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ABSTRACT

Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert im-
ages of musical scores into a computer-readable format. Despite decades of research, the recognition
of handwritten music scores, concretely the Western notation, is still an open problem, and the few
existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten
Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmen-
tation and transfer learning, that can serve as a baseline for the research community.

c� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

For centuries, music has been written and transmitted among
generations through sheet music. Not surprisingly, the digitiza-
tion and transcription of music scores existing in archives and
museums is of paramount importance to preserve and dissemi-
nate our musical heritage. Given that there are still thousands of
music scores waiting to be transcribed, a manual transcription
becomes unfeasible, and therefore, the research on methods for
automatically transcribing music becomes necessary.

Optical Music Recognition (OMR) can be defined as the con-
version of music score images into a machine-readable for-
mat (e.g. MusicXML, MEI, MIDI, etc.). It has been an ac-
tive research field for more than five decades [1, 2], and there
are many commercial OMR software such as PhotoScore 1 or
SharpEye2 with good performance under relatively good con-
ditions. However, their accuracy dramatically decreases when
dealing with handwritten scores, mainly because of the high
variability in the handwriting style. Unfortunately, most of the
still unknown music compositions existing in archives are in-
deed handwritten music scores. For this reason, more research
effort must be devoted to overcoming this limitation.

Although the interest in OMR has reawakened with the ap-
pearance of deep learning, as far as we know, the few exist-
ing methods that attempt to recognize handwritten scores are
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1http://www.neuratron.com/photoscore.htm
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mostly focused on solving a particular stage of OMR, such as
layout analysis [3] or detection and classification of graphic
primitives [4] or music symbols [5, 6]. However, in the partic-
ular case of Western classical music, music scores are complex
documents composed of staves (five horizontal lines), music
symbols (e.g. notes, rests, accidentals), slurs, ornaments, dy-
namic and tempo markings, lyrics, etc. Therefore, we believe
that it is time to focus on the full recognition.

With this aim, in this paper we propose a full staff-wise
Handwritten Music Recognition (HMR) system, which can
serve as a baseline for future improvements in this research
field. Our architecture is based on Convolutional and Recur-
rent Neural Networks. This work is based on our previous work
[7], where we addressed OMR for printed scores as a sequen-
tial recognition task, disentangling the output of the network in
the two main components of music notation: rhythm and pitch.
In the present work, we improve this architecture to deal with
handwritten scores, and we show its viability both in printed
and handwritten scenarios. Concretely, the improvements are
the following: First, we add Convolutional Neural Networks as
feature extractor. Secondly, since the existing amount of anno-
tated handwritten music scores is scarce, we propose a novel
data augmentation technique, and incorporate transfer learn-
ing from printed scores. Finally, we also share the handwrit-
ten data3 that has been manually labelled for the experimental
evaluation.

The rest of the paper is organized as follows. Section 2

3http://www.cvc.uab.es/people/abaro/datasets.html
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overviews the state of the art. Section 3 describes our archi-
tecture. Section 4 explains how we deal with few handwritten
data. Section 5 discusses the results, and conclusions are drawn
in Section 6.

2. Related work

This section describes the key references of Optical Music
Recognition that are relevant to the present work.

2.1. Traditional approaches

Traditional OMR methodologies can be divided into four
groups: segmentation, grammars/rules, sequences and graphs.
The first group segments symbols before their recognition. For
example, Fornés et al. propose symbol descriptors [8, 9],
whereas Rebelo et al. [10] use Neural Networks, Nearest
Neighbour, Support Vector machines or Hidden Markov mod-
els. The second group defines some grammars or rules to com-
bine graphical primitives (i.e. note-heads, steams, beam, etc)
to build music notes and symbols. Baró et al. [11] recog-
nize compound music notes using dendrograms to join graph-
ical primitives with a set of predefined rules. Coüasnon et al.
[12] use grammars to detect symbols and minimize possible er-
rors. Thanks to the particular properties of monophonic scores,
sequential-based approaches attempt the recognition directly as
a sequence using Hidden Markov Models [13, 14]. Finally,
graph-based approaches [15] use a graph to define the relation-
ship of primitives or to codify the symbols’ shape.

