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Pooling layers are spatial down-sampling layers used in convolutional neural networks (CNN) to gradually downscale the feature map, increase the 

receptive field size and reduce the number of the parameters in the model. The use of pooling layers leads to less computing complexity and 

memory consumption reduction but also introduces invariance to certain filter distortions which may induce subtle detail loss. This behaviour is 

undesired for some fine-grained recognition tasks such as facial expression recognition (FER) which highly relies on specific regional distortion 

detection. In this paper, we introduce a more filter distortion aware pooling layer based on kernel functions. The proposed pooling reduces the 

feature map dimensions while keeping track of the majority of the information fed to the next layer instead of ignoring part of them. The 

experiments on RAF, FER2013 and ExpW databases demonstrate the benefits of such layer and show that our model achieves competitive results 

with respect to the state-of-the-art approaches. 

1. Introduction

Facial expression recognition (FER) research aims at classify- 

ing the human emotions given facial images as one of seven ba- 

sic emotions: happiness, sadness, fear, disgust, anger, surprise and 

neutral. FER finds applications in different fields including secu- 

rity, intelligent human-computer interaction, and clinical medicine. 

Recently, many FER works [1,15,19,23,32–34] based on Convolu- 

tional Neural Networks (CNNs) have been proposed. Although 

these works mainly differ by the model architectures and the used 

databases, convolution and pooling layers are often employed. 

Pooling layers generally enhance the network performance and 

are mainly used for the gradual spatial down-sampling of the fea- 

ture map. This will reduce the parameters number and thus re- 

duces the memory consumption and computing complexity. In ad- 

dition, pooling layers increase the receptive field size of the inter- 

mediate neurons allowing the latter to receive information from a 

larger area of the image. However, pooling layers introduce invari- 

ance to slight distortion which decreases the network performance 

on FER tasks as this distortion may cause the loss of some discrim- 

inative details [10] .

In the literature, three conventional pooling methods have usu- 

ally been employed with CNNs, namely: (1) max pooling, (2) av- 

∗ Corresponding author. 

E-mail address: mohamed.mahmoudi@univ-mascara.dz (M.A. Mahmoudi). 

erage pooling and (3) strided convolution, having each their ad- 

vantages and drawbacks. Max pooling, for instance, only keeps the 

largest input values assuming that the rest of values are not rep- 

resentative and do not bring relevant information. This assumption 

however is not always true, especially in the last layers of the net- 

work where even the small values represent a very relevant infor- 

mation. Therefore max pooling dramatically reduces the amount 

of useful information in the forward pass. Moreover, max pooling 

wrongly affects the learning of the network in the backward pass, 

since only one branch is activated in each input neighborhood. In 

an average pooling layer, all the inputs equally contribute to the 

output computation. This causes a constant and gradual attenua- 

tion of the contribution of individual neurons in the backward and 

forward passes [25] . Strided convolution is simply a convolution

layer with a stride bigger than one. This kind of layer is used in 

some very deep networks like ResNet [5] , whereas max and av- 

erage pooling are used in mid-size networks like VGG [26] and

GoogleNet [27] .

Although, these pooling methods are easy to compute from 

an input neighborhood, they omit important discriminant details 

which are crucial to many fine-grained classification problems. Par- 

ticularly for FER, in which, we are more interested in detecting 

specific distortions of facial regions rather than simply identify- 

ing it in a given location (which is the case in a max-pooling 

operation [2] ). To handle this problem, we introduce in this pa- 

per, a more filter-distortion aware pooling layer based on a kernel 

function which reduces the feature map dimensions while keeping 
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track of the most discriminant information for FER instead of ig- 

noring part of it. We show that the proposed layer improves the 

model performance in FER task, without many additional parame- 

ters. 

