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ABSTRACT

Association graphs represent a classical tool to deal with the graph matching problem and recently the
idea has been generalized to the case of hypergraphs. In this article, the potential of this approach is
explored. The proposed framework uses a class of dynamical systems derived from the Baum-Eagon
inequality in order to find the maximum (maximal) clique in the association hypergraph, that corre-
sponds to the maximum (maximal) isomorphism between the hypergraphs to be matched. The pro-
posed approach has extensively been tested with experiments on a large synthetic dataset, including
hypergraphs of different cardinalities, order and connectivities. In particular the isomorphism version
of the problem has been analyzed. The results obtained are impressive in terms of correctness, thus
showing that, despite its simplicity, the Baum-Eagon dynamics has an outstanding capacity of finding
globally optimal solutions and solving the hypergraph isomorphism problem.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years hypergraphs (as opposed to graph) have been
used to encode structural information in different fields such
as computer vision, pattern recognition and machine learning,
thanks to the benefits that derive when dealing with relation-
ships among more than two elements, thus encoding a higher
pool of information. In Bai et al. (2016) the authors evalu-
ate the complexity traces of different hypergraphs represent-
ing images, getting the idea from the work on graphs by Xiao
et al. (2009), in order to cluster the data; in Zhang and Han-
cock (2012) and Zhang et al. (2016) hypergraphs are used for
feature selection, relying on the high cardinality of graphs to
reflect the functional similarities between more than two fea-
tures. Moreover, matching this type of structures is of particular
interest for solving problems such as, e.g., feature tracking, ob-
ject recognition, scene registration and shape matching, where
high-order relations are commonly used. Various studies have
tried to solve this question maximizing the sum of the matching
scores, thus transforming it into an optimization problem (see
e.g. Duchenne et al. (2011); Lee et al. (2011); Yan et al. (2015)
and the references therein).
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In Pelillo (1998, 1999) the author focuses on the isomor-
phism problem using the classical technique of computing
the association graph between the structures that have to be
matched. On this newly built graph, techniques from evolution-
ary game theory are then applied. Moreover in Pelillo (2003)
the use of this approach both to graph isomorphism and to sub-
graph isomorphism has been widely discussed, highlighting in
the obtained results a relation between the complexity class of
the analyzed problems and the quality of the obtained results.

Recently, Zhang and Ren (2017) and Hou and Pelillo (2018)
tried to apply a similar methodology on uniform hypergraphs,
working on the association hypergraph using dynamics inspired
from the Baum-Eagon inequality (see Baum and Eagon (1967);
Pelillo (1997); Rota Bulò and Pelillo (2013)). In the afore-
mentioned papers, only hypergraphs of cardinality 3 have been
taken into consideration, obtaining good results, however with
the developed approaches even uniform hypergraphs of larger
cardinality can be treated.

Inspired by these recent papers, in this article, which extends
the work done in Sandi et al. (2018), we investigate the poten-
tial of this technique. In particular, we focus on the simplest
case of the matching problem, namely the isomorphism case.
Specifically, we carried out a set of experiments using replicator
dynamics on a large synthetic dataset, that include 11400 dif-
ferent uniform hypergraphs of varying cardinalities, order and
connectivities. The results obtained are impressive: 100% of
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the isomorphisms have been successfully returned in all cases,
despite the simplicity of the dynamics used.

The article is structured as follows. In section 2 an overview
of the state of the art is given; in section 3 we present the defi-
nition of association hypergraph together with some fundamen-
tal results that are required for using this auxiliary structure in
solving the isomorphism problem; in section 4 the Baum-Eagon
inequality is introduced, and the related dynamics, both in their
linear and exponential form, are described; section 5 illustrates
the set-up of the experiments and presents the related results,
which proved out to be exceptional in terms of precision; fi-
nally, section 6 concludes the article.

2. Related Works
In Zass and Shashua (2008) a probabilistic point of view on

the matching problem is offered. The authors employed the
Sinkhorn projection to match nodes on graphs and hypergraphs
of same sizes, and applied this technique for solving non-rigid
image matching. This work has been used in Mirzaalian et al.
(2009) to match moles in patients’ skin across different scan-
ning time. In Duchenne et al. (2011) the authors proposed a
matching algorithm based on high order power iteration, em-
ploying an affinity tensor to capture the high order relations
among feature tuples, while in Leordeanu et al. (2011) a semi-
supervised learning approach that learn the parameters for the
hypergraph matching is outlined and the solution is obtained
through an Integer Quadratic Program (IQP).

