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Abstract

We present a novel Al-based approach to the few-shot automated
segmentation of mitochondria in large-scale electron microscopy images.
Our framework leverages convolutional features from a pre-trained deep
multilayer convolutional neural network, such as VGG-16. We then train
a binary gradient boosting classifier on the resulting high-dimensional
feature hypercolumns. We extract VGG-16 features from the first four
convolutional blocks and apply bilinear upsampling to resize the obtained
maps to the input image size. This procedure yields a 2688-dimensional
feature hypercolumn for each pixel in a 224 x 224 input image. We then ap-
ply Li-regularized logistic regression for supervised active feature selection
to reduce dependencies among the features, to reduce overfitting, as well
as to speed-up gradient boosting-based training. During inference we block
process 1728 x 2022 large microscopy images. Our experiments show that
in such a formulation of transfer learning our processing pipeline is able
to achieve high-accuracy results on very challenging datasets containing
a large number of irregularly shaped mitochondria in cardiac and outer
hair cells. Our proposed few-shot training approach gives competitive
performance with the state-of-the-art using far less training data.

1 Introduction

Deep learning with convolutional neural networks (CNNs) is currently revolu-
tionizing computer vision and has achieved great success in many applications.
Examples include: image classification, hand-written digit recognition, object
detection, face recognition, scene understanding, image segmentation, and se-
mantic segmentation. Multilayer CNNs are especially well-suited for computer
vision applications because of their ability to hierarchically abstract representa-
tions with local operations. Thus, CNNs can hierarchically learn image features
starting with low-level features such as edges, corners, and color (shallow layers),
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progressing to the higher and more abstract representations such as shape and
texture (deeper layers). Usually, deep CNNs for the above application areas are
trained on large datasets for a long period of time.

Within deep learning, transfer learning is a branch of techniques that uses
pre-trained CNNs (trained on a particular task where a large amount of training
data is available) for different new tasks and datasets where a large amount
of training data is not available. It is common in practice to use a CNN as a
fixed feature extractor [Razavian et al.(2014)]. Instead of training a CNN from
scratch, transfer learning-based approaches reuse a pre-trained CNN on a very
large dataset (e.g. ImageNet ILSVRC13, which contains 1.2 million images with
1000 classes) for different tasks and different datasets. In particular, the last
fully-connected layers are removed from a CNN and the rest of the architecture
can be used as a fixed feature extractor for a new dataset. In this paper, we
use VGG-16 network trained on ImageNet for a classification task and apply it
not only to the new task of segmentation but also to the new biomedical data
domain.

Mitochondria segmentation is still a very challenging application area of
computer vision. Automated segmentation is usually formulated as supervised or
semi-supervised machine learning with handcrafted features. Mitochondria are
membrane enclosed organelles that are found inside every living cell. Depending
on the tissue type and field of view, complex subcellular environments can
contain a very large number of organelles, as seen in Fig.1. Mitochondria have
an average diameter of 200nm with large variation in size and shape even within
one imaged section. These organelles move within a living cell and also undergo
fission and fusion. Mitochondrial morphology depends on the type of biological
tissue and further undergoes structural changes during different biochemical
processes. These facts lead to the broad range of mitochondrial shapes and
textures and present significant challenges to a unified approach to segmentation.
Manual segmentation of thousands of images for biomedical image analysis is
also very time-consuming, hence the need for automated methods.

The imaging modalities used play an important role in image characteristics
and image quality and can add speckle noise, non-uniform illumination and
waterfall noise [Fitschen et al.(2017)] to the images acquired. Data from a
FIB-SEM (Focused Ion Beam Scanning Electron Microscope) are used in the
experimental part of this paper. FIB-SEM, or “slice and view,” allows 3D imaging
of biological samples with nanometer resolution. During image acquisition, the
FIB mills thin sections of about 4nm thick from the block, and then the SEM
images the block face. This is done repeatedly to obtain a 3D image of the
sample. The dataset used in this study contains one hundred 1728 x 2022
pixel large images of cardiac tissues from chicken embryos during early heart
development. Fig.1 shows an example FIB-SEM image. Selected examples of
224 x 224 training patches containing mitochondria and manually annotated
ground truth are shown in Fig.2.

