arXiv:1810.10327v3 [cs.CV] 31 Jul 2019

BshapeNet: Object Detection and Instance Segmentation with Bounding Shape
Masks

Ba Rom Kang?, Ha Young Kim!>"
! Department of Financial Engineering, Ajou University
2 Department of Data Science, Ajou University

Abstract

Recent object detectors use four-coordinate bounding
box (bbox) regression to predict object locations. Provid-
ing additional information indicating the object positions
and coordinates will improve detection performance. Thus,
we propose two types of masks: a bbox mask and a bound-
ing shape (bshape) mask, to represent the object’s bbox
and boundary shape, respectively. For each of these types,
we consider two variants: the Thick model and the Scored
model, both of which have the same morphology but differ
in ways to make their boundaries thicker. To evaluate the
proposed masks, we design extended frameworks by adding
a bshape mask (or a bbox mask) branch to a Faster R-CNN
framework, and call this BshapeNet (or BboxNet). Further,
we propose BshapeNet+, a network that combines a bshape
mask branch with a Mask R-CNN to improve instance seg-
mentation as well as detection. Among our proposed mod-
els, BshapeNet+ demonstrates the best performance in both
tasks and achieves highly competitive results with state-of-
the-art (SOTA) models. Particularly, it improves the de-
tection results over Faster R-CNN+RolAlign (37.3% and
28.9%) with a detection AP of 42.4% and 32.3% on MS
COCO test—-dev and Cityscapes val, respectively. Fur-
thermore, for small objects, it achieves 24.9% AP on COCO
test—dev, a significant improvement over previous SOTA
models. For instance segmentation, it is substantially supe-
rior to Mask R-CNN on both test datasets.

1. Introduction

An object detection algorithm determines the class and
location of each object in an image. Deep learning-based
approaches have achieved notable success recently, such as
the Overfeat [28], Fast R-CNN [10], and Faster R-CNN
[27]. These methods use a bounding box (bbox) regres-
sor to predict the object locations that are defined by four-
dimensional coordinates (x, y, width, and height). However,
it is not easy to learn continuous variables from images.

Thus, if we define a new target that allows the detector to
learn the position of the object more efficiently and add it
to the existing framework, the performance will improve.
In other words, the algorithm can predict the position more
accurately by learning not only the coordinates but also a
different form of location information. This is because of
the same reason why people learn better if they study the
same things differently.

In this study, we define the location of an object in the
form of a mask. This is because we perceive that spatial in-
formation can be learned more efficiently than coordinates,
and can facilitate not only object detection but also instance
segmentation such as Mask R-CNN [14]. Because the ob-
jects boundary separates the foreground and background,
we consider it to be more crucial than the objects interior.
Thus, we transformed the complex task of learning both the
interior and boundary into a simpler task by focusing only
on the boundaries. In particular, we consider it highly ef-
fective for small objects and occlusions.

Thus, we propose two types of masks: a bbox mask and
a bounding shape (bshape) mask, to indicate the location of
an object. Figures 1 (a) and (e) show masks with only true
boundaries; however, an imbalance problem occurs owing
to excessive zeros. Therefore, it is necessary to create a
thick boundary. For each of the two types, we consider two
variants: the Thick model (Figures 1 (b) and (f)) and the
Scored model (Figures 1 (c) and (g)), both of which ex-
hibit the same morphology but differ in ways to make their
boundaries thicker. Furthermore, as shown in Figures 1(d)
and (h), various thickness masks are used.

We propose three frameworks, BboxNet, BshapeNet, and
BshapeNet+, to verify the newly defined masks (Figure 2)
for object detection and instance segmentation. BshapeNet
(or BboxNet) is an extended framework by adding a bshape
mask (or a bbox mask) branch to the Faster R-CNN
framework with RolAlign [14], called Faster R-CNNI{.
BshapeNet+ is a network in which a bshape mask branch
and instance mask branch (adopted from Mask R-CNN
[14]) are added to Faster R-CNNT{. It is the same as combin-
ing a bshape mask branch with the Mask R-CNN. With this

UNDER CONSIDERATION AT PATTERN RECOGNITION LETTERS, AUGUST 2019 1

1
1

o000 00 o o ol
H-HEE -EEEE-H:
D ifl i f 1l

ol aafa [TaAE 11 o

°
o
o
1
1
1
1

o offlooofflooooffoo

(a) bounding shape mask

|
I -

IEEEEEEEEEREEEER
IEEEEEEREEEEEREEE

ask (f) Thick bounding box mask

(g) Scored bounding box mask

(h) k-px bounding box mask

Figure 1. Proposed bounding shape masks and bounding box masks.

network, the effect of the bshape mask can be analyzed in
terms of instance segmentation and object detection when
using the bshape mask and instance mask together. To clar-
ify again, BshapeNet(+) allows both object detection and
instance segmentation, but BboxNet only allows object de-
tection because the mask predicts the bounding boxes. Fur-
ther, each network contains two variants (the Thick model
and the Scored model).

We evaluate our approaches on MS COCO [20] and the
Cityscapes [4] datasets. The main contributions of this
study are summarized as follows:

(1) We propose novel and efficient frameworks, BshapeNet
and BshapeNet+, by adding a newly introduced bshape
mask branch to the Faster R-CNNI and Mask R-CNN, for
improving object detection and instance segmentation. Our
masks are extremely easy to add to the existing algorithms
and can be removed at inference.