Lee et al. (2011) extended Cho et al. (2010) proposing a hy-
pergraph matching algorithm based on random walk, which was
able to embed strong prior on one-to-one correspondences of
nodes. Albarelli et al. (2012) use high order matching to clas-
sify objects, while in Yan et al. (2015) the hypergraph matching
problem has been solved using a discrete formulation that is
optimized with a particular adaptive discrete gradient assign-
ment method, that is theoretically guaranteed to converge to a
fixed discrete point. In Nguyen et al. (2015) a tensor block co-
ordinate ascent methods for hypergraph matching is proposed,
while Jin Chang et al. (2016) used the reweighted random walk
approach proposed by Lee et al. (2011) to find correspondences
between two dynamic kinematic structures of objects in se-
quences.

More recently Zhang and Ren (2017) proposed an approach
based on game-theory to refining multi-source feature corre-
spondences. Although the optimization methodology is the
same of our work (we both optimizes a polynomial with the
Baum-Eagon inequality), we differ from this paper in the spirit
of the analysis. We are in fact interested in a different prob-
lem: the unweighted hypergraph isomorphism. A similar ap-
proach has been used in Hou and Pelillo (2018) to perform fea-
ture matching across a set of images. Finally Zhang and Wang
(2018) use a Markov Chain Monte Carlo method to narrow the
search space and solve the hypergraph matching problem.

The vast majority of the works presented here use only small
hypergraphs of cardinality 3, due to computational reasons.
Even though the cost for solving the hypergraph matching prob-
lem increases exponentially with the cardinality and order of
the structures to be matched, our method overcome this limita-
tion being able to work with hypergraphs of higher cardinality.

In fact we have successfully tested our approach with uniform
hypergraphs of cardinality 3, 4 and 5.

3. Hypergraph matching using association hypergraphs

An unweighted undirected hypergraph is formally defined by
the triplet H = (V, E,K(H)), where:

• V = {1, . . . , n} represents the finite set of vertices or nodes;

• E ⊆ 2V \0 represents the finite set of hyperedges or hyper-
arcs of various cardinalities (where 2V denotes the power-
set of V);

• K(H) = {|F| : F ∈ E} represents the finite set of edge types
of H, that are all the possible cardinalities of the edges in
E.

In this article we focus only on uniform hypergraphs, or k-
graphs, where all the edges have the same cardinality, and the
set of edge cardinalities K(H) is made of one single element
k ≥ 2, hence E ⊆ V × · · · × V for k times. If k = 2 we have the
classic notion of graph, where only pairwise relations are taken
into consideration. The order of H is the number of its vertices,
while its size determines the number of its edges. Given n nodes
i1, ..., in ∈ V , they are said to be adjacent if there exists an e ∈ E
such that {i1, ..., in} ⊆ e. The degree of a vertex i ∈ V , denoted
by deg(i), is the number of vertices adjacent to it.

Given a k-graph H = (V, E, k), a clique is defined as a sub-
set of vertices C such that for all distinct i1, ..., ik ∈ C, they
are mutually adjacent, that is {i1, ..., ik} ∈ E. A clique that is
not contained in any larger clique is called a maximal clique,
while the largest clique in the hypergraph is called the maxi-
mum clique. The cardinality of the maximum clique is called
the clique number ω(H).

In order to ease the lecture of this article, from now on the
words hypergraph, k-graph, or graph will be used interchange-
ably for indicating uniform un-weighted hypergraphs with hy-
perarcs of cardinality k, when no ambiguity can arise from the
context. Similarly the words edge or arc will refer to hyperedge
or hyperarc.

Given two hypergraphs H′ = (V ′, E′, k) and H′′ =

(V ′′, E′′, k), an isomorphism between them is defined by any
bijection φ : V ′ → V ′′ for which {i1, ..., ik} ∈ E′ ⇔
{φ(i1), . . . , φ(ik)} ∈ E′′, ∀i1, ..., ik ∈ V ′. Two k-graphs are said to
be isomorphic if there exists an isomorphism between them.