Our mitochondria segmentation approach is partly based on the idea of
hypercolumn-based image segmentation first presented in [Hariharan et al.(2015)].
The authors define the “hypercolumn” at a given input location as the outputs



Figure 1: Example of a 1728 x 2022 pixel large FIB-SEM image of a cardiac
cell (chicken embryo) containing a nucleus and a large number of mitochondria.
Image Source: Oregon Health and Science University (OHSU).
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Figure 2: Selected 224 x 224 training samples and labeled mitochondria.

of all units above that location at all layers of the CNN, concatenated into
one vector. The information that is generalized in the top layer is present in
intermediate layers. Top layers are also more sensitive to semantics. Therefore,
as the authors suggest, using multiple levels of abstraction and scale is needed
to recover the information of interest which is distributed over all layers of the
CNN. Adjacent layers may be correlated, so the authors suggest to sample a few.
This proposed framework can solve fine-grained localization tasks by framing
them as pixel classification and using hypercolumns as pixel descriptors.

The novelty of our paper is as follows: we combine the idea of hypercolumns
with a pre-trained CNN (VGG-16 model) feature extraction step, perform
supervised active feature selection using the Li-regularized logistic regression,
and train a gradient boosting classifier to obtain pixel-wise binary classification



maps. To our best knowledge, such a few-shot segmentation pipeline has not
been previously reported.

2 Related Work

Most approaches to the segmentation of mitochondria apply supervised machine
learning with classifiers such as Adaboost, SVM, and Random Forest trained
on handcrafted features. To compare the performance of the methods is diffi-
cult because they are based on different architectural ideas and are validated
on different datasets. The handcrafted features used in the literature include
Continuation Energy, Gradient flux, Haar, Radon, intensity and superpixels.
These features can be applied to mitochondria in cases where the outer boundary
is clearly defined by the membrane [Dietlmeier(2017)]. For irregularly shaped
mitochondria, Ray features have been shown to outperform the Haar features
[Smith et al.(2009)]. Superpixels are frequently used in combination with spec-
tral graph-based methods to reduce the initial complexity of the input data
[Ghita et al.(2014)]. Geometric descriptors such as, for example, Histograms
of Oriented Gradients (HOG) [Dalal and Triggs(2005)] have been shown to be
highly efficient in the task of human detection. HOG features are obtained by
dividing the image into small connected regions and for each region compiling
a histogram of gradient directions for the pixels within the region. Haar-like
features are based on the gray intensity and are insufficient to describe an object’s
texture. As noted in [Smith et al.(2009)], Haar and HOG features are inefficient
at detecting highly deformable objects such as biological cells and mitochondria.

Most of the reported CNN-based methods are purely supervised. The authors
in [Leena and Govindan(2012)] combined a CNN to learn the affinity graph based
on perceptual grouping constraints, with the Graph Cut algorithm. A modified
CNN which has max-pooling layers instead of sub-sampling layers, was proposed
in [Ciresan et al.(2012)] to segment neuronal structures in EM images. Ning et
al. [Ning et al.(2005)] have combined the CNN with EBM (Energy Based Model)
and [Marquez Neila et al.(2016)] have used CRF (Conditional Random Field) to
model probabilistic dependencies. Ronneberger et al. [Ronneberger et al.(2015)]
presented a new U-Net CNN architecture for biomedical image segmentation
targeting the tasks of segmenting neuronal structures, cells and potentially
mitochondria. The U-Net model is essentially an autoencoder, but with con-
volutions instead of a fully connected layer. The Bayesian SegNet architecture
is proposed in [Khobragade and Agarwal(2018)] for multi-class segmentation of
neuronal structures and mitochondria in electron microscopy images. It is an
encoder-decoder architecture which maps the input to pixel-wise labeled output
of the same resolution.