2.2. Deep learning-based approaches

Since Deep Learning [16] arose, several OMR approaches
have been proposed. For example, Van der Wel et al. [17]
use Convolutional Neural Networks (CNNs) and sequence-
to-sequence (seq2seq) models for recognizing monophonic
printed music scores. Calvo-Zaragoza et al. [18, 19] also use
a CNN to extract features from printed music scores and feed
a Recurrent Neural Network. To avoid the alignment between
the music score and the ground-truth data, they use the Con-
nectionist Temporal Classification (CTC) loss function com-
monly used in speech and text recognition. Nevertheless, as
the authors point out, these methods are only able to recognize
monophonic music scores (no chords). In addition, they can-
not recognize dense music scores containing many accidentals,
dynamics, or expression marks. Contrary, we are able to deal
with multiple symbols in the same time step. This is necessary
to recognize chords or typical music artifacts such as dynamics.
Finally, Wen et al. [20] use connected components to segment
symbols, which are later recognized using CNNs. This method
is tested on both printed and handwritten scores.

2.3. Approaches for handwritten scores

It is true that there are some complete OMR methods for an-
cient (mensural) notation [21, 22, 23], but in this work we focus
on Western music notation. Some researchers have started by
classifying isolated music symbols [24] and some of them have
even shared their own datasets [9, 10, 25].

Since the recently creation of the MUSCIMA++ [26]
dataset, which consists of 140 handwritten scores labeled at
primitive level, the research on OMR has been boosted. For
example, Hajič et al. [4] propose a method to detect noteheads
in music scores. The network first detects which regions are
important, and then, it decides if a pixel belongs to a notehead
and predicts the bounding box. Finally a filter combines outputs
to refuse the mismatches. This approach gives good results but
decreases its performance when chords appear.

Other authors detect all primitives, not only noteheads. For
example, Tuggener et al. [6] use ResNets to predict dense en-
ergy maps that will be used to predict the location, class and
bounding box of each symbol. They can detect the symbols
without preprocessing the page (e.g. cropping each staff). A
similar approach is [5], where Pacha et al. propose an end-
to-end trainable object detector for music primitives. The pro-
posed method uses a machine-learning approach considering
region-based deep convolutional neural networks. Moreover,
authors use transfer learning from general object detection, and
obtain very good results.

2.4. Summary

We observe that there are not complete OMR systems for
handwritten scores on Western notation yet. There only exist
successful approaches for sub-stages of the process. Neverthe-
less, these methods are based on the detection of music sym-
bols, instead of the full OMR pipeline.

Moreover, the reported results might not be really convinc-
ing because the MUSCIMA++ dataset is a subset of the CVC-
MUSCIMA dataset [27], which was created for writer identifi-
cation. Since the above mentioned works randomly split the
pages into train, validation and test partitions, using writer-
independent partitions only, the same music work could appear
in the training and test sets at the same time, with the only dif-
ference of being written by different persons. Consequently, the
system could be biased towards the recognition of these specific
sequences of melodies and rhythms.

For all the above reasons, we believe that a baseline for OMR
in handwritten scores is required.

3. Proposed architecture

Many music scores, including polyphonic ones, are written
using a single staff. Therefore, we propose to read each staff as a
sequence, similar to text recognition [28], by using Long Short-
Term Memory (LSTM) Recurrent Neural Networks (RNN). Al-
though they can extract information directly from image pixels,
we incorporate Convolutional Neural Networks (CNN) as im-
age feature extractor. Figure 1 shows an schema of our archi-
tecture. The different stages are described next.

Input: In this work, we assume that the music scores pages
have been previously segmented into staves. The segmented
staves correspond to binary images resized to a height of 100
pixels in order to feed pixel columns of the same size to the
network. The aspect ratio will be kept, therefore the width
will change for each batch. The images of the same batch are
padded according to the longest staff in the batch.
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Fig. 1. Architecture of our method. Each staff is the input of the convo-
lutional block to extract features, and then, it passes the recurrent block.
Finally, two fully connected layers separate the rhythm and melody.