Usually, when speaking about the graph matching problem
we indicate the maximum common sub-graph problem, that
aims at understanding if there is a subset of vertices, possibly
the largest one, in the two graphs, that are isomorphic. How-
ever in this article we are going to focus on the hypergraph iso-
morphism problem, that is a special case of the more general
matching question. We therefore want to understand if two hy-
pergraphs are isomorphic and in case finding the isomorphism
itself.

The hypergraph isomorphism problem is easier than the gen-
eral matching problem (see Garey and Johnson (1979)): the
first one is located in the low hierarchy of NP, thus meaning
that is not NP-complete nor it has been demonstrated to belong
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Fig. 1. Two isomorphic and symmetric hypergraphs. There is not a unique
isomorphism between these structures. Two possible matches are: (1,A),
(2,B), (3,C), (4,D), (5,E), (6, F) and (1,A), (2,C), (3,B), (4,D), (5,F), (6,E),
but other matches are possible too. This will result in saddle points when
running the optimization process (see Section 5)

to P, while the second one has been demonstrated to be an NP-
complete problem.

We can generalize to k-graphs, without too much effort, the
notion of association graph. This is an handy auxiliary graph
structure conceived for solving general graph matching prob-
lems, that has been introduced in Barrow and Burstall (1976)
and also in Kozen (1978).

Definition 1. The association hypergraph derived from un-
weighted uniform hypergraphs H′ = (V ′, E′, k) and H′′ =

(V ′′, E′′, k) is the undirected unweighted hypergraph H =

(V, E, k) defined as:
V = V ′ × V ′′

and
E = {{(i1, j1), ..., (ik, jk)} ∈ V ′ × V ′′ :

i1 , ... , ik, j1 , ... , jk,

{i1, ..., ik} ∈ E′ ⇔ { j1, ..., jk} ∈ E′′}.

Generalizing to hypergraphs an equivalent result achieved by
Pelillo (1998, 1999) for graphs, we can demonstrate a one-to-
one correspondence between the maximum clique problem and
the graph isomorphism problem.

Theorem 1. Let H′ = (V ′, E′) and H′′ = (V ′′, E′′) be two hy-
pergraphs of order n and edge cardinality k, and let H = (V, E)
be the related association k-graph. Then H′ and H′′ are iso-
morphic if and only if ω(H) = n. In this case, any maximum
clique of H induces an isomorphism between H′ and H′′, and
vice versa. In general, maximum and maximal common sub-
graph isomorphisms between H′ and H′′ are in one-to-one cor-
respondence with maximum and maximal cliques in H, respec-
tively.

Sketch of proof. Suppose that the two k-graphs are isomor-
phic, and let φ be an isomorphism between them. Then the
subset of vertices of H defined as Cφ = {(i, φ(i)) : ∀i ∈ V ′} is
clearly a maximum clique of cardinality n. In reverse, let C be
an n-vertex maximum clique of H, and for each (i, h) ∈ C de-
fine φ(i) = h. Then it is easy to see that φ is an isomorphism
between H′ and H′′ because of the way the association k-graph
is constructed. The proof for the general case is analogous.

With this result we can move our original problem of finding
a matching between graphs to the problem of finding a max-
imum clique in the related association graph. Obviously this
does not reduce the complexity of our problem since, again,
the clique decision problem is NP-complete (see Karp (1972)),
however it gives us the possibility to use one of the existing

approaches that are known to work well in solving the latter
problem.

Let’s consider the arbitrary undirected hypergraph of order n
H = (V, E, k), and let S n indicates the standard simplex of IRn:

S n =

x ∈ IRn : xi ≥ 0, for all i = 1, ..., n, and
n∑

i=1

xi = 1


Given C a subset of vertices of H, xc indicates its character-

istic vector, and it corresponds to the point in S n described by:

xc
i =

1/|C|, if i ∈ C
0, otherwise

where |C| indicates the cardinality of C.
Let’s now consider the Lagrangian of H, which is the poly-

nomial function defined as:

f (x) =
∑
e∈E

∏
i∈e

xi (1)

A point x∗ ∈ S n is said to be a global maximizer of f in S n if
f (x∗) ≥ f (x), ∀ x ∈ S n. On the other hand it is said to be a local
maximizer if ∃ an ε > 0 such that f (x∗) ≥ f (x) ∀ x ∈ S n whose
distance from x∗ is smaller than ε. Moreover, x∗ is said to be a
strict local maximizer if f (x∗) = f (x) implies x∗ = x.