Some Al-based tissue segmentation approaches consider joint task of segmen-
tation of nuclei and classification of cancerous tissue images. Development of
accurate and efficient algorithms for these tasks is a challenging problem because
of the complexity of tissue morphology and tumor heterogeneity. To address
this challenge, [Vu et al.(2019)] presented two algorithms: one designed for seg-



mentation of nuclei and the other for classification of whole slide tissue images.
The segmentation algorithm implements a multiscale deep residual aggregation
network to accurately segment nuclear material and then separate clumped
nuclei into individual nuclei. The classification algorithm initially carries out
patch-level classification via a deep learning method, then patch-level statistical
and morphological features are used as input to a random forest regression model
for whole slide image classification.

In recent years, many machine learning algorithms have been developed
to extract features from histopathological images. In [Zheng et al.(2017)], a
novel nucleus-guided feature extraction framework based on convolutional neural
network is proposed for histopathological images. The nuclei are first detected
from images, and then used to train a designed convolutional neural network with
three hierarchy structures. Through the trained network, image-level features
including the pattern and spatial distribution of the nuclei are extracted. With
the nucleus-guided strategy, the network paid more attention to the difference
in nucleus appearance and effectively reduced the noise and redundancy caused
by stroma. [Manivannan et al.(2016)] proposed another approach based on
ensembles of support vector machines (SVMs) for detection and classification
of cellular patterns in tissue images. Ensembles of SVMs were trained to
classify cells into six classes based on sparse encoding of texture features with
cell pyramids, capturing spatial, multi-scale structure. A similar approach
was used to classify specimens into seven classes. A comprehensive review of
segmentation algorithms for digital pathology and microscopy images is provided
in [Xing and Yang(2016)].

In a few-shot learning setting, the traditional machine learning algorithms
attempt to learn from very few training samples. More specifically, few-shot
learning aims to learn the pattern of new concepts unseen in the training data,
given only a few annotated examples. Sometimes there is only one example
available for each class [Dong and Xing(2018)]. Few-shot learning is an active
research area, motivated by the fact that traditional deep learning methods
require large amounts of training data. The availability of manually annotated
data becomes even more challenging in segmentation since pixel-level annotation
in segmentation task is more labor-intensive to acquire [Hu et al.(2019)]. In the
literature, few-shot learning mainly focuses on the classification task and rarely on
the segmentation and object detection [Fan et al.(2019)]. Few-shot segmentation
task can be split into two components: detect the object in the scene and
then segment it. [Michaelis et al.(2018)], for example, proposed a system that
performs the detection part with a Siamese net applied in sliding windows over
the scene to produce a heat map of candidate locations. The segmentation mask
is then generated by a deconvolutional net with skip connections from the encoder.
[Hu et al.(2019)] designed an Attention-based Multi-Context Guiding network
(A-MCG) that incorporates multi-level concentrated context. The benefits of this
processing pipeline are that the shallow part of the network generates low-level
semantic features while the deep part captures high-level semantics. Inspired by
few-shot classification, [Dong and Xing(2018)] proposed a generalized framework
for few-shot semantic segmentation with an alternative training scheme. The



framework is based on prototype learning and metric learning. Generally, few-
shot learning has been investigated in many computer vision tasks such as image
recognition and domain adaptation. However, the few-shot segmentation task is
still considered underexplored [Dong and Xing(2018)].

3 Processing Pipeline

In this paper, we apply transfer learning in a few-shot supervised setting to
extract the convolutional features and to train a gradient boosting classifier on the
formed hypercolumns to classify pixels belonging to mitochondria. We adopt the
CNN-based feature extraction with a gradient tree boosting method to capture
complex non-linear mitochondrial morphologies in subcellular environments. Our
processing pipeline is illustrated in Fig.3. In particular, we develop an automated
image processing algorithm to extract a high dimensional mitochondrial feature
set (2688 features) from each 224 x 224 input image and then use machine
learning-based methods to build models for dense pixel-wise predictions. In
contrast to most prior studies on segmentation of mitochondria where authors
use handcrafted features, we automatically extract features from a pre-trained
VGG-16 network. We reason that these features have good discriminative and
generalization properties to be combined with gradient boosted decision trees to
produce accurate pixel-wise binary predictions for mitochondria.