(2) We propose and investigate two types of masks, and
their various variants (Scored mask, Thick mask, and the
degree of boundary dilation). Thus, we demonstrate that
Scored BshapeNet+ exhibits the best performance and that
our methods are also effective for small objects. Further,
we confirm the possibility of replacing the bbox regressor
by the bbox mask through BboxNet.

(3) Experiments on two benchmarks demonstrate that our
Scored BshapeNet+ improves performance significantly
compared to the Faster R-CNN1 and Mask R-CNN, and
achieves highly competitive results with SOTA methods.

2. Related Work

Object Detection: Many studies have recently presented
excellent results in object detection [22, 27, 26]. The
remarkable improvements in object detection began with
Overfeat and the region-based CNN (R-CNN) [! I]. In par-
ticular, the family of R-CNNs proposed in 2014 remains
outstanding. Unlike sliding-window methods such as Over-
feat, the R-CNN selects proposals including objects, and

subsequently localizes objects using the selected proposals.
To solve the heavy calculations of the R-CNN, the Fast R-
CNN and Faster R-CNN were developed. The Fast R-CNN
uses a selective search [30] to obtain proposals using the
features of the CNN backbone, and a region of interest (Rol)
pooling layer [10] to eliminate the repeated feeding of Rols
back into the CNN. The Faster R-CNN uses region proposal
networks (RPNs) to detect Rols in the structure of a Fast
R-CNN. YOLO [26] and SSD [22] have no additional net-
works to detect the Rols, and perform object proposal and
object detection simultaneously to reduce calculations.
Instance Segmentation: DeepMask [24] predicts the lo-
cation of an object by segmenting an object to propose
candidates. Dai er al. [6] proposed a cascading stage
model using a shared feature to segment the proposed in-
stance(s) from a bbox. The key idea of a fully convolu-
tional instance-aware semantic segmentation (FCIS) [17] is
to predict a position-sensitive output through a fully convo-
lutional structure. This is a combination of the segment pro-
posal method of a previous study [5] and the object detec-
tion method of [6]. FCIS predicts the bbox and mask simul-
taneously, but exhibits a systemic error with overlapping ob-
jects and only detects the bounds of objects approximately.
The Mask R-CNN uses an elaborate instance segmentation
result. This model uses RolAlign [14] to obtain precise
Rols and uses them together with three branches (classifi-
cation, bbox detection, and segmentation) to achieve a sat-
isfactory performance. These methods focus on the inside
of the proposed object for instance segmentation. In con-
trast, we study the edges of objects (information that distin-
guishes between the foreground and background).

3. Our Approach

Bshape (or Bbox) Mask Representation: We define two
types of masks, bshape mask and bbox mask, for better ob-
ject detection and instance segmentation, as in Figure 1. We
defined these masks for two primary reasons. The first rea-

backbone FPN

RPN

.' /
4
Instance %"
(R e e —
segmentor g
(b) Bounding shape mask branch
4
Lo Boundary
1 R e H» FCN shape —»

(a) Instance mask branch

segmentor
RolAlign

.

(c) Regressor & Classifier branch
bbox

bbox
regressor L regressor:l_
classifier classifier

Figure 2. The Proposed BshapeNet+ framework for object detection and instance segmentation.

son is as follows. When people learn, they learn better by
listening and observing rather than only by listening. Sim-
ilarly, if an object detector learns not only the coordinates
but also a different form of position of the object with our
proposed mask, then it localizes the objects better. Another
reason is that if we create a method to improve or support
the instance mask of the Mask R-CNN, a leading instance
segmentation method, performance will be improved.

As the names of the proposed masks imply, the bshape
mask labels the boundary pixels of the object as 1, while
the bbox mask labels the bbox pixels as 1 and the other
pixels as zero (see Figures 1(a) and (e)). With these masks,
it is difficult to learn because of excessive zeros compared to
ones. Thus, for each of the bshape mask and bbox mask, we
define two variants, the Thick mask and the Scored mask.
They exhibit the same morphology but differ in methods
to thicken their boundaries (or bboxes). We create thicker
boundary by extending the boundaries inside and outside of
the true boundary by k pixels. We prefix the name of these
masks with ”k-px” to indicate the boundary thickness. We
call the expanded boundary pixels false boundary pixels.
We explain the Thick mask and Score mask with the bshape
mask in more detail below. The bbox mask is the same
except that the bounding box pixels are considered.