When dealing with graphs (namely, k = 2), the Motzkin-
Straus theorem (see Motzkin and Straus (1965)) provides a no-
table relation between local (global) maximizers of function (1)
in S n and maximal (maximum) cliques of the graph itself. In
particular, it claims that a subset C of vertices of a graph G,
is a maximum clique if and only if a global maximizer of the
Lagrangian of the graph G in the standard simplex S n is in the
form of the characteristic vector xC . This result interestingly
gives the opportunity to move from a discrete to a continuous
formulation of our problem.

The formulation of f (x) as the Lagrangian of the hypergraph
is the same used in Zhang and Ren (2017), Hou and Pelillo
(2018) and Sandi et al. (2018), and is derived by directly ex-
tending the Motzkin-Straus theorem on graphs. Given the good
results on the aforementioned papers, in our experiments we are
going to adopt this function. However different formulations
are possible, for example the ones that generalize the Motzkin-
Straus theorem, together with Bomze’s formulation, to both
uniform and non-uniform hypergraphs, presented in Rota Bulò
and Pelillo (2009) and Peng et al. (2016) respectively.

4. Finding isomorphisms using the Baum-Eagon dynamics

Given the definitions and results just presented, the prob-
lem of finding an isomorphisms can be reduced to solving the
following (linearly constrained) polynomial optimization prob-
lem:

maximize f (x) =
∑
e∈E

∏
i∈e

xi

subject to x ∈ S n

(2)

Applying a result achieved by Baum and Eagon (1967) we
obtain an easy but powerful tool for optimizing this function.
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Their work introduces a class of non-linear transformations in
the standard simplex, and proves a key result, generalizing a
previous one introduced by Blakley (1964) on related character-
istics for specific homogeneous quadratic transformations. The
Baum-Eagon inequality is presented in the following theorem.

Theorem 2. (Baum and Eagon (1967)) Let Q(x) be a homoge-
neous polynomial in the variables x j with non-negative coeffi-
cients, and let x ∈ ∆. Define the mapping z =M(x) from ∆ to
itself as follow:

z j = x j
∂Q(x)
∂x j

/ n∑
l=1

xl
∂Q(x)
∂xl

, j = 1, ...n. (3)

Then Q(M(x)) >Q(x) unlessM(x) = x.
This theorem defines a continuous mapping that is generally

known as a growth transformation. It is worth noticing that,
when defining the mappingM, only first-order derivatives are
involved. NeverthelessM is able, with a finite number of steps,
to increase the polynomial Q, thus strongly differentiating itself
from classical gradient methods, that need instead to estimate
high-order derivatives for determining the size of the infinites-
imal steps to be taken. Moreover the use of gradient descend
methods induce some problems for the points on the boundary,
since some projection operator are performed. By contrast, a
simple normalization on rows has to be performed when using
results of theorem 2.

Therefore the Baum-Eagon inequality provides a powerful
tool and has been widely used for maximizing polynomials
functions in S n. In particular they are a main component in
various statistical estimation methodologies developed within
the theory of probabilistic functions of Markov Chains (see
Baum et al. (1970)), and they are used to analyze the dynamical
properties of relaxation labelling processes (see Pelillo (1997)).
Theorem 2 can be employed to optimize our problem in equa-
tion (2), since we have to maximize the function f that is indeed
an uniform polynomial with non-negative coefficients, with the
constraint of having x laying within the standard simplex.

The following discrete time dynamic can be defined from the
Baum-Eagon inequality:

x j(t + 1) = x j(t)
δ j(x)∑n

i=1 xiδi(x)
, j = 1...n, (4)

where for readability reasons we have defined δ j(x) =

∂ f (x)/∂x j.
At time 0, the dynamic in equation 4 starts from a random

point within the standard simplex S n, then, one step after the
other, the state vector is updated until convergence. At the end
of the iterations the resulting state vector will have the form of
a characteristic vector, that can be thresholded against a small
amount close to zero thus returning only the subset of nodes
in the association graph that are part of the (maximum) clique.
Even though we have no theoretical guarantee that the discrete
time dynamic returns a global maximum of the function, and
not a local maximum, we will see in section 5 that the basins of
attraction of the global optimum are quite large, and the use of
this dynamic derived from the Baum-Eagon inequality always
returned the maximum clique in the association graph, in all the
performed experiments, and never incurred in local solutions.

