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Highlights

• A unified formulation for different practical clustering
problems.

• An effective algorithm for multi-constrained ‘p minimiza-
tion problem.

• The convergence of our algorithm was verified theoreti-
cally and experimentally.

• We applied our method to synthetic and real datasets and
obtained good results.
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ABSTRACT

In this letter, we formulate sparse subspace clustering as a smoothed `p (0 < p < 1) minimization
problem (SSC-SLp) and present a unified formulation for different practical clustering problems by
introducing a new pseudo norm. Generally, the use of `p (0 < p < 1) norm approximating the `0 one
can lead to a more effective approximation than the `1 norm, while the `p-regularization also causes
the objective function to be non-convex and non-smooth. Besides, better adapting to the property
of data representing real problems, the objective function is usually constrained by multiple factors
(such as spatial distribution of data and errors). In view of this, we propose a computationally efficient
method for solving the multi-constrained non-smooth `p minimization problem, which smooths the
`p norm and minimizes the objective function by alternately updating a block (or a variable) and its
weight. In addition, the convergence of the proposed algorithm is theoretically proven. Extensive
experimental results on real datasets demonstrate the effectiveness of the proposed method.

Keywords: Sparse subspace clustering; `p minimization; Unified formulation.
c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The processing of high-dimensional data has become a part
of the necessary daily work in numerical applications of pat-
tern recognition [18] and data mining [5]. Subspace cluster-
ing, as a key technology in high dimensional data process-
ing, has naturally become an important research topic. The
so-called subspace clustering is the problem that groups high-
dimensional data into different clusters (corresponding to dif-
ferent subspaces).

Recently, various subspace clustering methods have been de-
veloped, which can be roughly divided into four categories: sta-
tistical [22], algebraic [3], iterative [23], and spectral-type [2]
methods. For more progress on subspace clustering, please re-
fer to [20, 15, 12, 24, 4, 10, 13, 28, 27, 25, 26, 1, 7, 21, 30]. In
this letter, we focus on the spectral-type method.

In the spectral-type paradigm, the representation based clus-
tering method has attracted a wide attention due to its com-
putational effectiveness and superior clustering performance.

∗∗Corresponding author:
e-mail: wu_xiaojun@jiangnan.edu.cn (Xiao-jun Wu)

Let X = [x1, x2, · · · , xn] ∈ Rm×n denote a given data matrix
drawn from a union of t linear subspaces {Si}ti=1 with dimen-
sions {di}ti=1. The premise is that each data point xi can be recon-
structed by a linear combination of all data points, i.e., xi = Xci,
where ci ∈ Rn is the representation coefficient of xi. For exam-
ple, nuclear norm based regularized LRR [12] and LRSC [24]
attempt to find a low rank representation of data. In contrast to
LRR and LRSC, sparse representation based SSC [4] encour-
ages model coefficients to be sparse by `1-regularization. After
that, various variants have been proposed, such as S3C [10],
LapLRR [13], LRSSC [26] and MLRSSC [1]. To better model
practical problems, these low rank and sparse representation
based clustering problems naturally involve multiple variables
and constraints. The Alternating Direction Method (ADM) [29]
with theoretical guarantees is widely used to solve such prob-
lems. Although rigorous mathematical analysis is used to con-
struct the optimization process, the ADM needs to introduce
several auxiliary variables which may sacrifice convergence
rate, or even affect the convergence of the algorithm when there
exist too many variables. To alleviate the limitation, Linearized
ADM (LADM) [11] is proposed to improve the convergence
rate and reduce the number of auxiliary variables, but it also
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encounters convergence problems. Recent studies [8, 14] show
that the Iteratively Reweighted Least Squares (IRLS) method
for the unconstrained `p (0 < p 6 1) minimization problem
can provide a fast solver and good sparse recovery performance,
which motivates us to formulate sparse subspace clustering as a
smoothed `p (0 < p < 1) minimization problem with multiple
constraints. The main contributions of this letter include:

1. A unified formulation for different practical clustering
problems via multi-constrained `p minimization.

2. An effective method for solving the proposed `p minimiza-
tion problem.

3. A theoretically and experimentally verified convergence of
the proposed algorithm.

4. Superior performance on real datasets against the state-of-
the-art algorithms.

2. Related work

In this section, we present a brief review of sparse sub-
space clustering (SSC) methods. In recent years, SSC has at-
tracted a lot of interest due to its superior clustering perfor-
mance (e.g., [10, 28, 27]). The commonality of these methods
is to encourage the model coefficients to be sparse such that the
inter-cluster affinity is zero and the intra-cluster one is sparse.
According to [4], the following practical clustering problems
are considered:
(P1) Clustering of clean data points drawn from a union of t
linear subspaces. For each xi, SSC is formulated as:

min
ci

‖ci‖0 s.t. xi = Xci, cii = 0, (1)

where ‖ci‖0 = #{c ji} denotes the `0-norm of ci ∈ Rn and the con-
straint cii = 0 is used to avoid the trivial solution. In general, the
`0 minimization is an NP-hard problem. A common approach
is to employ the convex surrogate `1-norm instead, which leads
to the following minimization problem:

min
ci

‖ci‖1 s.t. xi = Xci, cii = 0, (2)

where ‖ci‖1 =
∑n

j=1

∣∣∣c ji

∣∣∣ denotes the `1-norm of ci.
(P2) Clustering of data points drawn from a union of t affine
subspaces and corrupted by noise. Here, SSC is formulated as:

min
ci,zi

‖ci‖1 s.t. xi = Xci + zi, 1T ci = 1, cii = 0. (3)

where zi ∈ Rm is the additive noise, 1 denotes the all ones vec-
tor, and 1T ci = 1 is the linear equality constraint of affine sub-
spaces [4].
(P3) Clustering of data points drawn from a union of t affine
subspaces and contaminated by noise and sparse outlying en-
tries [4]. For this scenario, SSC can be formulated as follows

min
ci,zi,oi

‖ci‖1 s.t. xi = Xci + zi + oi, 1T ci = 1, cii = 0. (4)

where oi ∈ Rm is the sparse outlying entry with a few large
nonzero components.

The problems in (2)-(4) are all convex and can be solved
by the ADM, respectively. After that the optimized solution
C = [c1, c2, · · · , cn] is employed to construct an affinity matrix
A = |C|+|C|T from which we can obtain clustering assignments
using the spectral clustering [20] approach.

3. Sparse subspace clustering via smoothed `p minimiza-
tion

In this section, we present a unified formulation for differ-
ent practical clustering problems (P1)-(P3) via smoothed `p

minimization. For simplification, we start with the clustering
problem (P2) and regard (P1) as its special case. We then in-
corporate the formulation of (P3) into the obtained framework.

3.1. Methods

Usually, the `1-norm is employed for sparse recovery as a
convex relaxation of the `0-norm in compressed sensing. The
problem is that this relaxation may cause large error on large co-
efficients [31]. Besides, it is well known that the `p (0 < p < 1)
is a pseudo norm between `0 and `1 norms. When decreas-
ing the value of p from 1 toward 0, the `p norm approaches `0

norm. Accordingly, we formulate sparse subspace clustering as
a multi-constrained `p minimization problem.

To start, we consider the clustering problem (P2) and formu-
late it as follows

min
ci,zi

‖ci‖pp+
1

2λ
‖zi‖22 s.t. xi = Xci + zi, 1T ci = 1, cii = 0, (5)

where ‖ci‖pp =
∑n

j=1

∣∣∣c ji

∣∣∣p denotes the `p (0 < p < 1) norm of
ci and λ > 0 is a balance parameter. Obviously, the variation
without the term zi and affine constraint is the formulation of
the problem (P1). It is equivalent to

min
ci

‖ci‖pp +
1

2λ
‖xi − Xci‖22 s.t. 1T ci = 1, cii = 0. (6)

According to the strategy used in [16], the problem in (6) is
equivalent to the following minimization problem:

min
ci

‖ci‖pp+
1

2λ
‖xi − Xci‖22+

β

2
(1T ci − 1)2 s.t. cii = 0. (7)

When β is large enough, the optimal solution ci of (7) will make
the third term (1T ci − 1)2 to be zero due to (1T ci − 1)2 > 0.
Therefore, the problems in (6) and (7) are equivalent w.r.t. a
large enough value of β [16].