Convolutional Block: The convolutional block is composed
by three convolutional layers increasing the depth and kernel
size of 3x3, followed by Batch Normalization [29] and Recti-
fied Linear Unit activation [30]. Finally a max-pool 2x1 oper-
ator is used to reduce the vertical dimension while keeping the
same image width. In other words, the output of the Convolu-
tional Block will have the same width as the input image.

Recurrent Block: This block uses Bi-directional LSTM net-
works (BLSTM) [31] to benefit from context when recognizing
each symbol. Compared to RNNs, LSTMs are able to learn
long-term dependencies, avoiding the vanishing gradient prob-
lem, and keeping information for longer time. Moreover, the bi-
directionallity provides an extra information that reduces ambi-
guities, because it takes into account the forward and backward
directions. For example, if one direction is reading a vertical
line and the other direction is seeing a notehead, the network
can correctly predict a quarter note. Figure 2 shows an example
of the ambiguity reduction provided by both directions. In our
architecture, we use four BLSTM layers of 512 neurons each.

Dense Layers: After the recurrent block, we incorporate two
fully connected (FC) layers. In this way, we will obtain two
outputs: one for the rhythm and one for the pitch. If we had one
single output, we should consider any combination of pitch-
rhythm as a different class, which would become in a very large
number of classes. Another reason to separate pitch-rhythm and
consider them independent, is that we can obtain many more
examples of each class to train. For instance, the system learns
the shape of a 16th note, no matter its pitch. Please note that
here we define the pitch as the location of the note in the staff
(e.g. the note is located on the third staff line), instead of the
real pitch (e.g. C4 note), because it depends on the clef. Also,
in this way, we can represent all pitches with few classes.

Fig. 2. BLSTM predictions. The backward direction helps to reduce the
ambiguities when predicting a symbol.

Output: Finally, the output of each dense layer is a matrix,
whose columns are symbol and pitch probabilities per pixel col-
umn in the original image. Each matrix has the same width as
the original image and has a height of 80 classes for the rhythm
and 28 classes for the pitch. By thresholding these matrices, we
can decide which symbols appear in the music scores. In our
previous work [7] we performed an exhaustive analysis where
we evaluated several thresholds. The one which provided the
best performance was 0.5. In other words, the network has to
be at least 50% confident when recognizing each symbol. Note
that more than one symbol may appear at the same time step
(column). Two symbols have been manually added to ease the
recognition:

• Epsilon (ε) is used to know where a symbol starts and
ends. If ε is activated, none of the other symbols can be
activated. This symbols works as a separator.

• No note is a symbol only found in the pitch matrix. When
this symbol is activated it means that the symbol activated
in the rhythm matrix (at the same instance of time) has not
pitch (e.g. symbols without pitch, such as rests).

Finally, these outputs are converted into an array, combining
the rhythm and pitch. These arrays will be used to evaluate the
method at rhythm and pitch level and also to evaluate the com-
plete system, where both parts should be predicted correctly.

As it has been stated, in OMR several symbols can appear at
the same time stamp (e.g. chords, time signature, etc.). Hence,
several labels can be predicted at the same output step. For this
reason, we choose the Smooth L1-loss function. Concretely,
our architecture has been trained using the Stochastic Gradient
Descent (SGD) optimizer with Momentum and weight decay
i.e. L2 regularization. The Smooth L1-loss has been used as
objective function defined as

L(x, y) =
1
n

�
0.5(xi − yi)2, if |xi − yi| < 1
|xi − yi| − 0.5, otherwise,

(1)

where x is the output of the proposed architecture and y is the
target we want to achieve. The proposed loss function can deal
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Fig. 3. Different techniques of data augmentation. Dilating, eroding and
blurring have been applied to both datasets, printed and handwritten ones.
Shuffling is only applied to the handwritten dataset.

with multi-label problems being less sensitive than L2-loss with
respect to outliers.

4. Data Augmentation and Transfer Learning

This section describes the training strategies that have been
used to exploit our architecture. As stated before, there is very
few labelled handwritten data. Since little groundtruth data for
training leads to overfitting problems, we propose two differ-
ent strategies. First, we propose to apply transfer learning by
fine-tuning a printed model with handwritten data. Second, we
propose a data augmentation technique for music scores.