An exponential version of the proposed dynamic can be de-
fined, in order to obtain a faster convergence:

x j(t + 1) = x j(t)
eκδ j(x)∑n

i=1 xi(t)eκδi(x) , j = 1...n. (5)

Using this exponential dynamic might decrease the time needed
in the optimization step, however it comes with a price: we have
in fact to tune the newly introduced parameter κ. In setting this
parameter we have to be careful to speed-up the process without
loosing the correctness of the results. In section 5 some remarks
are made on how the value of κ influences the search for the
global optimum.

5. Experiments
In this section we are first going to provide a description of

how we produced the dataset and how we carried out the exper-
iments. Then the obtained results are analyzed.

5.1. Experimental set-up
The proposed approach has been systematically tested on

random hypergraphs of different cardinalities, sizes and con-
nectivities, in order to evaluate its efficacy and to understand if
the results heavily differs, depending of the various combina-
tion of parameters used in constructing the graphs.

The hypergraph isomorphism problem has been inspected
with a specifically designed dataset considering hypergraphs
of cardinality 3, 4 and 5. For each cardinality the dataset is
made of graphs of different orders, in particular: for k = 3 we
have n = {25, 50, 75, 100}, for k = 4 we have n = {25, 50, 75},
while for for k = 5 we have n = {25, 50}. For each possible
cardinality-order pair, 15 different connectivity rates are tested
in the interval [0.01%, 0.99%] (see Table 1). Moreover, all the
different densities have been evaluated on 100 different hyper-
graphs, except for the combination of parameters k = 4, n = 75
and k = 5, n = 50 that for complexity reasons have been tested
on 30 different hypergraphs. The dataset is therefore made of a
total of 11400 experiments.
Table 1. Specification of the different parameters used to create the dataset.

Arcs Cardinality k 3 4 5
Order 25 50 75 100 25 50 75 25 50

Connectivity Rate
0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 0.95, 0.97, 0.99

The disparity in the considered orders and number of experi-
ments among the different cardinalities is due only to complex-
ity reasons. In fact the proposed framework can be used for
larger experiments both in terms of cardinality and order, as
long as there is enough time and memory available.

The dataset has been built in the following way: one hyper-
graph for each experiment (from now on H1) has been ran-
domly generated adopting the random graph model proposed
by Gilbert (1959). Given the following parameters: cardinality
k, order n, connectivity rate p, each k-graph is created with the
algorithm:

1. start from n isolated nodes;
2. select a k-tuple of nodes, and generate a random number

between 0 and 1. If the random number is smaller than
p then an edge connecting the selected nodes is added,
otherwise the nodes are left disconnected;
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3. repeat step 2 for each of the possible
(

n
k

)
edges.

Once H1 has been built, the second graph H2 is generated start-
ing from H1 and randomly perturbing the IDs of its nodes. The
k-graphs here created are ready to be matched. Using random
graphs to test the framework has two main advantages. First,
a wide variety of parameters combination can be extensively
tested, since we are not bound to any specific application. In
this way even structures that might be uncommon for some
application, but still of interest for others, are explored. Sec-
ond, we can create an experimental system that is easily repro-
ducible, and can therefore be used to compare our approach
with other algorithms.

When running the experiments, an immediate problem arises
during the creation of the association hypergraph. Since the
set of its vertices contains all the possible association of nodes,
the order and size increases exponentially with the order of the
structures to be matched. For this reason some pruning to the
possible couples of nodes, as far as it is possible without remov-
ing any information, has been developed. In fact we can easily
understand that not all the pair of nodes have sense. In particu-
lar, since we are trying to understand if the two hypergraphs are
identical, there is no use in pairing nodes with different degree.
Therefore, the vertex set of the association graph is constructed
as follow:

V =
{
(i, j) ∈ V ′ × V ′′ : deg(i) = deg( j)

}
and the edge set has been defined as in definition 1. When
the two graphs are isomorphic, theorem 1 continues to hold,
since the isomorphisms preserves the degree property of ver-
tices. However, using this simple heuristic, we greatly decrease
the number of nodes in the association graph, and the same goes
for the number of arcs, greatly simplifying the optimization
task. In fact, after pruning, in some parameters combination
we keep less than the 5% of the possible coupled nodes.

