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a b s t r a c t 

We present a new generalized version of the fuzzy k -nearest neighbor (FKNN) classifier that uses lo- 

cal mean vectors and utilizes the Bonferroni mean. We call the proposed new method Bonferroni-mean 

based fuzzy k -nearest neighbor (BM-FKNN) classifier. The BM-FKNN classifier can be easily fitted for vari- 

ous contexts and applications, because the parametric Bonferroni mean allows for problem-based param- 

eter value fitting. The BM-FKNN classifier can perform well also in situations where clear imbalances in 

class distributions of data are found. The performance of the proposed classifier is tested with six real- 

world data sets and with one artificial data set. The results are benchmarked with classification results 

obtained with the classical k -nearest neighbor-, the local mean-based k -nearest neighbor-, the fuzzy k - 

nearest neighbor- and other three selected classifiers. In addition to this, an enhancement of the local 

mean-based k -nearest neighbor classifier by using the Bonferroni means is also proposed and tested. The 

results show that the proposed new BM-FKNN classifier has the potential to outperform the benchmarks 

in classification accuracy and confirm the usefulness of using the Bonferroni mean in the learning part of 

classifiers. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 1 

In this paper, we focus on the k -nearest neighbor (KNN) clas- 2 

sification method and its generalizations. The objective of classifi- 3 

cation (algorithms) is to identify the class to which a new unclas- 4 

sified object or sample belongs to. In supervised machine-learning 5 

based algorithms the classification is done based on previous train- 6 

ing of the algorithm with pre-classified data. The KNN algorithm 7 

introduced in [1] is a well-known supervised machine-learning 8 

based classification technique that is used in a wide range of ap- 9 

plications and is one of the most used methods in classification to- 10 

day. The KNN classifier confronts the classification problem by first 11 

measuring the similarity (distance) between a new to-be-classified 12 

sample and training samples, to observe the k nearest neighbors 13 

for the new sample, and then determines the membership of the 14 

new sample to the class that has the largest number of neighbors 15 

with the new sample [2] . 16 

The performance of the KNN classifier is generally good, how- 17 

ever, it is well known that the prediction accuracy of the method 18 
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can be negatively influenced by outliers, which are likely to distort 19 

the class-distribution [3] . To deal with this problem, a local mean- 20 

based k -nearest neighbor (LM-KNN) classifier was introduced in 21 

[4] . The LM-KNN variant utilizes the local mean vectors for each 22 

class to classify a query sample to a particular class. The LM-KNN 23 

algorithm first finds the local mean vectors in each class in terms 24 

of all k nearest neighbors and then allocates the query sample to 25 

the class represented by the local mean vector that has the low- 26 

est Euclidean distance from the query sample [5,6] . The robust- 27 

ness and the simplicity of the LM-KNN algorithm has invited re- 28 

searchers to develop a variety of enhanced method variants (see 29 

examples in [2,6–10] ) and to construct variant-based classification 30 

systems [11] . 31 

One propellant for the development of new KNN variants has 32 

been the observation that the original method has weaknesses. For 33 

example, in the original KNN algorithm, the already classified sam- 34 

ples are assumed to have the same importance in the classifica- 35 

tion process of a new sample [12] . This simplification can harm 36 

the classification performance especially in situations, where class 37 

distributions are not in balance [13] . Another difficulty with the 38 

KNN model is that once the new sample is allocated to a partic- 39 

ular class, the “strength” of membership in the class of the clas- 40 

sified sample is not considered [14] . To remedy these problems, 41 

Keller [14] applied idea of including membership degrees [15] in 42 
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the KNN approach, to produce a fuzzy version of the algorithm. 43 

