I1 = · · · = In. Further, rank
for PCA is chosen to be r, rank in each unfold for T-PCA is
assumed to be r, and the ranks ri = r for i ≥ 1 are chosen
for TT-PCA. We note that ranks in each decomposition have
a different interpretation and not directly comparable.
Storage of subspace: Under PCA model, the storage needed
is for a d× r matrix which is left-orthogonal, and thus

dim(PCA) = dr − r(1 + r)/2, (7)

where the r(1+r)/2 component is saved in storage as a result
of orthonormal property of the PCA bases.

Under T-PCA model, n linear transformations and r core
tensors need to be stored, and thus

dim(T-PCA) = rn+1 + n
(
d

1
n r − r(1 + r)/2

)
, (8)

where rn+1 is the storage for r cores, each ∈ Rr×···×r, and
n(d

1
n r−r(1+r)/2) is the storage for n linear transformations.

nr(1+r)/2 amount of storage is saved due to the orthonormal
property of the linear transformation matrices.

Under TT-PCA model, we need to store U1, · · · ,Un which
are all left-orthogonal, and thus

dim(TT-PCA) = d
1
n r(r(n− 1) + 1)− r(1 + r)n/2, (9)

where U1 takes d
1
n r− r(1+ r)/2 and the remain n− 1 MPS

takes (n− 1)(d
1
n r2 − r(1 + r)/2).

We also consider a metric of normalized storage, compres-
sion ratio, which is the ratio of subspace storage to the entire
Nd amount of data storage, or equivalently ρST = dim(ST)

Ntrd
,

where ST can be any of PCA, T-PCA, or TT-PCA.
Computation Complexity of finding reduced subspace:
We will now find the complexity of the three PCA algo-
rithms (standard PCA, T-PCA, and TT-PCA). We assume
that there are C classes, Ntr is the total number of training
data points, and Nte be the total number of test data points.
To compute standard PCA, we first compute the covariance
matrix of the data, whose complexity is O(d2Ntr). This is fol-
lowed by eigenvalue decomposition of the covariance matrix,
whose complexity is O(d3). Thus, the overall complexity is
O(d2 max(Ntr, d)). To compute the subspace corresponding to
T-PCA, we first compute n orthonormal linear transformations
using SVD, which takes O(nd

1
n r2) [16] time. This is followed

by finding the subspace basis for the dimensional reduced
tensor by PCA, which takes O(r2n max(Ntr, r

n)) time. Thus,
the total computation complexity is O(r2n max(Ntr, r

n) +



4

nd
1
n r2). The computation complexity for finding the ten-

sor train subspace needs the recovery of the n components
(U1, · · · ,Un), which takes O(nd

1
n r3) time for calculation

based on Algorithm 1.
Classification Complexity: Prediction under standard PCA
model is equivalent to solving (6), whose computation com-
plexity is O(NteCdr). For T-PCA, we need additional step
to make U for each class, which required an additional
complexity of O(dCr2). Thus, the overall complexity for
prediction based on T-PCA is O(Cdrmax(Nte, r)). TT-PCA
needs the same steps as T-PCA where first a conversion to U
is needed which has a complexity of O(dCr2) for each class
giving an overall complexity of O(Cdrmax(Nte, r)).

These results for PCA, T-PCA and TT-PCA are summarized
in Table IV-C, where the lowest complexity entries in each
column are bold-faced. We can see that TT-PCA has advan-
tages in both storage and subspace computation. Although TT-
PCA degrades in computation complexity compared with PCA
in making prediction, the extra complexity is dependent on
amount of testing data and is negligible for Nte > r.

V. EXPERIMENTAL RESULTS

In this section, we compare the proposed TT-PCA algorithm
with the T-PCA [14], [15], [22], and the standard PCA
algorithms. T-PCA is a Tucker decomposition based PCA
that has been shown to be effective in face recognition. The
evaluation is conducted in the Extended YaleFace Dateset B
[9], [12], which consists of 38 persons with 64 faces each
that are taken under different illumination, where each face
is represented by a matrix of size 48 × 42. Each element of
the face is the grayscale intensity of the pixel which can have
value from 0 to 255. Extended YaleFace Dateset B has been
shown to satisfy subspace structure [1], which motivates our
choice for exploring multi-dimensional subspace structures in
this dataset. For the experiments each image of a person is
reshaped as Xi ∈ R6×8×6×7 to validate the approach using
tensor subspaces.