In the Thick mask, false boundary pixels are filled with
Is, as is the case for the true boundary pixels. The math-
ematical expression of this mask is as follows. Let M
= (my;) € R"™ be a true boundary mask matrix, B
= {(t,j) :my; = 1,1 <1 < w1 <5 < whisatrue
boundary index set, and X = (x,4) € R"*" is a k-px Thick
bshape mask matrix. For ¥(i, j) € B,

(D

rpi=1, if 1<i—-k<p<i+k<w

All remaining values are filled with zeros. In this case, it
is difficult to distinguish between the false and true bound-

aries; therefore, we develop the Scored mask because we
can learn the boundaries more effectively by defining false
boundary and true boundary values differently. The value
of the false boundary is reduced at a constant rate in pro-
portion to the distance from the actual boundary. Thus, for
the Scored bounding shape mask, false boundary pixels are
filled with distance-based scored numbers, which are posi-
tive numbers less than 1, to generate a mask. Let Y = (y,4)
€ RY*™ be a k-px Scored bounding shape (or box) mask
matrix. We use the same matrices M and B as in Fq.1, and
s is a predetermined positive constant (less than 1) that con-
trols the magnitude by which the value decreases. We set s
as 0.05. Subsequently, V(7, j) € B,

{ypjldm if 1<i-k<p<ith<v

Yig=1—dss, if 1<j—k<qg<j+k<Lw,

where d; = |p — i| and dy = |q — j| are the distances from
the true boundary, and the remaining pixels are zero.
Proposed Frameworks: To verify our masks, we de-
veloped three frameworks: BboxNet, BshapeNet, and
BshapeNet+, in this study (Figure 2). The BshapeNet (or
the BboxNet) is a framework that combines the Faster R-
CNNi with a bshape (or bbox) mask branch. In other
words, we replaced the instance mask branch in the Mask
R-CNN with the bshape (or bbox) mask branch. Further,
BshapeNet+ is a framework that adds both our bshape mask
branch and instance mask branch to the Faster R-CNN1. In
other words, it is the same as combining a bshape mask with
the Mask R-CNN. The bshape (or bbox) mask branch seg-
ments the boundaries (bboxes) of instances in the Rols. Fur-
ther, the instance mask branch performs instance segmen-
tion, that is, the interior of the instance is segmented as well
as the boundary [14]. The regressor and classifier branch
perform bbox regression and classification of the Rols used
in [10, 27, 18]. For clarity, Table 1 summarizes the branches
used for each model.

Model ‘ Training ‘ Test (Detection) ‘ Test (Segmentation)

BboxNet
BshapeNet ‘ (b) bshape, (c) regressor ‘ (c) regressor ‘

‘(b)j' bbox, (c) regressor ‘ (c) regressor ‘
(b) bshape

BshapeNet+ ‘ (a) instance, (b) bshape, (c) regressor ‘ (c) regressor ‘ (a) instance

Table 1. The branches used in each proposed model in Figure 2 for
training and test. bT denotes the bbox mask branch.

n == —
| O P2 [W x H x 256] || - | T| 5| T|T|g | ~|=
5123 |z| [P3wxHx256]]| [2]2 R R R N
2 |G el |2 i) % |0l o] B[S SR
Sl |&o| % |PA[WXxHX256]| 2|2 3 EEEEE g|x
3] P5 [WxHx256)! |S|S S 8883§U§
RPN 7474512 FCN
Con - conv. layer, filter si tride 1 Conv(7, 1024)
onv(f, m): conv. layer, filter size f, stride Conv(l, 1024)

(if f = 3, zero padding 1) CN
Deconv(f, m): deconv. layer, stride 2 FC(k)| [FC(ak)
m: # of channels, k: # of classes [1xk] [4xk]

Figure 3. The detailed network architecture of BshapeNet.

As shown in Figure 2, BshapeNet+ consists primarily of
a backbone (as in [27, 14]), the RPN, the region classifica-
tion network (RCN), and the bshape mask branch and in-
stance mask branch based on the FCN [23]. In addition, for
better performance, we used the feature pyramid network
(FPN) [18]. More specifically, the flow of BshapeNet+ with
each component is as follows. First, the backbone extracts
features and then the FPN combines multiresolution fea-
tures with high-level features from multiple layers of the
backbone [18] and forwards combined features to the RPN.
Subsequently, the classifier and bbox regressor of the RPN
propose the Rols. For final predictions, both the bshape seg-
mentor and instance segmentor use Rols simultaneously as
the RCN. Through this process, all predictions occur.

Figure 3 shows the architecture of the BshapeNet. It is
exactly the same as the architectures of the Mask R-CNN
and BboxNet. BshapeNet+ contains two FCNs with the
same architecture. In more detail, we investigated our mod-
els with ResNet [15] and ResNeXt [31] as the backbone for
all experiments and these are composed in six stages, where
each stage consists of CNN layers of equal feature map size.
The feature maps finally extracted at each stage are called
Cl1, C2, C3, C4, C5, and C6. Among them, C2, C3, C4,
and C5 were fed to the FPN and P2, P3, P4, and P5 were
output, respectively. The architectures of the FCN used in
the bshape mask branch and instance mask branch are the
same as that of the Mask R-CNN.
Training Loss Functions: We used the same loss for both
BshapeNet and BboxNet because only the morphology of
the defined mask was different. However, the Scored model
and Thick model exhibit different losses. First, the loss
function for the Scored model is defined as follows:

Lossiotal = aLrpn + BLreN + YLSmask, 3

where «, 5 and +y are predetermined positive constants, and
the loss functions of the RPN, RCN, and Scored bshape (or

bbox) mask branch are called Lrpyn, Lren, Lsmask» Ie-
spectively. The loss functions of the RPN and RCN are the
same as those for the faster R-CNN.