As can be seen from Fig.3, our processing pipeline has a hybrid model
structure: the concatenation of a feature extractor (pre-trained VGG-16), sparse
linear classifier (L1-LR) and boosted decision trees (XGB). We combine L1-
regularized logistic regression with the gradient boosting implemented in the
XGBoost package [Chen and Guestrin(2016)]. This particular implementation
of gradient boosting is consistently used to win machine learning competitions
on Kaggle. XGBoost also incorporates regularization to prevent overfitting.

The key advantage of L1-LR is the scalability to very large datasets as noted
by [Zakharov and Dupont(2011)]. L1-LR is a linear model and its predictive
performances might be limited in the presence of non-linear relationships in the
data. On the other hand, gradient boosting decision trees have shown to learn
higher-order interactions between the features. In particular, XGBoost is imple-
mented with the gradient boosted decision trees, which in contrast to lasso and
ridge regression methods, incorporates complex non-linear feature interactions
into prediction models in a non-additive form [Chen and Guestrin(2016)]. Our
combined pipeline is simple yet very effective to identify complex mitochondrial
morphologies in a challenging FIB-SEM dataset.

We combine the hypercolumns [Hariharan et al.(2015)] with the feature ex-
traction using convolutional layers of a pre-trained VGG-16 network presented
in [Simonyan and Zisserman(2015)]. Convolutional feature maps in each block
are resized to 224 x 224 using bilinear upsampling to form a hypercolumn for
each pixel.

Hypercolumns have been introduced in [Hariharan et al.(2015)] with the
motivation that most CNN-based recognition algorithms use the output of the
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Figure 3: Our Processing pipeline. The input to VGG-16 during feature extrac-
tion is a 224 x 224 image. We extract features from the first four (X1 to X4)
convolutional blocks of VGG-16 and further apply bilinear upsampling to the
feature maps. For each image pixel we concatenate upsampled features and form
hypercolumns. All concatenated features are passed through the L1-regularized
logistic regression (L1-LR) followed by gradient boosted decision trees (XGB)
which return binary predictions.

last layer as a feature representation. The information in this layer may be
too coarse spatially to allow precise segmentation. Earlier layers are precise in
localization but will not capture semantics. To combine these two aspects, the



L1 Logistic Regression (C=1) coefficients for each conv block of WGG16

= Block 1, sparsity = 13.28%
—— Block 2, sparsity = 2.73%
—— Block 3, sparsity = 3.65%
= Block 4, sparsity = 80.99%
Black 5, sparsity = 84.24%
—— Block 6, sparsity = 48.05%

0 1000 2000 000 000

Figure 4: Importance coefficients of the L1-regularized logistic regression com-
puted for each convolutional block of the VGG-16 network.

hypercolumn is defined at a pixel to be the vector of activations of all CNN units
above that pixel.

We use the first four convolutional blocks X1 to X4 (see Fig.3). After bilinear
upsampling, we flatten the features to 224 x 224 = 50176 long vectors and build
the 50176 x 2688 large feature matrix where each pixel has a corresponding
2688-dimensional hypercolumn. We then perform feature selection with the L1-
regularized logistic regression (L1-LR) and train the gradient boosting classifier
(XGB) with very few training samples on selected features to obtain binary pixel
predictions.

3.1 Feature extraction with VGG-16 network

VGG is a particular type of a CNN proposed by K. Simonyan and A. Zisserman
from the University of Oxford in [Simonyan and Zisserman(2015)]. The VGG
model achieves 92.7 % top-5 classification test accuracy on the ImageNet dataset
which contains over 14 million images with 1000 classes. VGG is one of the
best performing convolutional neural networks on the ImageNet challenge since
2015. Gradual increase in semantic complexity with the depth of the network is
the key feature of the VGG-like CNN architectures. This hierarchical property
facilitates the adaptability of extracted features across different datasets and
tasks. Our motivation for using VGG is that these networks are especially
suited for transfer learning because the learned representations progress from
being simple and local to abstract and global. In addition, deep VGG-like
networks are shown to generalize well to images other than the ImageNet
dataset [Razavian et al.(2014)]. Thus, features extracted at lower levels of the
hierarchy tend to be common across different tasks [Hadji and Wildes(2018)].
For example, CNNs trained with ImageNet for the classification task have been
applied to other datasets [Lin et al.(2014)], [Zeiler and Fergus(2014)]. Texture
recognition had been studied in [Cimpoi et al.(2014)], and other applications




involved object detection and semantic segmentation [Girshick et al.(2014)]. To
our best knowledge, we are the first to use a pre-trained VGG network for the
task of mitochondria segmentation in the FIB-SEM data.