Data representation via tensor subspaces- We first com-
pare the first dominant eigen-face for PCA and the first
dominant tensor-face for T-PCA and TT-PCA by sampling
Ntr = 20 images from one randomly selected person, and
reshape each of the images into a 4th order tensor for tensor
PCA analysis. We add a Gaussian noise N (0, 900) to each
pixel of the image. TT-PCA and T-PCA have the flexibility
in controlling compression ratio by switching τ , where larger
τ gives high compression ratio and less accuracy in approx-
imation and vice versa. Figure 1 shows the tensor-face for
T-PCA and TT-PCA under different compression ratio, and
the eigen-face for PCA, where the compression ratio (marked
on top) is decreasing from left-right (implying increasing data
compression) for the tensor PCA algorithms. TT-PCA shows
a better performance in constructing tensor-face than both
the T-PCA and PCA algorithms since the dominant eigen-
face pictorially takes more features of the noiseless image
of the person. As τ increases (which changes compression,
from left to right), tensor rank becomes lower and tensor-face
degrades to more blurry images. Under similar compression

Fig. 1. First Eigen Face for PCA and First Tensor Face for T-PCA
and TT-PCA under different compression ratios. The number at top
are the compression ratios.

Fig. 2. Face denoising under PCA, T-PCA and TT-PCA. The recon-
struction errors are marked on top of each image. Different images
in each row correspond to decreasing compression ratios (increasing
compression, increasing τ ) from left to right. The compression ratios
for T-PCA and TT-PCA are the same (left-right) as that in Fig. 1.

ratio, such as 6.86% for TT-PCA and 9.72% for T-PCA, TT-
PCA performs better than T-PCA since the tensor face is less
affected by noise.

We further illustrate one image sampled from the 20
noisy images and its projection onto (a) the linear subspace
given by PCA with ranks being 16, 14, 12, 10, 8, 6, 4, 2
(from left-to-right), which gives compression ratios of
0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, (b) the multi-linear
subspace given by T-PCA with compression ratio
1, 0.638.0.228, 0.972, 0.038, 0.021, 0.011, 0.005, and (c)
tensor train subspace given by TT-PCA with compression
ratio 1, 0.901, 0.293, 0.142, 0.069, 0.041, 0.028, 0.003. The
reconstruction error, defined as the distance between the
original image (without noise) and the projection of the noisy
image to the subspace, is depicted at the top of images in
Figure 2. As seen from the figure the reconstruction errors
of T-PCA and TT-PCA are significantly lower than that of
PCA, and TT-PCA gives the lowest 15.31% reconstruction
error under 0.069 compression ratio.

Classification using TT-PCA - Next, we test the perfor-
mance of the three approaches for classification. For classi-
fication, we choose f training data points (at random) from
each of the 38 people, and thus the amount of training data
points is Ntr = 38f . The remaining data of each person is used
for testing, and thus Nte = 38(64 − f). We add a Gaussian
noise N (0, 100) to each pixel of the data. For training sizes



5

Storage Subspace Computation Classification

PCA dr − r(1+r)
2 O(d2 max(Ntr, d)) O(CdrNte)

T-PCA rn+1 + n(d
1
n r − r(r+1)

2 ) O(r2n max(Ntr + rn) + nd
1
n r2) O(Cdrmax(Nte, r))

TT-PCA d
1
n r(r(n− 1) + 1)− r(r+1)n

2 O(nd
1
n r3) O(Cdrmax(Nte, r))

TABLE I
STORAGE AND COMPUTATION COMPLEXITY FOR PCA ALGORITHM. THE BOLD ENTRY IN EACH COLUMN DEPICTS THE LOWEST ORDER.

Compression Ratio
0 0.5 1

C
la

ss
if

ic
at

io
n 

E
rr

or
 (

lo
g1

0)

-0.4

-0.3

-0.2

-0.1

0 f =5 PCA
T-PCA
TT-PCA

Compression Ratio
0 0.5 1

C
la

ss
if

ic
at

io
n 

E
rr

or
 (

lo
g1

0)

-1

-0.8

-0.6

-0.4

-0.2

0 f =10
PCA
T-PCA
TT-PCA

Compression Ratio
0 0.5 1

C
la

ss
if

ic
at

io
n 

E
rr

or
 (

lo
g1

0)

-1.5

-1

-0.5

0 f =20
PCA
T-PCA
TT-PCA

Compression Ratio
0 0.5 1

C
la

ss
if

ic
at

io
n 

E
rr

or
 (

lo
g1

0)

-2

-1.5

-1

-0.5

0 f =30
PCA
T-PCA
TT-PCA

Fig. 3. Clustering Error in log 10 scale versus Compressed Ratio
for Extended YaleFace Dataset B Dataset. 38 faces with noise are
selected from the data set and the training sample size is 5, 10, 20,
30 (from left to right, top to bottom) respectively.