We used the Euclidean loss function for the Scored mask
branch, called L g5k, as follows: for each Rol, Lg,qsk =
Sl Z:/V Zf(t” — t;;)%, where H and W indicate the
height and width of the mask, respectively, and ?;; is the
ground-truth label of (4, j) in the mask with a predicted
value of #;;. The Thick mask branch solves a pixel-wise
classification while the Scored mask branch model solves a
pixel-wise regression.

Thus, we used the following binary cross-entropy loss
function for the Thick mask branch, called L7045k,
with the same notation as in Lsmask: LTmask =
—ﬁ ZYV Ef{t” log Ltij + (1 —tij) log(l —Ltij)}. The to-
tal loss function of the Thick model is equivalent to chang-
ing Lsmask t0 Lrmask in Eq. 3.

Finally, the loss function of BshapeNet+ is equivalent to
adding dLask t0 Eq. 3. Lymask stands for the loss of
the instance mask branch and is the same as that used in the
Mask R-CNN and § is a preset positive constant.
Inference: Except for Table 8, to analyze the effect of
adding our mask to the existing model, at inference, we
evaluate the performance using the branches, as shown in
Table 1. The performance of bbox mask branch is also eval-
uated (Table 8). Simple post-processing is required for in-
stance segmentation with our bshape mask branch because
our bshape masks only segment the boundaries of objects.
We performed post-processing for the two-step procedures.
The first step is to connect the predicted boundary and the
second step is to fill it. To connect the predicted bshape
mask, we used a modified Prims algorithm [25], which is a
technique used in the minimum spanning tree [12].

4. Experiment

We compare the results of our models, BshapeNet+,
BshapeNet, and BboxNet with their variants, and perform
ablations. We also compare these results with the Faster R-
CNNi, Mask R-CNN, and SOTA algorithms. We used two
benchmark datasets, MS COCO and Cityscapes. Specif-
ically, we used the MS COCO Detection 2017 dataset
containing 81 classes and 123,287 images (trainval),
and 118,287 images for the training set and 5K images
for the validation set (minival). We also obtained the
results of object detection and instance segmentation on
test-dev [20]. For Cityscapes, we used the dataset with
fine annotations comprising nine object categories for
instance-level semantic labeling and a 2,975-image train-
ing set, 500-image validation set, and 1,525-image test set
[4]. Further, we evaluated our results using the Cityscapes
test-server. We evaluated the performance using the
standard COCO-style metric [20].

In the Mask R-CNN paper, models were trained using 8

Model (R-101) | APy, AP} APP | ModelR-101) | APy APY AP}
| BrosNet®) [37.9 599 40.6 | BshapeNet (3) [38.1 59.9 41.0
B | BooxNet5) | 37.9 59.0 40.0 | BshapeNet (5) [38.2 60.9 40.5
= | BooxNet(7) | 38.0 59.9 39.4 | BshapeNet (7) 384 615 41.8

| BooxNet (1) | 37.8 58.0 39.8 | BshapeNet(11) | 38.2 60.9 41.2

| BooxNet3) | 37.8 59.5 40.5 | BshapeNet (3) |41.5 63.4 44.0
T | BooxNets) | 38.1 59.8 40.7 | BshapeNet (5) |41.4 63.5 45.9
= | BrosNer | 38.1 59.7 409 | BshapeNetn | 42.1 64.1 46.2

o | BboxNet (1) | 37.9 59.5 40.5 | BshapeNet (1) | 41.7 63.9 46.2
@ | BshapeNetr 3) | 417 63.3 44.6 | BshapeNets (1) | 42.3 64.5 46.4
| BshapeNet+ (5) | 41.8 63.8 46.2 | BshapeNet+ (11) | 42.1 64.1 46.3

Faster R-CNNi (ours) | 37.0 58.8 36.3 | Mask R-CNN (ours) | 38.0 60.1 41.5

Table 2. Object detection results on COCO minival dataset
with bbox AP (%). Numbers in parentheses indicate thickness
of boundary (k-px model). We denote ResNet by “R” and ours
means results obtained from our experimental environment.

Model (R-101) | AP APY, APTS | Model (R-101) | AP APY, APTY
% | BshapeNet 3) | 30.7 48.6 27.9 | BshapeNet (7) [31.5 51.6 319
E | BshapeNet (5) | 31.2 522 31.4 | BshapeNer(11) | 31.6 50.4 29.8

| BshapeNet 3) | 33.2 49.8 30.3 | BshapeNet (1) | 36.7 57.7 38.0
3 | BshapeNet(5) | 34.8 57.1 37.6 | BshapeNet1) | 36.4 57.2 37.9
S | BshapeNetr 3) | 33.6 50.1 32.6 | BshapeNet+ (1 | 37.1 589 39.3
7| BetpeNe 5) | 35.4 574 37.9 | BehapeNews (1) | 369 577 38.9

MaskR-CNN[14] | 354 57.3 37.5 | MaskR-CNN(ours) | 35.2 57.3 37.6

Table 3. Instance segmentation results on COCO minival
dataset with bbox AP and mask AP (%).