Our contributions

We propose a FER method based on a CNN model to which 

we specifically designed a novel pooling layer that retains the 

down-sampling advantage of the ordinary pooling function and 

brings several new features. The proposed pooling layer has learn- 

able weights which generalize standard pooling functions (i.e. max 

and average pooling) and, additionally encodes patch-wise non- 

linearity which in turn improves the discrimination power of the 

full network. The novel pooling is completely differentiable and 

can be used at any level of the network, allowing an end-to-end 

learning. 

The remainder of this paper is organized as follow: 

Section 2 reviews similar works that have been proposed 

for FER using deep learning techniques, pooling based net- 

works. Section 3 introduces the proposed pooling layer for FER. 

Section 4 presents the different conducted experiments and their 

related results. Section 5 concludes the paper.

2. Related work

Recently many works have been proposed for FER using deep 

learning techniques. The majority of these works focuses on the 

CNN architecture and its tuning on either laboratory controlled 

or wild images. An extensive survey has been proposed by Li 

and Deng [17] for more details. All presented CNN based meth- 

ods [17] use one or many conventional pooling layers (max/average

pooling, or strided convolution). As stated in Section 1 these pool- 

ing layers introduce invariance to slight distortion which may 

decrease the network performance on fine-grained classification 

tasks. 

Several pooling methods have been proposed to overcome this 

limitation and thereby improves the performance of CNNs. In 

[22] a bilinear pooling method for fine-grained recognition was 

proposed. Inspired from the second order pooling model intro- 

duced by Tenenbaum and Freeman [29] , it consists of using two 

CNNs as feature extractors and combine their outputs by multi- 

plying each location of the resulting feature maps using the outer 

product. The result is then sum-pooled to obtain the final image 

descriptor. This model has been improved later in [21] by addition- 

ally applying a matrix function normalization. Two matrix func- 

tions have been used for this purpose namely the matrix logarithm 

and the matrix square-root. However, these models are high di- 

mensional and they could be impractical for a multitude of im- 

age analysis. In [9] two compact bilinear representations of these

models have been proposed with the same discriminative power 

as the full bilinear representation, yet with only a few thousand 

dimensions. The later was further generalized in [6] in the form of

Taylor series kernel. The proposed method captures high order and 

non-linear feature interactions via compact explicit feature map- 

ping. The approximated representation is fully differentiable, thus 

the kernel composition can be learned together with a CNN in an 

end-to-end manner. In [1] the authors explored the benefits of us- 

ing a manifold network structure for covariance pooling of second- 

order statistics for both videos and images in the context of FER. 

All these methods are always plugged at the end of the net- 

work, right between the convolution layers and the fully connected 

layers. They act as a basis expansion layers, increasing thereby 

the discrimination power of the fully connected layers. This dis- 

crimination power is back-propagated through the convolution lay- 

ers allowing the network to learn in an end-to-end fashion. These 

methods have attracted increasing attentions, achieving better per- 

formance than classical, first-order networks in a variety of com- 

puter vision tasks. Even-thought these methods increase the CNN 

performance, they are enable to learn by themselves and rely en- 

tirely on CNN architecture. Furthermore, how to effectively intro- 

duce higher-order representation in earlier layers for improving 

non-linear capability of CNNs is still an open problem. 

Recently, Gao et al. [11] addressed this problem and a novel

network model has been proposed introducing global second-order 

pooling across from lower to higher layers for exploiting holistic 

image information throughout a network. Wang et al. [30] pro- 

posed to replace the convolution layers in a CNN by kernel based 

layers called kervolutions. The use of these layers increases the 

model capacity to capture higher order features at the convolu- 

tional phase. For the same purpose, Hyuan et al. [14] proposed a 

new pooling method called universal pooling. The method intends 

to generate pooling function which better fits any problem given a 

dataset. Universal pooling has been inspired by attention methods 

and can be considered as a channel-wise form of local spatial at- 

tention. The strength of these methods relies on the fact that they 

capture additional discriminant information compared to conven- 

tional pooling techniques. This makes them more suitable for fine- 

grained classification problem. In this paper, we build upon these 

works and introduce a novel pooling layer that not only uses all 

input information but also extracts linear and non-linear relations 

between features. To do so, we leverage kernel functions which al- 

low to generalise linear pooling while capturing higher order in- 

formation. 