As the quadratic terms in (7) can be combined together, we
can rewrite (7) as

min
ci

H(ci) , ‖ci‖pp +
1

2λ

∥∥∥x̂i − X̂ci

∥∥∥2

2
s.t. cii = 0, (8)

where X̂ , [X; (λβ)1/21T ] with the i-th column x̂i. The main
challenge for solving (8) originates in the non-convex and non-
smooth nature of the objective. An efficient way is to smooth
the `p-norm by introducing a regularization parameter δ > 0:

min
ci

H(ci, δ),
∥∥∥(ci)

2 + δ1
∥∥∥p

p
2
+

1
2λ

∥∥∥x̂i−X̂ci

∥∥∥2

2
s.t. cii =0, (9)

where
∥∥∥(ci)2 + δ1

∥∥∥p
p
2

=
∑n

j=1[(c ji)2 + δ]p/2. The problems in (8)

and (9) are ε-equivalent w.r.t. δ, which is based on the fact:
when δ ↓ 0, H(ci, δ) ↓ H(ci), i.e., for any given ε > 0, there
always exists δ > 0 such that

H(ci) < H(ci, δ) 6 H(ci) + ε. (10)
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The Lagrangian function of the problem in (9) is

L(ci, δ)=
∥∥∥(ci)

2 + δ1
∥∥∥p

p
2

+
1

2λ

∥∥∥x̂i − X̂ci

∥∥∥2

2
+ γeT

i ci, (11)

where γ is the Lagrange multiplier and ei ∈ Rn denotes the i-
th standard basis vector whose i-th component is one and the
others are zero. The derivative of Eq. (11) w.r.t. ci is

∂L(ci, δ)
∂ci

= Wci − 1
λ

X̂T (x̂i − X̂ci) + γei, (12)

where W is the weight matrix (a diagonal matrix) of ci with
the j-th diagonal entry p[(c ji)2 + δ]

p−2
2 . Setting the derivative to

zero, we have

Wci − 1
λ

X̂T (x̂i − X̂ci) + γei = 0. (13)

Solving the above system of linear equations, we have

ci = (X̂T X̂ + Ŵ)−1(X̂T x̂i − λγei), (14)

where Ŵ is a diagonal matrix with the j-th diagonal entry:

[Ŵ] j j = λp[(c ji)
2 + δ]

p−2
2 . (15)

Multiplying both sides of Eq. (14) by eT
i , and noting that eT

i ci =

0, we can obtain

γ =
eT

i (X̂T X̂ + Ŵ)−1X̂T x̂i

λeT
i (X̂T X̂ + Ŵ)−1ei

. (16)

Substituting (16) into (14), we find

ci = M (X̂T x̂i −
eT

i N x̂i

eT
i Mei

ei), (17)

where M = (X̂T X̂ + Ŵ)−1 and N = MX̂T . It is worth noting
that our solution can deal with the case of 0 < p < 2 (p − 2 is
negative in (15)).

Finally, (15) and (17) are alternately updated until the algo-
rithm converges or the number of iterations exceeds a predeter-
mined number. The algorithm process is summarized in Algo-
rithm 1, where vk denotes the k-th iteration of v.

3.2. A clustering problem with sparse outlying entries

Typically, when the objective involves too many variables the
algorithm analysis will become difficult. So, we expect to incor-
porate the formulation of (P3) into the framework of the model
(5). For each xi, the problem (P3) is formulated as:

min
ci,zi,oi

(‖ci‖pp + ‖oi‖qq) +
1

2λ
‖zi‖22

s.t. xi = Xci + zi + oi, 1T ci = 1, cii = 0,
(18)

where ‖oi‖qq =
∑m

j=1

∣∣∣o ji

∣∣∣q denotes the `q (0 < q < 1) norm of
oi ∈ Rm. Note that the problem in (18) involves multiple vari-
ables and constraints, and its first two terms are non-smooth.
The work in [7] proposed an ADM [29] framework based algo-
rithm to solve such problems, where the IRLS is embedded into

Algorithm 1 : Sparse subspace clustering by (9)
Input: Data set X ∈ Rm×n, number t of subspaces, λ > 0,

p ∈ {0.3, 0.5, 0.7}, ρ > 1 and ζ = 10−6.
Initialization: Representation matrix C0 = 0 and δ0 = 1.
for k = 0, 1, 2, · · ·

1. Update the weight matrix Ŵk of each ci by
[Ŵk] j j = λp[(ck

ji)
2 + δ]

p−2
2 .