Consequently, the fuzzy k -nearest neighbor (FKNN) classifier was 44 

created and is one of the most popular directions of the KNN de- 45 

velopments. The FKNN technique performs the classification by in- 46 

troducing membership degrees to classes, while dealing with the 47 

uncertainty in the data. In this study, we extend the FKNN clas- 48 

sifier further, by utilizing local mean vectors, which are formed 49 

by using the known classes of k nearest neighbor sample vec- 50 

tors. To generalize these local mean vectors, the Bonferroni mean 51 

operator is used and the resulting local Bonferroni mean vectors 52 

are used to measure the similarity of the new sample to the 53 

classes. 54 

KNN is based on the majority voting principle, where the class 55 

of a new sample is based on nearest neighbors and their major- 56 

ity class. In the case that a data set is clearly imbalanced an ob- 57 

served drawback of majority voting principle is that the classified 58 

samples of the class or classes with a large number of samples 59 

tend to dominate the prediction of the new sample simply due to 60 

the fact that they often are more numerous among the k nearest 61 

neighbors [16] . A way to overcome this drawback is to use local 62 

means calculated from the classes that are represented within the 63 

nearest neighbors instead. Class assignment is then done based on 64 

the closest local mean vector rather than based on the number of 65 

nearest neighbors. In this way the classes with the highest num- 66 

ber of samples will not have such domination over the less nu- 67 

merous classes. The FKNN bases the classification on the most fre- 68 

quent class and also the distance of the unclassified sample to the 69 

nearest neighbors. The distance that can be interpreted as impre- 70 

cision with regards to similarity of individual samples also affects 71 

classification. Averaging operators also are able to overcome prob- 72 

lems with “individual imprecision” - this can be understood also as 73 

the “wisdom of the crowd” and the first one to discuss this issue 74 

was Aristotle [17] . Later Francis Galton made this notion popular 75 

by his famous example of a country-fair contest of weight estima- 76 

tion [18] . Based on these precursors one can expect that using lo- 77 

cal means should have a better predictive power than individuals 78 

alone. 79 

The Bonferroni mean is an aggregation operator that was origi- 80 

nally introduced in [19] and further developments were discussed, 81 

e.g., in [20,21] . It can be defined as a function of means and it 82 

has been used as a very useful indicator in many applications 83 

[see 22,23 ]) due to its capability to perceive inter-relationships 84 

and to allow multiple comparisons between input arguments 85 

[24] . 86 

Some previous studies have noted that using the arithmetic 87 

mean is not producing optimal results with classifiers, instead 88 

performance could be improved by using alternative averaging 89 

operators, for example, generalized means [25] , ordered weighted 90 

means (OWA) [26] , and harmonic mean [6] . We note that as 91 

the generalized mean is a special case of the Bonferroni mean 92 

and results gained with generalized mean are at least as good 93 

as with arithmetic mean and often better, we can expect that 94 

results gained using Bonferroni mean are at least as good as with 95 

generalized mean and in some cases better. As the Bonferroni 96 

mean operator is applied to compute the class-representative 97 

local-mean vectors, one must be aware of the possibility to op- 98 

timize the parameters to fit the context (particular data sets). 99 

Changing the parameters of the Bonferroni mean allows us to find 100 

good (optimal) parameter values, which will enhance the classi- 101 

fication accuracy. By altering the parameters, one can “choose”102 

several well-known means through the Bonferroni mean oper- 103 

ator, such as the geometric, arithmetic, quadratic, and power 104 

means. 105 

We study the performance of the proposed variant by using 106 

both artificial and real-life data sets containing binary and multi- 107 

class classification problems. To compare the performance of the 108 

proposed BM-FKNN method we benchmark its performance with 109 

the performances of FKNN, LM-KNN, KNN, SVM, NB, and the simi- 110 

larity classifier. In addition to this, we also investigate the classifi- 111 

cation performance of an improved variant of the LM-KNN classier 112 

that uses the Bonferroni mean - this is the second new variant pro- 113 

posed in this research. To evaluate the performance we use accu- 114 

racy, sensitivity, and specificity as our performance measures. Be- 115 

sides this we also test whether differences between the classifica- 116 

tion accuracy of the BM-FKNN and the benchmarks is statistically 117 

significant. 118 

2. K -nearest neighbor classifier variants and the Bonferroni 119 

mean 120 

In this section, we briefly present the theoretical underpinnings 121 

of the KNN, LM-KNN, FKNN classifiers, and the Bonferroni mean 122 

operator. 123 

2.1. K-nearest neighbor, fuzzy KNN and local mean based k -nearest 124 

neigbor classifiers 125 

A formal definition of the KNN method is presented below. 126 

Let X ( x 1 , x 2 , . . . , x N ) be a training set, formed by N samples, 127 

and C ( ω 1 , ω 2 , . . . , ω C ) classes (that is, X = { x j , c j } N j=1 
, where c j ∈ C ). 128 