Transfer learning. Training our system with printed scores
give insights of the suitability of the proposed approach for
OMR. However, a model for printed scores may fail when rec-
ognizing handwritten scores due to the elastic deformations in
handwriting styles. To overcome this issue, we propose to pre-
train our model with printed scores, and then, fine-tune it with
the few available handwritten data.

Data augmentation. To increase the amount and variability
of training data, some distortions have been applied to both the
printed and handwritten training sets. First, we have applied
dilation, erosion and blurring distortions. Note that this data
augmentation has been randomly applied for each music score.
Beside the morphological operations, the number of handwrit-
ten music scores in the training set has been increased by shuf-
fling the bar units. For this purpose, we crop each measure (bar
unit) and shuffle among the different measures of the staff, with
the exception of the first and the last bar unit. These two mea-
sures are fixed because the first one contains the clef and the
time signature whereas the last one can contain a final barline.
Figure 3 shows the different data augmentation techniques ap-
plied to each dataset. Note that this shuffling also prevents the
model to learn a specific melody and rhythm.

5. Experimentation

This section experimentally validates the performance of our
architecture. As it has already mentioned, we propose to firstly
train a model able to recognize printed musical scores and later
transfer this learning to handwritten data. Hence, two datasets
have been used.

5.1. Datasets

Printed dataset: we use a subset of PrIMuS dataset [19],
which consists of rendered incipts from the RISM4. It is an-
notated at primitive level i.e. the symbols are labelled as note-
heads, steams and flags, among others instances instead of quar-
ter notes, 8th notes, 16th notes and such on. This dataset is lat-
ter converted into symbol level. Our set contains almost 50,000
music scores rendered with 3 different typographies.

Handwritten dataset: The MUSCIMA++ dataset [26] is a
selection of 140 pages from the CVC-MUSCIMA dataset [27],
annotated at primitive level. Although these primitives are re-
lated each other using a graph, they cannot be directly used for
OMR evaluation. For this reason, having into account the graph
relations and keeping the noteheads as the main node of notes,
we have manually labelled 20 music pages at symbol level (in-
cluding slurs, dynamic marks, etc.) in order to evaluate a full
OMR system. In any case, we should take into account that the
original CVC-MUSCIMA dataset was created for staff removal
and writer identification (for this reason, it contains the same 20
different musical compositions, rewritten by 50 different writ-
ers). This fact leads us to some limitations when splitting the
sets i.e. into train, validation and test. Our method must never
see the same musical composition at test and train or it may
be biased towards the recognition of a specific melody. For
this reason, we have selected these 20 pages (musical composi-
tions), from different writers (see Table 1).

5.2. Evaluation

We use the Symbol Error Rate (SER) [17, 18, 19] metric.
Similarly to Word Error Rate (WER) [28], commonly used in
text recognition community, SER is computed as the Leven-
shtein distance: the sum of edit operations that are needed to
convert the output of our method into the groundtruth in terms
of symbol insertions (I), substitutions (S) and deletions (D).
Formally,

S ER =
S + D + I

N
, (2)

where N is the number of symbols in the ground truth. The
lower this value, the better.

To perform the evaluation at different levels, we propose to
evaluate Rhythm and Pitch separately. Therefore, we will pro-
vide the SER for both outputs of the proposed architecture. Fi-
nally, both outputs are merged and the SER for pairs Rhythm
and Pitch (considered as one symbol) is provided.

5.3. Results on Printed Documents

We first evaluate our model in the printed scenario. Thus,
we can test the suitability of our architecture in a controlled
scenario. An ablation study has been performed to test sev-
eral architecture details. Table 2 presents this study in order to
evaluate the importance of the BLSTM recurrent block, CNN
features and Data augmentation. Moreover, we compare the
current work with our previous work [7].

4http://rism.info
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Table 1. Selected Muscima++ pages for train, validation and test sets. We indicate the number of staves per page, and if the page is polyphonic.