2. Calculate matricesM and N , and update Ĉk+1 by

ck+1
i =M (X̂T x̂i − eT

i N x̂i

eT
i Mei

ei).

3. Update δk+1 by δk+1 = δk/ρ.
4. If

∥∥∥Ck −Ck+1
∥∥∥∞ ≤ ζ, break.

end for
5. Build an affinity matrixA = |C| + |C|T .
6. Apply spectral clustering to the affinity matrixA.

Output: Cluster assignments of X.

the ADM for solving the `p and `q subproblems, respectively.
As the previous analysis shows, the traditional ADM frame-
work based algorithm may encounter the problem of conver-
gence rate and convergence. To effectively optimize the prob-
lem in (18), we first introduce some symbols used in subsequent
sections.

Let X̃ , [X, I] and c̃i , [ci; oi]. Thus, the constraint xi =

Xci + zi + oi in (18) is reduced to xi = X̃c̃i + zi. Note that the
block c̃i is still sparse when ci and oi are sparse. Furthermore,
we define a function satisfying the following properties:

‖[a; b]‖p|q , (
n∑

i=1

|ai|p)
1
p + (

m∑

j=1

∣∣∣b j

∣∣∣q)
1
q , and

‖[a; b]‖p|qp|q ,
n∑

i=1

|ai|p +

m∑

j=1

∣∣∣b j

∣∣∣q ,
(19)

where a ∈ Rn and b ∈ Rm with the i-th elements ai and bi,
respectively, and 0 < p, q < 1. It is easy to prove that the
above function is a pseudo norm since it violates the triangle
inequality, and has similar properties to the `p norm. We call it
p|q norm in this letter. Obviously, when p = q, the p|q norm is
reduced to `p norm. That is to say, the p|q norm is an extension
of `p norm, where p and q can take different values. Based on
the p|q norm and the block c̃i, (‖ci‖pp + ‖oi‖qq) in (18) is reduced

to ‖[ci; oi]‖p|qp|q = ‖c̃i‖p|qp|q. Thus, we can rewrite (18) as

min
c̃i,zi

‖c̃i‖p|qp|q+
1

2λ
‖zi‖22 s.t. xi = X̃c̃i+zi, 1T ci =1, cii =0. (20)

It is noteworthy that the model (20) is reduced to (5). Own-
ing to the similarity of the p|q and `p norms, Algorithm 1 can
be also applied to the model in (20) by alternately updating a
block and its weight. Moreover, Algorithm 1 is applicable to
the clustering of data points contaminated by noise or sparse
outlying entries for linear subspaces as well. Therefore, it is a
unified formulation for different practical clustering problems.
Importantly, the unified formulation makes the algorithm anal-
ysis of the problem in (18) easier, although it contains multiple
variables. In subsequent sections, we mainly focus on it.
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4. Algorithm analysis

In this section, we present the convergence and complexity
analysis of Algorithm 1.

4.1. Convergence Analysis

We conduct the convergence analysis of Algorithm 1 for non-
convex and non-smooth optimization.
Theorem 3.1. For given λ and 0 < p < 1,
1) L(ck

i , δ
k) is non-increasing;

2) The sequence {ck
i } is bounded;

3) lim
k→∞

∥∥∥ck
i − ck+1

i

∥∥∥
2

= 0.

Proof. According to (17), it is easy to verify that eT
i ck

i = 0, and
thus we have L(ck

i , δ
k) > 0 for all k > 0. We calculate

L(ck
i , δ

k) − L(ck+1
i , δk+1)

=
∥∥∥(ck

i )2 + δk1
∥∥∥p

p
2
−

∥∥∥(ck+1
i )2 + δk+11

∥∥∥p
p
2

+
1

2λ

∥∥∥X̂ck
i −X̂ck+1

i

∥∥∥2

2
− 1
λ

(X̂ck
i −X̂ck+1

i )T (x̂i−X̂ck+1
i )

=

n∑

j=1

(ck
ji)

2+δk

[(ck
ji)

2+δk]1− p
2

−
[(ck+1

ji )2+δk+1]
p
2 [(ck

ji)
2+δk]1− p

2

[(ck
ji)