Once the association graph is ready, the optimization process
can start. Each experiment has been performed with the lin-
ear Baum-Eagon dynamic (Eq. (4)) and with its exponential
version (Eq. (5)) with the κ parameter ranging in {10, 25, 50}.
The algorithm was started in the barycentre of the simplex and
stopped when either the distance of two subsequent points was
smaller than a given threshold, set to 10−5, or when a maximum
number of time-steps, equal to 600, has been processed. When
the algorithm stops, we check if a clique has been found: in
the negative case, the final point is randomly perturbed and the
algorithm is started again, using as initial point the randomly
perturbed x.

Perturbing is needed in order to avoid saddle points, that are
solutions in which the algorithm is not able to return a clique
because there are some symmetries in the graphs to be matched.
This results in more than one possible isomorphism, and the
algorithm does not have any way of choosing one solution with
respect to the other. This problem arises because the algorithm
starts the search for the barycentre of the simplex.

Figure 2 shows all the steps done by the algorithm to solve
the symmetric isomorphism problem of figure 1. A perturbation
is clearly visible at step 26. After the perturbation the symme-
try is broken and the algorithm is able to ”choose” the correct
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Fig. 2. Evolution through time of the components of the state vector x(t)
from the hypergraphs in figure 1 using the linear dynamic in Eq. 4. A
perturbation can be seen at iteration 26, after which the algorithm is able
to choose which associations to keep which to discard.

pairings, thus reaching the global optimum and finding the max-
imum clique. The perturbation is repeated for at most 4 times,
then the algorithm is stopped independently from the fact that
it has returned a clique or not.

Once the optimization is finished we have to understand if the
returned state vector represents a correct isomorphism. In or-
der to automatically check the results, the vector is thresholded
against a small value close to 0 (the value 10−5 has been used),
thus selecting only some couples. Then we verify if the returned
couples represent a clique in the association hypergraph, and, in
case they do, we verify if the clique number is equal to the num-
ber of nodes of the original structures. In fact, from theorem 1,
there is the guarantee of finding the isomorphism only if the re-
turned couples represent a maximum clique. Since H1 and H2
are of the same order by construction (otherwise we wouldn’t
have any isomorphism), there can not be an isomorphism con-
cerning a number of nodes that is larger than the size of the
vertex set of these two graphs. All the experiments have been
run on a workstation equipped with an Intel Core i7-6800K at
3.40GHz with 128GB of RAM, and the code for the framework
has been implemented in C.

5.2. Experimental results

In terms of correctness, the proposed framework, has re-
turned impressive results: as we can see in figure 3, all the
isomorphisms have been properly found, with the algorithm re-
turning 100% of the nodes exactly coupled, for all the 11400
experiments, independently of the dynamic that has been used
and independently of the cardinality k, the number of nodes n
and the connectivity rate p.

The mean CPU time needed to run the optimization, consid-
ering the best performing dynamic for each set of parameters,
is shown in figure 4. As we can see all the curves have the same
behaviour, showing that the algorithm is extremely slow when
dealing with very sparse or very dense graphs, while it is way
faster when solving matching between graphs with mean den-
sity. This is due to the fact that the association hypergraphs in
the extreme connectivity rates are way bigger and denser than
the ones in the median connectivity rates, thus giving birth to
more complex polynomials to be optimized.