NVIDIA Tesla P100 GPUs; however, we used 2 NVIDIA
GTX 1080Ti GPUs. Thus, we used a smaller minibatch.
Owing to the limited experimental environment, we re-
experiment the Mask R-CNN and Faster R-CNNt models
in our experimental environment for a fair comparison. Fur-
ther, we matched the hyperparameters to the paper of Mask
R-CNN except the minibatch size.
Metric: We follow the standard MS COCO evaluation
metrics including AP (average precision averaged over
intersection-over-union (IoU) thresholds of 0.5 to 0.95),
AP (IoU = 0.5), AP™ (IoU = 0.7), and APS, APM,
APL, which are APs for small, medium, and large ob-
jects, respectively. We specified the bbox average preci-
sion as APy, and instance segmentation average precision
as AP,,;. These metrics apply to both datasets.
Implementation details: The detailed architectures of our
models are described in the previous section. For the MS
COCO dataset, we resized the images such that their shorter
edge was 800 pixels [18]. We used two GPU and four mini-
batch (two images per GPU) and trained the model for 64K
iterations. We set the initial learning rate to 0.02 and di-
vided it by 10 (0.002) at 48k iterations. For the backbone,
we used ResNet50, ResNet101, and ResNeXt101.

In the Cityscapes, we performed training using only a
fine dataset. Although the raw data size was 2048 x 1024,
we reduced it to 1024 x 800 to fit our resource. The models

were trained with two GPUs and two minibatches (one im-
age per GPU), and the model for 96K iterations was trained.
We set the initial learning rates to 0.01 divided by 10 (0.001)
at 56K iterations and used only ResNet50 as the backbone.
This is because the amount of data in Cityscapes are ex-
tremely small and our model does not improve significantly
with ResNet101 as the Mask R-CNN [14].

The hyperparameters typically used in both datasets are
as follows. Each image contains 512 sampled Rols for the
FPN with positive and negative 1:3 ratios [18]. Anchors of
five different scales and three aspect ratios were used as in
[27]. The proposed Rols of the RPN are 2000 per image
for training and 1000 for testing. We set the weight decay
to 0.0001 and the momentum to 0.9. We used pretrained
ImageNetlk [8] weights for all backbones.

4.1. Comparison with proposed models

We compare and analyze the proposed models and their
variants. In summary, BshapeNet is better than BboxNet,
the Scored model is better than the Thick model, and Scored
BsahpeNet+ demonstrates the best performance.
Thickness of Boundaries: As shown in Tables 2 and 3, the
7-px models demonstrated the best results in both object de-
tection and instance segmentation in COCO. Unlike COCO,
the 3-px model, rather than the 7-px, was the best model in
Cityscapes (Tables 6 and 7). For COCO, good performance
is achieved using relatively thick boundary masks owing to
the variety of objects (81 classes), sizes, and backgrounds.
That is, it must be thick enough to cover the various scales
of the objects. Meanwhile, in Cityscapes, the objects are
relatively simpler than those of COCO; a fairly thick bound-
ary affects the model negatively because the boundary dila-
tion introduces noise due to false boundaries.

BshapeNet vs. BboxNet: The BshapeNet with the same
variant condition is significantly more accurate in object de-
tection (Tables 2 and 6). The accuracy of BshapeNet’s best
model is 42.1 (32.0) AP, while that of BboxNet’s best
model is 38.1 (29.7) AP, as shown in Tables 2 and 6, re-
spectively. This demonstrates that the boundary shape in-
formation of the object facilitates in detecting objects much
more effectively than the bbox information.

Scored masks vs. Thick masks: The results of Scored
models with the same variant condition surpass those of
thick models in MS COCO and Cityscapes, as shown in Ta-
bles 2, 3, 6, and 7. In particular, the Scored models are much
better than the Thick models in instance segmentation (Ta-
bles 3 and 7). For example, 7-px Scored BshapeNet (36.7
AP,,k) is 5.2 points higher than 7-px Thick BshapeNet
(31.5 AP,,;) in COCO (Table 3). This confirms that fill-
ing the false boundary values (distance-based scored values)
differently than the true boundary value improves object de-
tection performance.

Scored BshapeNet vs. Scored BshapeNet+: Because the

Figure 4. Examples of b
post-processing has been performed.

R

ounding box segmentation results of 7-px Scored BboxNet (ResNet101) on the MS COCO minival dataset. No

Model | test | backbone | APy, AP AP]? APj; AP) APS | APn APX, APD APL. APM. AP,
Mask R-CNN (ours) | minival | R-50 |37.8 580 383 492 40.1 19.1| 334 547 339 501 37.0 149
+ deeper (ours) | minival | R-101 | 38.0 60.1 415 50.1 407 19.7| 352 573 376 513 371 155
+ ResNeXt (ours) | minival | X-101 | 39.3 61.1 43.0 510 440 236 367 585 387 521 385 165
Faster R-CNN7 (ours) | minival | R-50 | 359 574 351 480 392 173 - - - - - -

BshapeNet | minival | R-50 | 382 60.6 408 505 41.8 22.6]| 358 544 363 509 373 162
+ deeper | minival | R-101 | 42.1 64.1 462 528 447 249 367 577 380 513 377 165
+ ResNeXt | minival | X-101 | 423 644 467 529 451 251|370 589 387 525 386 168
+Inst. mask (BshapeNet+) | minival | X-101 | 42.5 64.7 469 531 45.6 25.2| 375 59.5 397 541 403 174
Mask R-CNN (ours) | test-dev | R-101 | 38.0 602 414 500 414 201|355 574 379 521 378 151
+ ResNeXt (ours) | test-dev | X-101 | 39.5 613 431 512 432 221|369 585 389 527 386 169
Mask R-CNN [14] | test-dev | R-101 | 382 60.3 41.7 502 41.1 20.1| 357 580 378 524 381 155
+ ResNeXt [14] | test-dev | X-101 | 39.8 623 434 512 432 221|371 600 394 535 399 169
Faster R-CNNj [14] | test-dev | R-101 | 373 59.6 403 488 402 198 - - - - - -