For our experiments we use the 16-layer deep VGG network implemented
in the Keras library [Chollet(2018)]. The input to the VGG-16 is a fixed-size
224 x 224 RGB image. The image is passed through a stack of convolutional layers
of decreasing size with filters having a very small receptive field of 3 x 3. Spatial
pooling is carried out by five max-pooling layers, which follow some of the convo-
lutional layers, to reduce volume size. A stack of convolutional layers is followed
by three fully-connected layers: the first two have 4096 channels each, the third
performs 1000-way ILSVRC classification and thus contains 1000 channels. The
final layer is the soft-max classification layer [Simonyan and Zisserman(2015)].

In our experiments we extract features from the first four (X1 to X4) convo-
lutional blocks (10 first convolutional layers) of VGG-16 as illustrated in Fig.3.
We do not include the last two convolutional blocks in our experiments due to
the small size of the feature maps (14 x 14 x 512 and 7 x 7 x 512), which results
in a very coarse resolution after bilinear upsampling.

3.2 Feature Selection

Our VGG-16 based feature extraction procedure results in a 2688-dimensional
feature hypercolumn for each pixel in the input image. Therefore, for one 224 x 224
flattened input image sample we obtain a 50176 x 2688 feature matrix. To reduce
dependencies and collinearities among the features, and to reduce overfitting due
to a small sample size, we apply Ll-regularized logistic regression (L1-LR) prior
to training the XGBoost model. This feature selection process helps to identify
active features and to reduce computational load of using the XGBoost algorithm.
Feature selection, in general, has been shown to improve the interpretability and
predictive performances of various classifiers [Zakharov and Dupont(2011)]. As
can be seen from Fig.4, deeper VGG-16 layers have higher L1-LR coefficient
sparsity. In particular, the convolutional block X4 (Block 4) has about 81% zero
L1-LR coefficients.

To select active features from all (X1 to X4) convolutional blocks, we standard-
ize the extracted features first and then use the L1-regularized logistic regression
algorithm implemented in the scikit-learn Python package. This algorithm fits
the sample to a logistic curve by minimizing a loss function based on the feature
values. To reduce overfitting, we use the Ll-regularization which minimizes the
absolute difference of each feature from its predicted value. We run the feature
selection process for all 2688 (X1 to X4) concatenated convolutional features and
the obtained features with non-zero coefficients are identified as active features.
The parameter C' controls the sparsity of the L1-LR. For the value of C' =1 we,
for example, obtained 46.2% reduction in feature matrix size. Smaller C values
lead to stronger regularization and higher sparsity among L1-LR coefficients.
Decreasing the C parameter to C = 0.1 results in 66.7% reduction in the size of
the feature matrix.



Figure 5: Example of mitochondria segmentation. From left to right: original
224 x 224 image, XGB prediction, postprocessed XGB prediction, segmentation
contours (in yellow) overlaid on the original image, ground truth contours (in
cyan). Diagram is best viewed in color.

3.3 Gradient Boosting Classifier

The last module in our processing pipeline is the gradient boosting classifier
which produces binary prediction maps. Boosting, in general, is an ensemble
approach for combining various learning models to create a more powerful
predictor. By doing so, one can improve model predictions of any learn-
ing algorithm. The idea of boosting is to combine the outputs of several
“weak” learners to build a more powerful ensemble with improved generalization
[Friedman(2000)]. AdaBoost and Random Forest are two popular ensemble
algorithms which together with handcrafted features are being used in a number
of works on biomedical imaging. For example, AdaBoost has been used in
[Smith et al.(2009)], [Narasimha et al.(2009)] for cells, in [Smith et al.(2009)],
[Narasimha et al.(2009)], [Li et al.(2016)] for mitochondria segmentation and in
[Becker et al.(2012)], [Navlakha et al.(2013)] for synapses segmentation.