With no surprise, we see that dealing with smaller hyper-
graphs results in shorter execution times, nevertheless the be-
haviour of the curves according to all the other parameters is
exactly the same independently on the cardinality or on the or-
der of the original hypergraphs. We can also notice than, as
it could be expected, keeping the cardinality k fixed, execution
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of the different combination of parameters, have returned the correct isomorphism in all the dynamic used. On the x-axis we have the different connectivity
rates, on y-axis we have the fraction of correct results.

takes longer for hypergraphs of bigger order; vice versa, keep-
ing the order n fixed, the higher the cardinality the longer the
running time. In general, the exponential dynamic always out-
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Fig. 4. Mean CPU timeneeded to run the optimization algorithm for finding
isomorphism on hypergraphs with different cardinalities and orders. Only
the best performing dynamic is drawn for each combination of parameters.
Y-axes are in logarithmic scale.

performs the linear one, thus resulting to be really attractive,
from a computational point of view. However it introduces a
parameter to be tuned, the κ in equation 5. The value for κ has
been searched initially in a logarithmic scale {1, 10, 100} and
further refined in the proximity of a good value. With κ = 100
we obtained a strongly oscillatory trend in the elements of the
state vector that prevented the dynamic to converge (see figure
5). On the other hand, with κ = 1 the dynamic was nearly as
slow as the linear one, thus not giving any incentive in using
the exponential form. With κ = 10 we achieved a faster and
convergent behaviour, hence we refined the space for this pa-
rameter between 10 and 100.

Three different values of κ (10, 25, 50) have been used on all
experiments. In nearly every parameters configuration, the best
performing dynamic that has been inserted in figure 4 is always
the exponential with κ = 50.

The only exception is when we have k = 3 and n = 25. In
this case the graphs to be matched, and therefore the related
association hypergraph, are really small, and the exponential

0 100 200 300 400 500 600

0

0.1

0.2

0.3

0.4
Evolution of vector state, K=100

Fig. 5. Evolution of the state vector when matching two hypergraphs with
k = 3, n = 75 and p = 0.7 using the exponential dynamic with κ = 100. The
value of κ is too big and the dynamic is not able to converge.

dynamic with κ = 50 oscillates too much. The best performing
dynamic becomes therefore the exponential one with κ = 25.

Figure 6 shows the evolution through time of the state vec-
tor in one of the experiments with k = 3 and n = 25, with
all the different dynamics.The first thing that is clearly visible
is that all the dynamics have the same behaviour, perturbing
exactly one time the state vector before finding the correct iso-
morphism. As we could have expected, the linear dynamic is
the slowest one, while all the exponential dynamics are faster.
However we can see that the value κ = 50 is too high: even
though the correct isomorphism is always found, this dynamic
oscillates too much and it needs more iterations in order to con-
verge to a final solution, thus requiring more time than all the
other dynamics. This shows that the value of κ is strictly de-
pendent on the problem under examination, and a single value
cannot be used on all the experiments. Thus, in a real setting
with a specific problem, the parameters of that problem have to
be analyzed and evaluated, and the value of κ has to be tuned
according to those specific values.

6. Conclusions
In this paper, we tackled the hypergraph isomorphism prob-

lem by generalizing the notion of association graph to the
higher-order case of uniform hypergraphs. Given two uniform
k-graphs, we proved that maximal cliques in their association
hypergraph, are in one-to-one correspondence with their pos-
sible isomorphisms. Furthermore, in our extensive experimen-
tation, we successfully employed the simple Baum-Eagon in-
equality and its exponential variant to find maximum cliques.
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Fig. 6. Comparison of the evolution of the state vector for one experiment
with cardinality k = 3, order n = 25 and connectivity p = 0.99. Even
though all the dynamics converge to the correct isomorphism after exactly
one perturbation, the number of iteration needed to stop the algorithm
is different. It is worth noticing that the value κ = 50 is too large for the
exponential dynamic, since it oscillates a lot, thus needing a lot of iterations
to converge.

We reported impressive results: in 11400 experiments on ran-
domly generated hypergraphs of different cardinalities, orders
and connectivities we have always obtained 100% of correct
isomorphisms, emphasizing the ability of the proposed dynam-
ical system to escape from local optima. Alongside the exper-
imentation, we have shown that for the extreme connectivity
rates (sparse and dense graphs) very large association hyper-
graph are generated needing more resources to run the opti-
mization. In such cases, the use of a sparsification technique
and the exponential dynamics might lower the time and space
needed to perform the experiments, but at the price of set-
ting the parameter κ. In our future work we plan to explore
the more general and complex task of sub-hypergraph isomor-
phism, and to investigate the regularized formulation proposed
in Rota Bulò and Pelillo (2009).
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