3. Proposed method

We propose an end-to-end model to perform the FER task. 

Our network architecture is simple. It is designed to capture dis- 

criminant facial features through successive layers of multiple 

non-linear transformations and representations. It follows standard 

CNN as it alternates convolutional and pooling layers and ends 

with a fully connected softmax activation layer (see Fig. 1 ). The 

convolutional layers learn several filter weights which are con- 

volved with the input facial image and produce a set of feature 

maps. The filter weights are learned such that the final classifica- 

tion score is high (categorical cross entropy loss is employed, see 

Section 3.2 ). 

The novelty in this work is specific pooling layers which are 

more sensitive to subtle details in feature maps than standard 

pooling techniques (i.e. max-pooling, average-pooling, etc). This is 

ensured by adding learnable weights to the pooling layers, sim- 

ilarly as in convolutional layers, while reducing the feature map 

size. By doing so, the standard pooling techniques can be seen as 

a particular case of our new pooling with fixed (non-learnable) 

weights. In Section 3.1 , we present our proposed pooling layer used 

for boosting the FER task. 

3.1. Learnable pooling

The proposed pooling layer is similar to an ordinary pooling 

one in the way that it applies a pooling function on a specific 

location and a specific stride. The difference from previous pool- 

ings corresponds to the capability to dynamically extract more rel- 

evant features from the input map. This is particularly performed 

by learning different pooling weights for each feature map. These 

weights are learned in a similar fashion as convolutional weights 

but with a single depth output (see Fig. 1 ). Finally, a combination 

of the original feature map and the resulting weights is computed 

using a specific function. This function is carefully chosen to cap- 

ture linear and non linear relations between both the weights and 
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Fig. 1. Our proposed network architecture for FER task. The CNN alternates convolutional layers and specifically designed layers. It ends by a fully softmax activation layer. 

Each convolutional layer is followed by batch normalization and rectified linear unit activation. 

Fig. 2. The processing of our pooling layer is the same as the standard pooling 

layer in the way that it reduces the spatial dimensions of a given feature map. Our 

pooling layer uses learnable weights to encode relevant relations between features 

via a kernel function. 

the original feature map. The output of our pooling layer is a new 

feature map with reduced high and width. 

Formally and as shown in Fig. 2 , we consider a flattened fea- 

ture map vector x = { x 1 , x 2 , . . . , x d } and a vector of pooling weights

w = { w 1 , w 2 , . . . , w d } . In Fig. 2 , d is equal to 4 which corresponds

to a 2 × 2 pixels. The vector w can be seen as a second fea- 

ture map which is dynamically learned. In order to capture linear 

and non-linear relations between x and w , we employ a Symmet- 

ric Positive Definite (SPD) function K : R d × R d → R . The choice of

the SPD function is motivated by the fact that standard pooling 

(e.g. average pooling) can be considered as a linear combination 

of fixed filter weights and the feature map values in a particular 

location. For instance given the feature map vector x and a set of

non-learnable weights w = { 1 /d , 1 /d , . . . , 1 /d } , the average pooling

can be computed as: 
∑ d 

i =1 w i ∗ x i = x T w which is the dot product

of both vectors x and w , and corresponds to the inner product in

R d . By employing a SPD function, we emulate an inner product in

a higher dimensional space after a non linear mapping of both x

and w vectors. Thus, the pooling operation turns out to be

〈 ϕ (x ) , ϕ (w ) 〉 ≈ K(x, w ) . (1)

In this work, we employed three different functions defined on 

the feature map space which has an Euclidean structure R d .