BshapeNet | test-dev | R-101 | 423 645 464 530 457 249|370 581 382 519 385 167
+ ResNeXt | test-dev | X-101 | 425 648 467 53.1 457 251|372 589 389 527 389 169
+ Inst. mask (BshapeNet+) ‘ test-dev ‘ X-101 ‘ 428 649 469 53.6 46.1 252 ‘ 379 613 402 544 404 174

Table 4. Ablation study on BshapeNet on COCO minival and test-dev. We denote ResNeXt by “X” for brevity. The “Inst. mask”
means that an instance mask branch; The 7-px Scored BshapeNet is used.

performance of Scored BshapeNet is the best among our
models, Scored BshapeNet+ models with the instance mask
branch added to this model were tested and the results are
shown in Tables 2~7, and 9. BshapeNet+ performed bet-
ter than BshapeNet in all experiments under the same con-
ditions. In our opinion, the instance mask branch has been
added to allow for the model to learn more information. The
results of this model are analyzed in the next subsection.

4.2. Object Detection

Main Results: All BshapeNet and BshapeNet+ models
showed better detection performance than Faster R-CNNZ
and Mask R-CNN in both COCO dataset (minival and
test-dev) and Cityscapes (val), as shown in Tables 2,
4, 5, and 6. In particular, the best result (42.1 AP) of
BshapeNet for COCO was 5.1 points (4.1 points) higher
than Faster R-CNN1 (Mask R-CNN) in Table 2. Similarly,
in Cityscapes, our best BshapeNet result (32 AP) was 3.1
points (2.4 points) higher than Faster R-CNNI (Mask R-
CNN) (Table 6). These results demonstrate that our mask
branches can help improve the performance of object de-
tection. In addition, it shows that the scored bshape mask
branch is more effective than the instance mask branch for

object detection. BshapeNet+ obtained better results for
both data; in more detail, it achieved 42.3 AP (32.3 AP)
on COCO minival (on Cityscapes val).

Table 5 shows that our model achieves very compet-
itive results with state-of-the-art models in MS COCO
test-dev. BshapeNet achieves 42.3 AP, and the result
of BshapeNet+ is 42.4 AP. BshapeNet+ has the highest per-
formance among the SOTA models presented.

Ablation Studies: We also performed ablations with
COCO test—dev and minival as in Table 4. We com-
pared Faster R-CNNi with BshapeNet to check the ef-
fect of the bshape mask branch. The test-dev result
of BshapeNet (42.3 AP) was significantly higher than that
(37.3 AP) of Faster R-CNNi. When we changed the back-
bone to ResNeXt101, BshapeNet showed a score of 42.5
AP in test-dev, which was 0.2 points higher. Adding an
instance mask branch to this model improved the detection
performance by 0.3 points to 42.8 AP.

Results of Bbox Mask Branch: The bboxes can be pre-
dicted only with our bbox mask of BboxNet, and bbox AP
can be calculated using the coordinates of the top left corner
and bottom right corner of the predicted box. The results of
the bbox mask branch are similar or slightly higher than

Object Det | backbone | APy, AP} AP]? AP} AP) AP
R-FCN[7] | R-101 | 299 519 - 450 328 10.8
SSD-513[9] | R101 | 312 504 333 498 345 102
Faster R-CNNf[14] | R-101 | 37.3 59.6 403 488 402 19.8
Mask R-CNN[14] R-101 382 603 417 502 41.1 20.1
RetinaNet[19] R-101 39.1 591 423 502 442 241
BshapeNet R-101 | 423 645 464 530 457 249
BshapeNet+ R-101 | 424 647 46.6 531 459 249

AP APS

mk

Instance Seg

\
\
|
\
\
MNC[6] | R-101
|
|
\
|
\

mk

\
\
\
|
\
\
\
backbone | AP, AP, APY AP
|
\
\
\
\
\

246 443 248 436 259 47
FCIS[29] R-101 292 495 - 50.0 313 7.1
FCIS+OHEM[29] R-101 336 545 - - - -
Mask R-CNN[14] R-101 357 580 378 524 381 155
BshapeNet R-101 370 581 382 519 385 167
BshapeNet+ R-101 375 592 395 531 399 173

Table 5. Comparison of object detection and instance segmentation
results of 7-px Scored BshapeNet with the state of the art models
on COCO test-dev.