2+δk]1− p
2

(21)

+
1

2λ

∥∥∥X̂ck
i −X̂ck+1

i

∥∥∥2

2
−(ck

i −ck+1
i )T (Wkck+1

i +γk+1ei)

> 1
2

(ck
i − ck+1

i )T Wk(ck
i + ck+1

i ) +
1

2λ

∥∥∥X̂ck
i − X̂ck+1

i

∥∥∥2

2

− (ck
i − ck+1

i )T Wkck+1
i

=
1
2

(ck
i − ck+1

i )T (Wk +
1
λ

X̂T X̂)(ck
i − ck+1

i ) > 0, (22)

where the first equality follows (13) and eT
i ck

i = 0. The first
inequality holds by using the Young’s inequality for the second
term in (21) and the fact that δk+1 < δk in Algorithm 1. The last
inequality follows the positivity of the matrix (Wk+ 1

λ
X̂T X). The

above equation indicates that L(ci, δ) is non-increasing, which
leads to lim

k→∞

∥∥∥ck
i − ck+1

i

∥∥∥
2

= 0. Thus, we have

∥∥∥(ck
i )2

∥∥∥p
p
2
<
∥∥∥(ck

i )2 + δk
∥∥∥p

p
2
6L(ck

i , δ
k)6L(c0

i , δ
0), (23)

which implies that the sequence {ci} is bounded.
Theorem 3.2. For given λ and 0< p <1, the limit c∗i of any co-
nvergent subsequence is a stationary point of the problem in (9).

Proof. Since the sequence {ck
i } is bounded there exists a

subsequence {ck j

i }, such that lim
j→∞

c
k j

i = c∗i . Note the fact that

lim
k→∞

∥∥∥ck
i − ck+1

i

∥∥∥
2

= 0 in Theorem 3.1, which implies that the

subsequence {ck j+1
i } also converging to c∗i . At the k j-th itera-

tion, c
k j+1
i solves (13), i.e.,

Wk j c
k j+1
i − 1

λ
X̂T (x̂i − X̂c

k j+1
i ) + γk j+1ei = 0. (24)

Let j→ ∞. We have

W∗c∗i −
1
λ

X̂T (x̂i − X̂c∗i ) + γ∗ei = 0, (25)

where [W∗] j j = p[(c∗ji)
2 + δ∗]

p−2
2 , and γ∗ is defined in (16).

Namely, c∗i is a stationary point of (9).
In Algorithm 1, we decrease δ from a larger value 1 by δk+1 =

δk/ρ with ρ > 1, which intuitively verifies that the smoothed `p

minimization problem (9) is close to the non-smoothed one (8).

4.2. Complexity analysis

We evaluate the main time complexity of SSC-SLp and other
related methods SSC [4] and `qSSC [7]. SSC adopts the ADM
method with the main time complexity of O(3mn2 + n3), and
`qSSC uses the integration of the ADM and IRLS with the main
time complexity of O(4mn2 + 2n3). Our SSC-SLp adopts a sim-
ple and effective iterative algorithm with the main time com-
plexity of O(2(m + 1)n2 + n3), and requires fewer iterations.
Numerical results in the next section also validate that our SSC-
SLp is faster than SSC and `qSSC.

5. Experimental verification and analysis

In this section, we evaluate the effectiveness of our SSC-
SLp on synthetic data and real datasets including Extended
Yale B (Yale B) [9], AR [17], COIL-20 (COIL) [19] and
USPS [6]. For comparison, several stat-of-the-art algorithms,
LSR [15] (Least Squares Regression), LRR [12] (ADM),
SSC [4] (ADM), OMP-SSC [28] (Orthogonal Match Pursuit),
`0-SSC [27] (Proximal Gradient Descent) and `qSSC [7] (ADM
and IRLS), are introduced. Clustering Error (CE) (or Average
Clustering Error (ACE) and Median (Med.)) [4] are used as per-
formance measures. For a fair comparison, all experiments are
conducted on a PC with Intel (R) Core (TM) i5-4460 CPU @
3.20 GHz and 12.0 GB RAM, and all reported experimental
results are the average of 30 experiments.