• Linear kernel:

K(x, w ) = x T w, x, w ∈ R 
d . (2)

• Polynomial kernel:

K(x, w ) = (x T w + r) n , x, w ∈ R 
d , r ≥ 0 . (3)

• Gaussian kernel (RBF Kernel):

K(x, w ) = e −
‖ x −w ‖ 2 
2 σ2 , x, w ∈ R 

d , σ > 0 . (4)

The linear kernel ( Eq. (2) ) looks at the similarity between the

feature map vector x and the filter weight vector w . Starting form

n > 1 in Eq. (3) , the polynomial kernel encodes not only the linear

relation between both x and w vectors, but also non-linear rela- 

tions between them. Thanks to the exponential term in Eq. (4) , the 

Gaussian kernel expands the pooling non-linearity to the infinity. 

This expansion can also be reached by other functions, such as the 

Laplacian kernel defined by K(x, w ) = e −α‖ x −w ‖ , or the Abel kernel

defined as K(x, w ) = e −α| x −w | , where, α > 0 in both kernels.

The proposed pooling preserves the main purpose of a standard 

pooling layer which corresponds to the down-sampling of the in- 

put feature map. But it not only summarizes the presence of spe- 

cific features in patches, it also captures the non-linear relations 

between these features. 

3.2. Learning

Our network ends with a fully connected layer to make sure 

that all activations in the previous layer are connected to the last 

layer and to allow the pooled 2D feature maps to be converted 

into a vector of probabilities for FER. In this work, we chose to use 

the traditional softmax layer, with a cross entropy loss, to simply 

force features of different expressions to remain apart. Many au- 

thors have proposed advanced losses for FER such as the center 

loss [31] , the island loss [4] , and the locality-preserving loss [8] .

However here we opt for a simple softmax layer and a cross en- 

tropy loss to demonstrate the efficiency of the proposed pooling 

layer. 

Given a facial image I with a label vector y of y i elements

( y i = 1 if I belongs to C i otherwise y i = 0 where C i indicates the

ground truth expression of the face in I ), the objective of our learn- 

ing problem is to minimize the cross entropy loss over the set of C

classes : 

CE =

C 
∑

i 

y i log ( f (I) i ) , (5)

where f ( I ) i stands for the softmax activation of the i th class.

The learnable pooling weights are initialized using He normal 

function. It draws samples from a truncated normal distribution 

centered on 0 with a standard deviation given by: 

std d e v =

√

2

N
(6)

Where N is the number of input units in the weight tensor.
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4. Experiments

In order to evaluate our method, several experiments have been 

conducted on three well-known datasets, namely the RAF-DB [19] ,

ExpW [35] and FER2013 [12] .

• The RAF-DB Li et al. [19] stands for the Real-world Affective

Face DataBase. It is a real-world dataset that contains 29,672

highly diverse facial images, downloaded from the Internet.

With manually crowd-sourced annotation and reliable estima- 

tion, seven basic and eleven compound emotion labels are pro- 

vided for the samples. This dataset is divided in training and

validation subsets.
• The ExpW Zhang et al. [34] stands for the EXPression in-the-

Wild dataset. It contains 91,793 facial images, faces downloaded

using Google image search. Each of the face images was manu- 

ally annotated as one of the seven basic expression categories.
• The FER2013 database was first introduced during the ICML

2013 Challenges in Representation Learning Goodfellow et al.

[12] . This database contains 28,709 training images, 3589 vali- 

dation images and 3589 test images, with seven expression la- 

bels: fear, happiness, anger, disgust, surprise, sadness and neu- 

tral.

4.1. Training process

The only preprocessing which we have employed on all experi- 

ments is cropping the face region and resizing the resulting images 

to 100 × 100 pixels. 