Train Validation Test

Page 2 4 5 6 7 8 9 13 15 16 19 20 11 12 14 17 1 3 10 18
Writer 20 12 21 16 31 35 32 23 43 34 1 18 49 18 29 44 17 13 15 10

Polyphonic � � � � � � � � �
# Staves 6 5 7 6 4 6 4 5 5 8 3 8 6 8 6 6 5 7 6 8

Table 2. Results on printed documents. All results are between [0-1]. The
first number is the mean of the five executions and the number between
parenthesis is the standard deviation. The first row corresponds to our
previous work, the others are results of the current architecture.

RNN CNN Data
Augm.

Rhythm
SER

Pitch
SER

Rhy.+Pit.
SER

BLSTM [7] - � 0.020 (± 0.001) 0.015 (± 0.001) 0.028 (± 0.002)

LSTM - - 0.168 (± 0.014) 0.144 (± 0.011) 0.174 (± 0.012)
LSTM - � 0.163 (± 0.009) 0.139 (± 0.013) 0.169 (± 0.008)
BLSTM - - 0.005 (± 0.002) 0.003 (± 0.001) 0.006 (± 0.002)
BLSTM - � 0.005 (± 0.002) 0.002 (± 0.000) 0.005 (± 0.001)
BLSTM � - 0.003 (± 0.001) 0.002 (± 0.001) 0.003 (± 0.001)
BLSTM � � 0.002 (± 0.001) 0.001 (± 0.000) 0.003 (± 0.001)

As expected, the best configuration uses a CNN to extract
image features containing richer information than merely us-
ing pixel columns. Moreover, the BLSTM provides more con-
text information and improves the previous approaches. Finally,
data augmentation slightly improves the performance whereas
making it more robust to the initialization. The first row shows
our previous work, while the last row shows the best configu-
ration of the current work. The main difference is that here we
propose to incorporate a convolutional block before the recur-
rent layers, and we have increased the number of neurons from
128 to 512 and layers from 3 to 4. In this way, we obtained
a better performance (the SER decreases from 0.028 to 0.003
when we consider the rhythm and pitch together).

5.4. Results on Handwritten Documents
As stated before, we aim to create a full staff-wise HMR sys-

tem for handwritten music scores that can serve as starting point
for future improvements in this field. Table 3 shows the results
of our method using the selected pages of the MUSCIMA++
dataset. Note that each line introduces an improvement to the
previous one. In the first row, we do not use any of the pro-
posed improvements (no pre-training, CNNs, etc.). Observe
that pre-training with printed data decreases the error (second
row). Data augmentation on printed data helps a little bit. How-
ever, in the fourth row, we can see that the BLSTM is the key
modification to reduce the error rates by 0.2 points. This is
because of its ability to use context to minimize ambiguities.
Then, the feature extraction based on CNN also helps to recog-
nize the handwritten music scores (fifth row). By shuffling the
measures (the sixth row) we obtain the best approach. Finally,
in the last row, we observe that morphological operations for
data augmentation only introduce noise and increases the error
rates. The main reason for this behaviour could be that mor-
phological techniques may make printed scores look closer to
handwritten, but when these techniques are used in handwritten
scores, the result may look unrealistic.

Fig. 4. Qualitative comparison with Photoscore. Example of one staff of
page 1. The blue box shows that our method is not able to recognize the
symbols when several of them appear in the same column.

Using the best configuration in Table 3, we provide the re-
sults from each one test page in Table 4 (two of them are poly-
phonic). Note that each row corresponds to a different writer
and different page.

5.5. Comparison with commercial OMR software
Since we could not find any complete OMR for handwrit-

ten scores in the literature, we could not make a quantitative
comparison. However, we could find a commercial software
for qualitative evaluation. Photoscore is a commercial software
able to recognize handwritten and printed music scores. It must
to be said that we do not know whether Photoscore uses any
post-processing or grammar rules (detecting the time signatures
might be counting the number of beats in each measure and val-
idating the recognition) in the recognition, so the comparison
could not be completely fair.