Gradient boosting is similar to AdaBoost and it works by sequentially adding
predictors to an ensemble, each one correcting its prior version. AdaBoost
changes the weights for every incorrect classified observation at every iteration.
On the other hand, gradient boosting tries to fit the new predictor to the
generalized residual errors made by the previous predictor. Friedman showed
that AdaBoost can be generalized to gradient boosting to handle a variety
of loss functions [Friedman(2000)]. Gradient boosting has shown significant
performance improvements in many classification problems as compared to
classic AdaBoost [Caruana and Niculescu-Mizil(2006)].

We use the XGBoost algorithm, which is a fast and an efficient implemen-
tation of the gradient tree boosting method with fully tunable parameters.
XGBoost stands for Extreme Gradient tree Boosting — an approach which has
proven successful in several applications [Chen and Guestrin(2016)].We tune the
following XGBoost hyperparameters (i) number of decision trees and (ii) size
of decision trees which is used to control overfitting. Parameters for XGBoost
have been identified using 2-fold cross-validation grid search procedure from
sklearn Python package. The parameters returned are n_estimators=500 and
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Table 1: Performance metrics used in validation

Metrics Mathematical expression

Accuracy (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)

Recall TP/(TP+FN)

F1-Score 2xPrecision x Recall/ (Precision+Recall)

Table 2: Comparison of mitochondria segmentation methods reviewed

Source Accuracy | Precision | Fl-score | Microscope | Image size | Features
[Kumar et al.(2010)] - 78% 0.8 EM 1024 x 1024 | Radon-like
mouse neuropil 512 x 512

[Seyedhosseini et al.(2013)] | - 82.51% 0.82 EM 700 x 700 algebraic
mouse neuropil curves
[Ghita et al.(2014)] 98% 97% 0.96 EM/ssTEM | - superpixels
ductulus efferens clustering
[Marquez Neila et al.(2016)] | 96% - - FIB-SEM 700 x 700 F2D

rat somatosensory cortex

[Khobragade and Agarwal(2(18)] - - ssTEM 1024 x 1024 | Bayesian
Drosophila VNC 98% 512 x 512 SegNet
Ours (20 training samples) FIB-SEM 1728 x 2022 | CNN
gra}ufél)lac cells (chicken em- 96.74% 81.57% 0.76 (VGG-16)

max_depth=5. Other parameters are as follows: gamma=0, subsample=0.75, col-
sample_bytree=1, min_child_weight = 1). We chose the learning rate parameter
to be learning rate=0.1.

4 Experimental results

A stack of 100 (1728 x 2022 pixels) sections from FIB-SEM of cardiac tissue
from chicken embryos provided by the Oregon Health and Science University
(Portland, OR, USA) is used in this study for training and testing our processing
pipeline. We do not apply any preprocessing to the dataset.

We test the accuracy of our proposed segmentation method against manual
annotations. The ground truth labeling is done with the Amira (Thermo Fisher
Scientific) software. For the quantitative assessment we calculate Accuracy,
Precision and F1-Score performance metrics which are the combinations of True
Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN) as shown in Table 1.

Our training set consists of 20 training 224 x 224 patches from the first
and the last image from the FIB-SEM stack (100 sections in total). All other
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Acc = 96.7%, Precision = 82.32%, F1 = 0.76 Ground Truth

Figure 6: Selected 1728 x 2022 result (left) and the corresponding ground truth
(right). Diagram is best viewed in color.

98 large-scale images are used for testing. Therefore, we are using only two
1728 x 2022 images for training purposes equivalent to a 2%-98% training-test
split.

We also conduct experiments with random training-test splits. We select
randomly two training images out of 100 and validate on the remaining 98 images.
For 10 splits, we report the expected accuracy of 96.42% and the variance of
0.6%.