In order to demonstrate the efficiency of the proposed pooling, 

we preferred to build a simple CNN from scratch rather than using 

a pre-trained one. We have used Adam optimiser with a learning 

rate varying from 0.001 to 5e-5. This learning rate is decreased by 

a factor of 0.63 if the validation accuracy does not increase over 

ten epochs. To avoid over-fitting we have also augmented the data 

using a range degree for random rotations of 20, a shear intensity 

of 0.2, a range for random zoom of 0.2 and randomly flip inputs 

horizontally. 

As shown in Fig. 1 our model architecture is quite simple and 

can effectively run on cost-effective GPUs. It is composed of five 

convolutional blocks. Each block consists of a convolution, batch 

normalization and rectified linear unit activation layers. The use 

of batch normalization [36] before the activation brings more sta- 

bility to parameter initialization and achieves higher learning rate. 

Each of the five convolutional blocks is followed by the proposed 

pooling layer and a dropout layer. In the following we refer to this 

network architecture as (Model-1). 

4.2. Ablation study

This section explores the impact of the use of the proposed 

learnable pooling layer on the overall accuracy of a FER CNN. 

We evaluated the performance of the same network architec- 

ture Model-1 but with different pooling techniques. First, we used 

Model-1 with standard max and average poolings. After that, we 

replaced these poolings by our learnable layers. We studied the 

behaviour of four different kernel functions, namely; (1) the linear 

kernel, (2) the second-order polynomial kernel, (3) the third-order 

polynomial kernel and (4) the Gaussian RBF kernel. 

The experiments are conducted with the same training param- 

eters as described above. Table 1 presents the results of our FER

model using standard pooling with comparison to the proposed 

learnable pooling. From this table, one can notice that consider- 

ing Model-1 architecture, the use of max or average pooling gives 

approximately the same results with a slight improvement when 

max pooling is employed. In the case of max pooling, Model-1 at- 

tains 75.91%, 87.05% and 70.49% of accuracy rate on respectively 

Table 1 

Accuracy rate of our proposed approach for different 

pooling strategies. In this table, Model-1 architecture 

is used with the indicated pooling method. 

Pooling ExpW RAF-DB FER2013 

Max 75.91% 87.05% 70.49% 

AVG 75.74% 86.89% 70.13% 

Linear kernel 76.28% 90.81% 70.69% 

2nd-order Poly 76.64% 92.87% 70.88% 

3rd-order Poly 76.81% 93.21% 71.35% 

Gaussian RBF 76.42% 92.74% 70.74% 

ExpW, RAF-DB and FER2013 datasets. When using average pool- 

ing layers instead of max pooling, Model-1 reaches an accuracy 

rate of 75.74%, 86.89%, and 70.13% for respectively ExpW, RAF-DB 

and FER2013 datasets. However in contrast to these two cases, the 

use of learnable pooling layers in Model-1 architecture consider- 

ably increases its accuracy. As reported in Table 1 , the accuracy of

Model-1 in which we use a learnable pooling with a linear kernel 

increases the accuracy up to 0.4% for ExpW, 3.75% for RAF-DB and 

0.2% for FER2013. Model-1 using learnable pooling layers with lin- 

ear kernels performs at least as good as the use of layers with max 

or average pooling. This behaviour can be explained by the fact 

that the linear kernel can automatically learn the suitable pooling 

method from a continuum of methods which include the average 

and the max pooling as particular cases. Although our proposed 

pooling layer increases the number of learnable parameters, com- 

pared to the max and the average pooling, the use of the simple 

linear kernel gives more flexibility to the pooling since it acts as a 

decision maker of which weights to fix or use for each particular 

filter. 