Figures 4-8 show some qualitative results comparing the
Photoscore results with our method. We have used different col-
ors to highlight the common mistakes of our method. The blue
color is used when different symbols appear in the same col-
umn, and our method is not capable to relate each symbol with
the correspondent pitch. Orange boxes show that some sym-
bols, as accents, could confuse our system. For example, some-
times the method predicts that an accent is a notehead, thus it
detects the notehead located higher up (see Fig. 8), whereas
other times it can predict that accent is another notehead and
detects a chord (see Fig. 7). In red we show when the system
confuses some symbols because of shape, for example a text dy-
namics is confused by a quarter note. Finally, Fig. 6 shows in
green the difficulties to detect all noteheads in a chord. In these
images, please note that when we draw the output of our net-
work, the compound music symbols have been manually joined
for better visualization.

5.6. Discussion
From these results, we could conclude that our methodology

is valid and has shown to be able to recognize simple staves.
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Table 3. Results on handwritten documents. All results are between [0-1]. The first number is the mean of the five executions and the number between
parenthesis is the standard deviation.

Pre-train
Printed

D. Augm.
Printed BLSTM CNN D. Augm.

Handwritten
Rhythm

SER
Pitch
SER

Rhythm+Pitch
SER

Shuffle Morph.

- - - - - - 0.826 (± 0.009) 0.709 (± 0.012) 0.899 (± 0.007)
� - - - - - 0.771 (± 0.021) 0.668 (± 0.021) 0.872 (± 0.016)
� � - - - - 0.762 (± 0.019) 0.690 (± 0.004) 0.854 (± 0.019)
� � � - - - 0.523 (± 0.018) 0.464 (± 0.020) 0.610 (± 0.016)
� � � � - - 0.493 (± 0.015) 0.396 (± 0.012) 0.559 (± 0.015)
� � � � � - 0.476 (± 0.009) 0.387 (± 0.008) 0.545 (± 0.009)
� � � � � � 0.490 (± 0.005) 0.393 (± 0.004) 0.554 (± 0.007)

Table 4. Results on the handwritten documents, shown per page. All results
are between [0-1]. The first number is the mean of the five executions and
the number between parenthesis is the standard deviation.

Polyph. Rhythm
SER

Pitch
SER

Rhy.+Pit.
SER

W. 17 - P. 1 - 0.528 (± 0.019) 0.349 (± 0.019) 0.594 (± 0.014)
W. 13 - P. 3 - 0.226 (± 0.018) 0.175 (± 0.008) 0.270 (± 0.016)
W. 15 - P. 10 � 0.716 (± 0.017) 0.620 (± 0.010) 0.796 (± 0.018)
W. 10 - P. 18 � 0.483 (± 0.018) 0.422 (± 0.008) 0.565 (± 0.013)

Fig. 5. Qualitative comparison with Photoscore. Example of one staff of
page 3. Contrary to Photoscore, note that our method could detect all the
slurs.

From the qualitative point of view, bearing in mind that the Pho-
toscore software might be using music rules for validation, our
method obtains pretty good results. In fact, in many cases, our
method outperforms Photoscore.

Concerning the quantitative results, although we are aware
that the overall SER is close to 50%, these results are promising.
First, we have used very few handwritten data, and secondly, we
have not applied any grammar or rule to validate each bar unit.

Nevertheless, there are several limitations, most of them re-
lated to the way of labelling the data, which are described next.

Polyphonic music scores: The ground-truth is not able to
relate which pitch corresponds to each notehead in the case
that the rhythm within a chord (or polyphonic voices) is dif-
ferent (see Fig. 9 red symbols). However, it is able to recognize
polyphony correctly if the rhythm is the same for all the sym-
bols (see Fig. 9 green symbols).

Repeated symbols: If a symbol without pitch appears more
than one time at the same time step, the method will only detect
one (see Fig. 9 the blue slur will not be recognized).

Compound Music Symbols: The compound music symbols

Fig. 6. Qualitative comparison with Photoscore. Example of one staff of
page 10. The green box shows that our method is not able to recognize all
the noteheads in polyphonic music scores.

Fig. 7. Qualitative comparison with Photoscore. Example of one staff of
page 10. The orange box shows that our method could confuse some sym-
bols by others by the position i.e. accents by noteheads.

such as 8th notes, 16th notes, 32th notes and so on, joined by a
beam, will be separately recognized because there is no symbol
for notating this i.e each notehead will have its steam and its
flag, will not be joined by a beam.