Model (R-50) | APy AP} AP} | Model (R-50) | APy, AP} AP}
| BooxNet3) | 29.3 48.4 28.6 | BshapeNet (3) [30.3 49.7 28.7
o BboxNet(5) [29.0 48.0 28.5 | BshapeNet (5) [30.0 494 28.6
<= | BboxNet(7) | 29.2 48.1 28.3 | BshapeNet (7) [29.9 492 28.6
| BboxNet (1) [29.1 48.2 28.1 | BshapeNet(11) [29.9 492 28.7
| BooxNet3) [29.7 48.9 28.9 | BshapeNet3) | 32.0 52.0 32.1
o | BboNet(5) [29.2 48.1 28.8 | BshapeNet (5) [31.4 505 29.9
= | BooxNet(7) | 29.4 48.2 28.3 | BshapeNet (7) [30.9 50.1 29.2
2 | BooxNet (1) | 29.4 48.2 28.5 | BshapeNet(11) | 30.7 50.3 29.1

BshapeNet+ (3) 32.3 524 325 BshapeNet+ (7) 31.3 50.8 29.7
BshapeNet+ (5) 31.8 51.7 31.6 BshapeNet+ (11) 31.2 51.0 29.7

Faster R-CNN{ (ours) | 28.9 48.4 28.1 | Mask R-CNN (ours) | 29.6 49.1 29.2

Table 6. Object detection results on Cityscapes val dataset with
bbox AP (%).

Model (R-50) | APy, AP, APTS, | Model (R-50) | AP AP, APT
| BshapeNet 3) | 29.4 48.2 29.0 | BshapeNet (7) [29.1 475 29.0
£ | BshapeNet (5) | 29.4 48.0 29.1 | BshapeNet 1) | 28.9 47.6 28.8
| BshapeNet 3) | 32.1 49.8 30.2 | BshapeNet (7) [31.7 49.0 29.6
= | BshapeNet(5) | 31.9 49.5 29.9 | BshapeNet(i) | 314 487 29.6

;; ‘ BshapeNet+ (3) ‘ 33.5 50.7 30.7 ‘ BshapeNet+ (7) ‘ 32.0 50.2 29.7
| BshapeNet+ (5) | 32.3 50.7 30.2 | BshapeNew+-(11) | 31.9 48.8 29.5
Mask R-CNN[14] | 31.5 - - | MaskR-CNN(ours) | 31.2 49.7 29.6

Table 7. Instance segmentation results on Cityscapes val dataset
with mask AP (%).

those of the bbox regressor as in Table 8. In addition, the
intersection of the two results improved the accuracy.

4.3. Instance Segmentation

Main Results: We present the results of instance segmen-
tation of BshapeNet+ and BshapeNet using minival and
test-dev in COCO and val and test-server in
Cityscapes in Tables 3, 4, 5, 7, and 9. In Tables 3 and 7,
we show that all BshapeNet+ models (except one model)
obtain superior performance over Mask R-CNN in both

COCO (minival) Cityscapes (val)
APy, AP} AP} AP AP) APRS | AP, AP} APJ
BBR [38.1 59.7 409 50.0 41.1 20.3|29.7 489 289
BM [38.2 599 40.8 49.7 423 20.9|29.7 49.1 288
BBRNBM | 384 60.1 424 503 425 2121299 492 288

Model

Table 8. Object detection results of Scored BboxNet (ResNet101)
on COCO minival and object detection results of Scored
BboxNet (ResNet50) on Cityscapes val. BBR is the result from
the bbox regressor. BM is the result from the bbox mask. BBR N
BM is the result from the intersection of BM and BBR.

datasets. In particular, BshapeNet+, which showed the best
performance, achieved 37.1 AP and 33.5 AP in COCO and
Cityscapes, respectively. Compared to the Mask R-CNN
paper results, we obtained, with our BshapeNet+, an im-
provement of 1.7 points in COCO and an improvement of
2.0 points in Cityscapes and the result of BshapeNet is 1.3
points higher in COCO and 0.6 points higher.

Our models achieved very comparable results with

the SOTA models in COCO test-dev and Cityscapes
test-server as shown in Tables 5 and 9. BshapeNet+
shows a higher instance segmentation performance than the
other state-of-the-art models in COCO and Cityscapes. In
addition, BshapeNet+ has good performance in small ob-
jects as shown in Table 5. BshapeNet+ has a performance
of 17.3 AP for small objects and is superior to the current
SOTA models.
Ablation Studies: In Table 4, we compare BshapeNet and
BshapeNet+ to Mask R-CNN and examine the instance
segmentation effect of the bshape mask branch on MS
COCO test-dev and minival datasets. When us-
ing ResNet101 as a backbone, BshapeNet shows 37.0 AP,
which is higher than the Mask R-CNN paper result by 1.3
points in test-dev. With ResNeXt101 as a backbone,
BshapeNet has a score of 37.2 AP in test-dev, and it
is 0.3 points better than Mask R-CNN (ours). However,
adding the instance mask branch to BshapeNet shows a
score of 37.9 AP in test—-dev, and it is 1.0 points bet-
ter than Mask R-CNN (ours).

5. Conclusion

We demonstrated a significantly improved performance
by additionally providing the locations of objects with a dif-
ferent format as well as the coordinates to object detection
algorithms. Further, our methods could be applied easily to
all detection algorithms using bbox regression. Our branch
was removable at inference without performance degrada-
tion; therefore, it is an effective method to reduce com-
putational cost. The experimental results of BshapeNet+
demonstrated that the proposed method improved the per-
formance of instance segmentation, and that it was particu-
larly good for small objects.