Following the same principle, we further studies the impact of 

the usage of three additional kernels; (1) the second-order polyno- 

mial kernel with r = 0 , (2) the third-order polynomial kernel with

r = 0 and (3) the Gaussian kernel with γ = 0 . 9 . Although the com- 

putational complexity of these kernels is higher compared to the 

max and the average pooling, they strongly improve the model ac- 

curacy when used. As shown in Table 1 , the same model architec- 

ture but using the third-order polynomial kernel outperforms the 

other methods. The use of this kernel improves the accuracy rate 

close to 1% for most of the databases. Less efficient than the third- 

order polynomial kernel but also computationally expensive is the 

Gaussian kernel. It increases the accuracy up to 0.5% for ExpW and 

FER2013 comparing to max and average poolings and 5% for RAF- 

DB. Moreover, the Gaussian kernel takes a considerable time to 

converge. Finally, according to Table 1 , the second-order polyno- 

mial kernel is less efficient than the third-order one but remains 

better than the Gaussian kernel. It merely outperforms the linear 

kernel with slightly higher complexity. However, it is the fastest 

kernel to converge compared to the third-order polynomial and the 

Gaussian kernels. 

To further compare the proposed pooling technique with stan- 

dard ones, we display in Fig. 3 the output image after each pooling

layer. We compared max and average pooling with the third order 

polynomial pooling. As depicted in Fig. 3 , our pooling method is 

able to capture more details than the standard pooling techniques. 

The visualizations show that the third order pooling captures rel- 

evant features which likely correspond to the expression action 

units e.g. the outlines of the mouth and the eyes. Moreover, the 

third order pooling outperforms the other techniques in discard- 

ing non-informative regions. One can clearly notice particularly in 

the two last layers, even when the results are abstract and difficult 

to interpret, that the learnable pooling keep activation of well lo- 

calized features (nose, mouth and eyes). On the contrary, one can 

also notice some common activated regions particularly in the ear- 
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Fig. 3. Visualisation of the outputs from the pooling layers. These visualisations are generated from two facial expressions (the face in the left, and the face in the middle). 

Given an input image, we show the feature maps after each of the five pooling layers used in our CNN. The first row shows the feature maps after third polynomial kernel 

based pooling. The second and the third rows present feature maps after the standard average and max pooling respectively. 

Fig. 4. Visualizations of accuracy versus epoch plots. This figure reports the impact of the learnable pooling on the convergence speed of the used CNN. A comparison 

between the performance of the CNN using max pooling, the third order polynomial, and the RBF pooling methods on the RAF-DB dataset. 

lier layers, this can be explained by the fact that our pooling en- 

compasses standard poolings thanks the linear term in the polyno- 

mial kernel. In Fig. 4 , we report the training accuracy and valida- 

tion accuracy versus epoch plots of our CNN when using the max 

pooling, the RBF, and the third order kernel pooling layers. These 

plots give an idea about the influence of the different pooling tech- 

niques on the convergence rate of the network. The sub-Figures 

demonstrate that the third order based pooling has an important 

impact on the convergence speed of the network compared to the 

max and the RBF based poolings. Although the computational com- 

plexity of the third order kernel is higher than the max pooling, 

it is still able to converge to a higher validation accuracy in less 

epochs. 

Note that in the literature, few researchers claim that the stan- 

dard max pooling performs a noise removal arguing that it gets 

rid of noisy features and also brings denoising along with di- 

mensionality reduction [10] . On the contrary, the average pool- 

ing only carries out dimensionality reduction. Thus, the max pool- 

ing is generally considered to achieve better performance than 

average pooling. However, by using our proposed pooling, we 

demonstrate that the majority of the features in the input fea- 

ture map are relevant. By leveraging kernel functions, non-linear 

relation between features in a given patch are captured and 

this allows to performs better than standard max and average 

pooling. 

These results demonstrate that non-linear relations between 

features in the feature map produced after a convolutional layer 

are beneficial for the overall accuracy of the FER problem. The use 

of the third order pooling kernel allows to achieve the best per- 

formance compared to standard pooling techniques as well as the 

different studied kernels. 

Table 2 

Accuracy rate of our proposed approach and state of the 

art approach. 