Clef position on the stave: The ground truth does not pro-
vide the position of the clef on the stave. This means that a bass
clef on the third or forth staff lines are predicted as the same.

6. Conclusions and future work

In this work, we have proposed a complete Handwritten Mu-
sic Recognition (HMR) system based on CNNs and RNNs, data
augmentation and transfer learning from printed scores. The
experimental results have demonstrated the viability of this ap-
proach, showing that staves can be recognized as a sequence us-
ing BLSTMs, and also, that the convolutional block acts as an
effective feature extractor. We have first demonstrated that our
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Fig. 8. Qualitative comparison with Photoscore. Example of one staff of
page 18. The red box shows that our method could confuse some symbols
by others by the shape. The blue box shows that our method is not able
to recognize the symbols when there are many in the same column. The
orange box shows that our method could confuse some symbols by others
by the position.

Fig. 9. Method’s limitations. In red polyphonic notes that could not be
correctly recognized because they have different duration at the same time
step. In blue the slur that will not be detected because there is another slur
at the same time. In green, symbols that will be correctly detected because
they have the same duration.

architecture is valid through the evaluation over printed scores.
Secondly, we have showed that our methodology greatly bene-
fits from data augmentation from handwritten scores as well as
transfer learning from printed scores.

Taking into account that we have used only 20 pages of
the MUSCIMA++ database in the experiments, the results are
promising. Of course, the incorporation of more handwritten
data labelled at symbol level would help to obtain better results.

We hope that these results, together with our labelled data,
can serve as a baseline for the community, fostering the re-
search towards full OMR systems. Future work will be focused
on the incorporation of music notation rules to solve ambigu-
ities and improve the performance. Also, we will investigate
segmentation-free methods in order to deal with polyphonic
music scores that are written in several staves.
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[12] B. Coüasnon, B. Rétif, Using a grammar for a reliable full score recogni-
tion system (1995).

[13] L. Pugin, Optical music recognition of early typographic prints using hid-
den markov models, in: ISMIR, 2006, pp. 53–56.

[14] L. Pugin, J. A. Burgoyne, I. Fujinaga, Map adaptation to improve optical
music recognition of early music documents using hidden markov mod-
els, in: ISMIR, 2007, pp. 513–516.

[15] J. C. Pinto, P. Vieira, J. M. Sousa, A new graph-like classification method
applied to ancient handwritten musical symbols, Document Analysis and
Recognition 6 (1) (2003) 10–22.

[16] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

[17] E. van der Wel, K. Ullrich, Optical music recognition with convolutional
sequence-to-sequence models, in: ISMIR, 2017, pp. 731–737.

[18] J. Calvo-Zaragoza, J. J. Valero-Mas, A. Pertusa, End-to-end optical music
recognition using neural networks, in: ISMIR, 2017, pp. 472–477.

[19] J. Calvo-Zaragoza, D. Rizo, End-to-end neural optical music recognition
of monophonic scores, Applied Sciences 8 (2018) 1–23.

[20] C. Wen, A. Rebelo, J. Zhang, J. Cardoso, A new optical music recognition
system based on combined neural network, Pattern Recognition Letters
58 (2015) 1 – 7.

[21] C. Ramirez, J. Ohya, Automatic recognition of square notation symbols
in western plainchant manuscripts, Journal of New Music Research 43 (4)
(2014) 390–399.

[22] J. Calvo-Zaragoza, A. H. Toselli, E. Vidal, Handwritten music recognition
for mensural notation: Formulation, data and baseline results, in: ICDAR,
2017, pp. 1081–1086.

[23] A. Pacha, J. Calvo-Zaragoza, Optical music recognition in mensural no-
tation with region-based convolutional neural networks, in: ISMIR, 2018,
pp. 240–247.

[24] A. Pacha, H. M. Eidenberger, Towards self-learning optical music recog-
nition, ICMLA (2017) 795–800.

[25] J. Calvo-Zaragoza, J. Oncina, Recognition of pen-based music notation:
The homus dataset, in: 2014 22nd International Conference on Pattern
Recognition, 2014, pp. 3038–3043.
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