During training we concatenate flattened training patches into one long
column. Due to the limited memory resources (32GB RAM on Dell Latitude
5580) we randomly subsample the features. For example, instead of using
224 x 224 x 20 = 1003520 row dimension of the 1003520 x 2688 feature matrix,
we only use a subset of n_sub=3000 rows for each image resulting in 60000 x 2688
feature matrix. This subsampling procedure results in about 94% compression
rate of the feature matrix.

Currently, our block processing approach results in oversegmentation. We
apply minor postprocessing with mathematical morphology to remove small
objects, fill holes and close small concave regions. An example of postprocessing
can be seen in Fig.5. Also, block processing results in structures detected inside
the nucleus where mitochondria should not be present. To filter out the structures
inside the nucleus we train our processing pipeline on two annotated nuclei images
and during inference phase subtract the obtained nucleus XGB predictions from
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Table 3: Ablation study results. Inference time is given per one 224 x 224 image.

Component Accuracy | Precision | Fl-score | training inference
time time
L1-LR only (C=10) 96.17% 74.17% 0.73 58.96 sec 0.65 sec
XGB only 96.76% 83.18% 0.756 7606.5 sec 6.53 sec
L1-LR + XGB 96.74% 81.57% 0.76 3272.69 sec 3.27 sec

the XGB predictions for mitochondria. An example of segmented large-scale
1728 x 2022 image and the corresponding ground truth annotation can be seen
for comparison in Fig.6.

As shown in Table 2, we are the first to perform experiments on the large-scale
FIB-SEM dataset. We are competitive with other approaches reviewed and we
are the first to report results for large-scale 1728 x 2022 biomedical images, which
contain large number of irregularly shaped mitochondria.

We perform an ablation study to gain an insight into performance of separate
components of our pipeline. Here we systematically remove L1-LR and XGB to
see how it affects performance. Table 3 presents the results. Performance figures
are marginally the same, with the highest performance given by the XGB trained
directly on VGG-16 features. The difference is in training and inference times:
XGB is only marginally better than the complete pipeline (L1-LR + XGB) but
requires significantly more computational time. We plot the learning curve for
the cardiac cells dataset in Fig.7. It can be seen that by using only two training
samples (two-shot learning) we are able to achieve the segmentation accuracy of
almost 96%.

Next, mitochondria segmentation is performed to identify mitochondria
within individual mouse auditory outer hair cells (OHC). OHC mitochondria are
generally punctate in morphology making them an ideal subject for automated
segmentation. Preliminary qualitative results using a few-shot training procedure
on several high resolution TEM images (4512 x 3552 pixels) are presented in
Fig.8. The speed of automatic segmentation will allow for rapid assessment of
changes in OHC mitochondrial dynamics in large-scale FIB-SEM data sets. The
objective of this experiment is to segment mitochondria in each of three OHC
cells. First, we train our model to segment mitochondria in all cells present in
the image. Then, we use two annotated middle cell images to train our model
to recognize a middle cell in the unseen test data. This information about the
cell outline is used to filter out mitochondria outside the middle cell. This
experiment is part of our preliminary work on automated OHC quantification,
and the ground truth is not available to compute performance metrics at this
time.

Finally, we report results for the Drosophila VNC dataset. The state-of-the-
art 98% accuracy is reported in [Khobragade and Agarwal(2018)]. We achieve
97.88% segmentation accuracy using single-shot training procedure. That is, we
use only one resized 224 x 224 ssTEM image for training. Thus, the proposed
single-shot approach on the Drosophila VNC dataset gives competitive perfor-
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Figure 7: Learning curve of our few-shot segmentation approach. The first six
training samples and the corresponding labels are shown in Fig.2.

mance with the state-of-the-art with far less training data and without data
augmentation.

5 Conclusion

Despite being pre-trained on the ImageNet dataset, which contains RGB natural
images and does not contain any mitochondria, extracted VGG-16 features have
been shown to generalize well to the biomedical domain. Our processing pipeline
is able to work with little training data in a few-shot segmentation setting. The
method presented in this paper is a part of an ongoing work to develop an
automated solution to segmentation of mitochondria in large-scale FIB-SEM
images. In future we plan, therefore, to improve the accuracy and precision
metrics.
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cell). Diagram is best viewed in color.
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