Methods ExpW RAF-DB FER2013 

Linear kernel 76.28% 90.81% 70.69% 

2nd-order Poly 76.64% 92.87% 70.88% 

3rd-order Poly 76.81% 93.21% 71.35% 

Gaussian RBF 76.42% 92.74% 70.74% 

Tang et al. [28] – – 71.16% 

Guo et al. [13] – – 71.33% 

Kim et al. [15] – – 73.73% 

Bishay et al. [3] 73.1% – –

Lian et al. [20] 71.9% – –

Acharya et al. [1] – 87% –

Kuo et al. [16] – 65.52% –

Deng et al. [7] – 68.2% –

Li et al. [18] – 74.2% –

Liu et al. [24] – 73.19% –

4.3. Comparison with the state-of-the-art

In this section, we compare the performance of our FER model 

which uses the proposed learnable pooling with respect to sev- 

eral state-of-the-art methods. The obtained results are reported in 

Table 2 . According to Table 2 , our proposed model outperforms the 

state-of-the-art methods on the ExpW dataset. The best accuracy 

rate is 76.81% and has been reached using the third order poly- 

nomial kernel. The second order polynomial kernel gives 76.64% 

while the linear kernel achieves 76.28% as accuracy rate. Finally, 

using the Gaussian kernel our model achieves 76.42% of accuracy. 
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On RAF-DB dataset, the accuracy of our model is also superior 

to state-of-the-art methods. Using the third order polynomial pool- 

ing, our model accuracy exceeds the other methods by more than 

1% and it obtains 93.21%. One can also notice that all kernels out- 

perform state-of-the-art methods. Using a linear kernel, our model 

achieves 90.81% of accuracy while 92.87% is reached using the sec- 

ond order polynomial pooling. The use of the Gaussian kernel al- 

lows to reach 92.74%, whereas the best state-of-the-art method 

only reports 87% of accuracy [1] . Similarly, with the ExpW dataset 

and using the proposed method, we outperform state-of-the-art 

methods with all kernels. We obtained a 76.81% of accuracy us- 

ing the third order polynomial pooling which exceeds the other 

methods by more than 3%. Finally, even though we did not out- 

perform state-of-the-art methods on FER2013, we confirmed the 

superiority of our method compared to standard pooling meth- 

ods. We reached an accuracy rate of 71.35% with the third order 

polynomial pooling which is 2% less than state-of-the-art method 

[15] . 

4.4. Cross-dataset evaluation

We have also evaluated the generalizability of our network on 

data from different distributions. We conducted an experiment on 

a cross-dataset. We compared the performance of our network us- 

ing the proposed learnable pooling weights with the same net- 

work using standard pooling layers. The considered intra-dataset 

protocol is a training over the whole ExpW dataset and a test- 

ing on RAF-DB dataset. The obtained results also confirm the ef- 

ficiency of the proposed pooling layer in the FER task. Our method 

using a linear kernel gives 80.27% as accuracy rate. The use of 

the second-order polynomial kernel allows to achieve 80.56%. The 

third-order polynomial kernel and the Gaussian RBF kernel give 

respectively 81.43% and 81.03%. On the contrary, the use of max- 

pooling layers instead of our learnable weights only allows to reach 

80.12%. 

5. Conclusion

In this paper, we proposed a FER method based on a CNN 

model to which we specifically designed a novel pooling layer 

which retains the down-sampling advantage of an ordinary pool- 

ing function and brings several new features. The proposed pooling 

layer, which has learnable weights, generalizes standard pooling 

functions and, additionally encodes non-linear relation between 

features. It is differentiable and can be plugged at any level of 

the network, allowing, in turns, an end-to-end learning. The ex- 

periments on ExpW, RAF-DB and FER2013 datasets demonstrate 

the efficiency of the proposed pooling method compared to stan- 

dard pooling. The experiments also showed that the proposed FER 

method outperforms state-of-the-art methods. The performance of 

our model is essentially due to its capability of capturing high or- 

der information that are crucial for fine-grained classification tasks 

such as the FER. 
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