TABLE II
COMPRESSION RATIO AND CLASSIFICATION ERROR AT THE

LOWEST CLASSIFICATION ERROR

f = 5, 10, 20, 30, Figure 3 compares the classification error
of the different algorithms as a function of compression ratio
for each f . We note that as f increases, the classification
performance becomes better for all algorithms. We further see
that TT-PCA performs better at low compression ratios, and
the classification error increases after first decreasing. This is
because with higher compression ratios (low compression),
the approaches will try to over-fit noise leading to lower
classification accuracy.

Table II highlights the data from Figure 3 to illustrate
the improved performance of TT-PCA. This table shows the
compression ratio at which the best classification performance
is achieved, and the classification error at this compression
ratio. We note that the point at which best compression
ratio is achieved is lowest for TT-PCA, and so is the best
classification error thus demonstrating that TT-PCA is able to
extract the data structure well at high data compressions. This
indicates that human face data under different illumination
conditions lies not only close to the subspace models, but are
better approximated by tensor train subspace models. Further

we note that TT-PCA requires far less training sample size
compared to other approaches.

VI. CONCLUSION

This paper outlines novel algorithms and methods for tensor
train subspaces for data representation. A PCA like algorithm
namely TT-PCA is proposed. This algorithm is validated on
vision dataset and exhibit improved classification performance,
better dimensionality reduction, and lower computational com-
plexity as compared to the considered baseline approaches.

REFERENCES

[1] R. Basri and D. W. Jacobs. Lambertian reflectance and linear sub-
spaces. IEEE transactions on pattern analysis and machine intelligence,
25(2):218–233, 2003.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–
1396, 2003.

[3] C. M. Bishop. Pattern recognition. Machine Learning, 128, 2006.
[4] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding

algorithm for matrix completion. SIAM Journal on Optimization,
20(4):1956–1982, 2010.

[5] A. Cichocki. Era of big data processing: A new approach via tensor
networks and tensor decompositions. arXiv preprint arXiv:1403.2048,
2014.

[6] A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao, and D. Mandic.
Low-rank tensor networks for dimensionality reduction and large-scale
optimization problems: Perspectives and challenges part 1. arXiv
preprint arXiv:1609.00893, 2016.

[7] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear
singular value decomposition. SIAM journal on Matrix Analysis and
Applications, 21(4):1253–1278, 2000.

[8] D. L. Donoho. De-noising by soft-thresholding. IEEE transactions on
information theory, 41(3):613–627, 1995.

[9] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few
to many: Illumination cone models for face recognition under variable
lighting and pose. IEEE transactions on pattern analysis and machine
intelligence, 23(6):643–660, 2001.

[10] S. Holtz, T. Rohwedder, and R. Schneider. On manifolds of tensors of
fixed tt-rank. Numerische Mathematik, 120(4):701–731, 2012.

[11] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.
[12] K.-C. Lee, J. Ho, and D. J. Kriegman. Acquiring linear subspaces for

face recognition under variable lighting. IEEE Transactions on pattern
analysis and machine intelligence, 27(5):684–698, 2005.

[13] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Multilinear
principal component analysis of tensor objects for recognition. In 18th
International Conference on Pattern Recognition (ICPR’06), volume 2,
pages 776–779. IEEE, 2006.

[14] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Uncorrelated mul-
tilinear principal component analysis for unsupervised multilinear sub-
space learning. IEEE Transactions on Neural Networks, 20(11):1820–
1836, 2009.

[15] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. A survey of
multilinear subspace learning for tensor data. Pattern Recognition,
44(7):1540–1551, 2011.

[16] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, 2011.

[17] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix
product state representations. arXiv preprint quant-ph/0608197, 2006.

[18] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace analysis
of image ensembles. In Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference on, volume 2,
pages II–93. IEEE, 2003.



6

[19] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component
analysis (gpca). IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(12):1945–1959, 2005.

[20] W. Wang, V. Aggarwal, and S. Aeron. Tensor completion by alter-
nating minimization under the tensor train (tt) model. arXiv preprint
arXiv:1609.05587, 2016.

[21] W. Wang, V. Aggarwal, and S. Aeron. Tensor train neighborhood
preserving embedding. arXiv preprint arXiv:1712.00828, 2017.

[22] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. Zhang. Multilinear
discriminant analysis for face recognition. IEEE Transactions on Image
Processing, 16(1):212–220, 2007.

[23] R. Zeng, J. Wu, Z. Shao, L. Senhadji, and H. Shu. Multilinear principal
component analysis network for tensor object classification. arXiv
preprint arXiv:1411.1171, 2014.