5.1. Experimental details

In all experiments, the parameters of the competing algo-
rithms correspond to the smallest clustering error in most cases,
where q = 0.3 for `qSSC. For our SSC-SLp, we set λ = 7,
ρ = 1.1 for Yale B; λ = 0.05, ρ = 1.1 for AR; λ = 3, ρ = 1.5 for
COIL; λ = 8, ρ = 1.5 for synthetic data and USPS; β = 106 and
p ∈ {0.3, 0.5, 0.7} for all the experiments. Although a smaller p
can make the `p norm closer to the `0 one, it also leads to (8)
more nonconvex, and thus more difficult to solve. Moreover,
for LSR, `qSSC and SSC-SLp, we reduce the dimensionality of
real datasets by PCA.

5.2. Experiment on synthetic data

In this experiment, we evaluate the effect of noise levels on
the convergence and clustering performance of the proposed al-
gorithm. According to [11] and [14], we generate 5 indepen-
dent subspaces {S i}5i=1 ∈ R200 and sample 20 data points from
each of them to form synthetic data, where each subspace has
a rank of 5. We randomly select 50% samples to corrupt using
Gaussian noise via z = x + βn, where x is the selected sample,
β denote the corruption ratio (%) increasing from 10% to 90%
with a 20% interval, and n is the noise which follows standard
normal distribution. Thus we can obtain 6 synthetic datasets
(including clean dataset). We apply SSC-SLp to each dataset.
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Fig.1 (A)-(C) illustrate the convergence curves of SSC-SLp on
synthetic data with corruption ratio β = 0, 50% and 90%, re-
spectively, and Fig.1 (D) shows the clustering error of SSC-SLp
under different corruption ratios. From Fig.1, we have the fol-
lowing observations: First, SSC-SLp can converge well under
different noise levels and values of p, which demonstrates the
convergence of SSC-SLp, as shown in Theorems 3.1 and 3.2.
Second, the number of iterations increases slightly with the de-
crease of p because a smaller p makes the objective function
more difficult to solve. Third, for the case of p = 0.3, the clus-
tering error of SSC-SLp increases from 0 to 33.0% with the
increase of β from 0 to 90%. Compared with p = 0.3, the clus-
tering error is slightly larger for p = 0.5 and 0.7. This indicates
that the proposed algorithm is considerably robust to noise.
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Fig. 1. Objective function values of SSC-SLp versus the number of itera-
tions obtained on synthetic data with corruption ratio β = 0, 50% and 90%
from (A) to (C), and clustering error of SSC-SLp versus corruption ratio
β ∈ {0, 10%, 30%, 50%, 70%, 90%} in (D).

5.3. Experiments on real datasets

The Yale B is a face dataset which contains 2432 cropped
frontal face images taken from 38 subjects under 64 illumina-
tion conditions. Each image is downsized from 192 × 168 to
48 × 42. According to subjects, we divide them into 4 groups:
1-10, 11-20, 21-30 and 31-38, and consider all the possible
choices for N ∈ {2, 3, 5, 8, 10} in each group, as done in [4].
Thus we can obtain a set of data for each N. For AR dataset,
we use all face images (1300 images) of the first 100 subjects
taken in the first stage. The COIL dataset consists of 1440 im-
ages with 32 × 32 pixels of 20 different objects taken 5 degrees
apart, where the image background is discarded. For the USPS
dataset, we adopt the first 100 images with 16 × 16 pixels for
each digit from 0 to 9. Fig. 2 shows some sample images drawn
from the above datasets.

5.4. Analysis of experimental results

In this section, extensive experiments are conducted to
demonstrate the superior performance of SSC-SLp.

Fig. 2. Some sample images drawn from the following datasets, from top to
bottom: Yale B, AR, COIL and USPS.

1) Performance Comparison. From Table 1 for the Yale
B dataset, we can observe that: (A) Our SSC-SLp achieves
favourable clustering performance; (B) Compared with SSC,
the clustering error of SSC-SLp shows a significant decrease
except when clustering 2 subjects with p = 0.7. This indicates
that the smoothed `p (0 < p < 1) norm is more helpful for en-
hancing the clustering performance than the `1 one; (C) When
p decreases from 0.7 to 0.3, the clustering error of SSC-SLp
also decreases, which resonates with the intuition that a smaller
p makes the `p norm closer to the `0 one. (D) In contrast to
other methods based on sparse representation (SSC-OMP, `0-
SSC and `qSSC), our method obtains better clustering perfor-
mance; (E) The above observation can also be verified by the
extensive experimental results in Table 2 on the AR, COIL and
USPS datasets. In addition, p = 0.5 gives a slightly lower ac-
curacy than p = 0.7 on both COIL and USPS datasets. This do
not counter the above intuition because a smaller ρ can further
improve the clustering performance (see the next section).