Instance Seg ‘ train dataset ‘ AP, AP,E& ‘ Person Rider Car Truck Bus Train mcycle bicycle
InstanceCut[16] ‘ fine+coarse ‘ 13.0 279 ‘ 10.0 8.0 237 140 195 152 9.3 4.7

DWT[3] ‘ fine ‘ 15.6 300 ‘ 151 11.7 329 17.1 204 15.0 7.9 4.9

BAIS[13] \ fine \ 174 36.7 \ 146 129 357 160 232 19.0 103 7.8

DIN[2] ‘ fine+coarse ‘ 20.0 38.8 ‘ 165 16.7 257 206 300 234 17.1 10.1
SGN[21] ‘ fine+coarse ‘ 25.0 449 ‘ 21.8 20.1 394 248 332 308 17.7 12.4
PolygonRNN++[1] \ fine \ 254 455 \ 294 21.8 483 21.1 323 237 136 13.7
Mask R-CNN[14] | fine [262 499 | 30.5 237 469 228 322 186 19.1 16.0
BshapeNet ‘ fine ‘ 27.1 503 ‘ 29.6 233 46.8 258 329 246 203 14.0
BshapeNet+ ‘ fine ‘ 273 505 ‘ 30.7 234 472 261 333 248 215 14.1

Table 9. Comparison of instance segmentation results of BshapeNet with the state-of-the art models on Cityscapes test—-server. The
3-px Scored BshapeNet was used.

Figure 5. Examples of object detection and instance segmentation results for the 7-px Scored BshapeNet (ResNet101) on the MS COCO
val dataset. Scored BshapeNet detects the outlines of objects and the bounding boxes well.

BshapeNet+ BshapeNet

Mask R-CNN

Figure 6. Comparison of the results of instance segmentation of Cityscapes images by the proposed model (3-px Scored BshapeNet (top)
and 3-px Scored BshapeNet+ (middle)), and Mask R-CNN (bottom). Both models are trained in the same experimental environment and
under the ResNet50 backbone. The proposed models detect objects that are not detected by Mask R-CNN as well as occluded objects.

6. Acknowledgments

This research was supported by System LSI Business,
Samsung Electronics Co., Ltd.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

D. Acuna, H. Ling, A. Kar, and S. Fidler. Efficient interactive
annotation of segmentation datasets with polygon-rnn++. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 859-868, 2018. 8

A. Arnab and P. H. Torr. Pixelwise instance segmentation
with a dynamically instantiated network. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 441-450, 2017. 8

M. Bai and R. Urtasun. Deep watershed transform for in-
stance segmentation. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2858-2866.
IEEE, 2017. 8

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3213-3223, 2016. 2, 4

J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive
fully convolutional networks. In European Conference on
Computer Vision, pages 534-549. Springer, 2016. 2

J. Dai, K. He, and J. Sun. Instance-aware semantic segmen-
tation via multi-task network cascades. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3150-3158, 2016. 2,7

J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection
via region-based fully convolutional networks. In Advances
in neural information processing systems, pages 379-387,
2016. 7

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248-255. Ieee, 2009. 5
C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg.
Dssd: Deconvolutional single shot detector. arXiv preprint
arXiv:1701.06659, 2017. 7

R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440-1448,
2015.1,2,3

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580-587,
2014. 2

J. C. Gower and G. J. Ross. Minimum spanning trees and
single linkage cluster analysis. Journal of the Royal Statisti-
cal Society: Series C (Applied Statistics), 18(1):54—64, 1969.
4

Z. Hayder, X. He, and M. Salzmann. Boundary-aware in-
stance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5696—
5704,2017. 8

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.
In Computer Vision (ICCV), 2017 IEEE International Con-
ference on, pages 2980-2988. IEEE, 2017. 1,2, 3,4,5,6,7,
8

[15]

(16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770-778, 2016. 4

A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and
C. Rother. Instancecut: from edges to instances with multi-
cut. In CVPR, volume 3, page 9, 2017. 8

Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolu-
tional instance-aware semantic segmentation. arXiv preprint
arXiv:1611.07709, 2016. 2

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and
S. Belongie. Feature pyramid networks for object detection.
In CVPR, page 4, 2017. 3,4,5

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal
loss for dense object detection. IEEE transactions on pattern
analysis and machine intelligence, 2018. 7

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollar, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740-755. Springer, 2014. 2, 4

S. Liu, J. Jia, S. Fidler, and R. Urtasun. Sgn: Sequential
grouping networks for instance segmentation. In The IEEE
International Conference on Computer Vision (ICCV), 2017.
8

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21-37.
Springer, 2016. 2

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3431-3440, 2015. 4

P. O. Pinheiro, R. Collobert, and P. Dolldr. Learning to seg-
ment object candidates. In Advances in Neural Information
Processing Systems, pages 1990-1998, 2015. 2

R. C. Prim. Shortest connection networks and some gener-
alizations. Bell system technical journal, 36(6):1389-1401,
1957. 4

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 779788, 2016. 2

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91-99,2015. 1,2,3,4,5

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013. 1

A. Shrivastava, A. Gupta, and R. Girshick. Training region-
based object detectors with online hard example mining. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 761-769, 2016. 7

J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. Inter-
national journal of computer vision, 104(2):154-171, 2013.
2

[31] S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In Com-
puter Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on, pages 5987-5995. IEEE, 2017. 4

10