Table 1. Average clustering error (%) on the Yale B dataset

Method LSR LRR SSC
SSC- `0- `q SSC-SLp (p)
OMP SSC SSC 0.3 0.5 0.7

2
ACE 5.9 2.1 1.9 5.2 7.9 1.6 1.4 1.7 2.4
Med. 6.3 0.8 0.0 0.8 0.8 0.0 0.8 0.8 0.8

3
ACE 9.3 3.5 3.3 5.4 11.0 2.5 2.2 2.5 3.2
Med. 9.4 2.1 0.5 2.1 4.2 1.0 1.0 1.6 1.6

5
ACE 17.9 5.9 4.3 7.4 13.8 4.6 2.9 3.4 3.9
Med. 18.4 5.0 2.7 3.4 7.2 2.5 2.2 2.5 2.8

8
ACE 29.1 11.1 5.9 9.8 14.5 7.5 3.2 3.8 4.2
Med. 29.5 7.4 4.5 5.9 8.6 4.0 2.6 3.0 3.9

10
ACE 32.6 16.9 10.9 11.3 14.7 7.6 3.7 3.8 4.3
Med. 35.6 18.9 5.6 13.9 10.0 4.1 2.7 2.8 3.4

Table 2. Clustering error (%) on AR, COIL and USPS datasets

Method LSR LRRSSC
SSC- `0- `q SSC-SLp (p)
OMP SSC SSC 0.3 0.5 0.7

AR CE 30.5 46.0 30.9 47.1 51.4 34.2 18.5 20.0 21.8
COIL CE 38.0 41.0 12.2 49.5 14.7 14.1 8.1 8.3 8.1
USPSCE 26.9 25.5 27.7 18.5 25.6 24.0 7.6 10.6 9.5
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2) Sensitivity Analysis. In this experiment, we examine the
sensitivity of the parameters λ and ρ in Algorithm 1. The pa-
rameter λ is used to balance the two parts of the objective func-
tion (9), and ρ is used to control the descent rate of the regular-
ization parameter δ. We fix one parameter and vary the other.
The evaluation results over the first 10 subjects in the Yale B
dataset are shown in Fig. 3 from which we can see that, for all
p ∈ {0.3, 0.5, 0.7}, the obtained solution is considerably stable
when λ ∈ [0.01, 14]; but ρ is sensitive because too large ρ may
cause the algorithm to fall into local minima, and thus degen-
erate clustering performance. Moreover, in our experimental
details, we do not select too small ρ, since it may slow down
the convergence rate.
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Fig. 3. Clustering error of SSC-SLp versus parameters involving 10 sub-
jects in the Yale B dataset. From left to right: λ varying and ρ varying.

3) Time Comparison. As solving the representation matrix
is a dominant time-consuming factor in the evaluation of the
objective function (9), we compare the computational time for
solving the representation matrix incurred by all algorithms on
the Yale B dataset. Fig. 4 shows that our method finds the
solution relatively fast compared to the ADM based LRR, SSC
and `qSSC, which conforms the observation in Section 5.2.
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Fig. 4. Average computational time (s) required to find the representation
matrix on Yale B, where q = 0.3 for `qSSC and p = 0.3 for SSC-SLp.

6. Conclusion

We evaluated sparse subspace clustering via smoothed `p

minimization and presented a unified formulation for different
practical clustering problems. Importantly, the proposed unified
formulation simplifies the analysis of the algorithm involving

multiple variables and non-smooth terms. A simple and effec-
tive iterative algorithm underpinned by a theoretical analysis is
presented for the proposed unified formulation. The numerical
experimental results demonstrate the advantages of our method
over most state-of-the-art algorithms. In addition, the proposed
method can be extended to many applications in the fields of
compressed sensing and signal processing.
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