Each sample x j ( x 1 
j 
, x 2 

j 
, . . . , x S 

j 
, x c j ) contains S features. If a new 129 

query sample y is given, then it is assigned into a class ( ω 

∗) cor- 130 

rectly by using the following steps: 131 

1 Choose the number of k nearest neighbors (1 ≤ k ≤ N ) to the 132 

new sample 133 

2 Compute the Euclidean distances from y to x j for all j . Also 134 

other distance measures can be used. 135 

3 Find the set of k nearest neighbors from the X by using sorted 136 

distances in an ascending order. 137 

4 Identify the classes represented by the k nearest neighbors. 138 

5 Classify y into the class to which the largest number of k near- 139 

est neighbors belong to. 140 

LM-KNN algorithm is a simple and robust extension of the KNN 141 

method [4] . In this method, a local mean vector of k nearest neigh- 142 

bors in each class is used to assign the correct class for the query 143 

sample. The process of the LM-KNN algorithm can be summarized 144 

as follows: 145 

1 Find the k nearest neighbors from the training set X for each 146 

class ω i by using the Euclidean distance in an ascending order. 147 

2 Compute the local mean vector for each class using the k near- 148 

est neighbors found in the step 1. 149 

3 Assign y into the class in which the local mean vector has the 150 

minimum Euclidean distance from y . 151 

Underlying idea in the FKNN method is that a membership de- 152 

gree to each class is assigned to the new query sample and the 153 

highest membership degree dominates the decision about classifi- 154 

cation [14] . Membership degree indicates the proportion to which 155 

the query sample belongs to each one of the available classes. 156 

These membership degrees are weighted by the inverse of the dis- 157 

tance of the query sample to its k nearest neighbors in the mem- 158 

bership function. Along with this, a fuzzy strength parameter m is 159 
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employed to provide the relative importance to the distance to be 160 

weighted, when determining the contribution of the neighbors to 161 

the membership degree. The assigned membership degree of the 162 

query sample y in each class i is labeled by the k nearest neigh- 163 

bors and is measured as follows: 164 

u i (y ) = 

∑ k 
j=1 u i j (1 / 

∥∥y − x j 
∥∥2 / (m −1) 

) 

∑ k 
j=1 ( 1 / 

∥∥y − x j 
∥∥2 / (m −1) 

) 
(1) 

where, u ij is the membership of the j th sample in the i th class of 165 

the training set and m ∈ (1 , + ∞ ) ( m = 2 is often used). 166 

2.2. The Bonferroni mean operator 167 

The Bonferroni aggregation operator was introduced by 168 

Bonferroni [27] in the1950’s and later extended by other re- 169 

searchers (see [20,28–30] , and [31] ). The Bonferroni mean consists 170 

of two parts, outer and inner part. Each argument of the outer part 171 

is the product of one argument and the average of all the other 172 

remaining inner arguments, this combination is what makes it a 173 

unique in terms of aggregation, [28] . The Bonferroni mean is de- 174 

fined as: 175 

Let x = (x 1 , x 2 , . . . , x n ) , x i ∈ [0 , 1] ∀ i ∈ N be a vector with at 176 

least one x i � = 0 ∀ i = 1 , 2 , . . . , n and α, q ≥ 0 be parameters. 177 

The general Bonferroni mean of x i is defined by Bonferroni 178 

[27] : 179 

B 

p,q (X ) = 

(
1 
n 

n ∑ 

i =1 

x p 
i 

(
1 

n −1 

n ∑ 

i, j =1 , j � = i 
x q 

j 

)) 1 
p+ q 

(2) 

As an averaging operator Bonferroni mean satisfies all necessary 180 

axioms (see [20] ) that an averaging operator is typically required 181 

to satisfy. 182 

3. Proposed fuzzy k -nearest neighbor classifier, based on 183 

Bonferroni mean vectors 184 

By adding a computation of the local Bonferroni mean vec- 185 

tors into the learning (training) part of the FKNN algorithm, we 186 

introduce the new BM-FKNN classifier. As in the FKNN method, 187 

the BM-FKNN classifier starts with the estimation of the distances 188 

from the query sample y to the labeled samples { x j , c j } N j=1 
and 189 

the set of k nearest neighbors nn k ( y ) is observed. The idea is 190 

then to group the k nearest neighbors into sub-samples based on 191 

the classes they belong to. These sub-samples representing each 192 

class are used in the calculation of the Bonferroni mean vec- 193 

tors. That is, if the nn k ( y ) is { x j , c j } k j=1 
and c j ∈ (ω 1 , ω 2 , . . . ω C ) , 194 

then the local Bonferroni mean vectors with the corresponding 195 

classes are { B r , ω r } t r=1 
, 1 ≤ t ≤ C . This also implies that the num- 196 

ber of local mean vectors relies on the number of classes that ap- 197 

pear in the set of k nearest neighbors. Then the Euclidean dis- 198 

tances ( d EUC ) between the query sample y and the local Bonfer- 199 

roni mean vectors are computed. These distances d EUC (y, { B r } t r=1 
) 200 

are used to measure the membership degrees of the query sam- 201 

ple with the classes the mean vectors represent { ω r } t r=1 
by using 202 

the Eq. (1) . Finally, the query sample y is classified to the class 203 

ω 

∗ with which the sample has the highest membership degree 204 

with. 205 

The pseudo code for the BM-FKNN algorithm is summarized 206 

as: 207 

Algorithm 1 BM-FKNN. 

Input: { x j , c j } N j=1 
(labeled set), y (query sample), k (1 ≤ k ≤

N) , p, q ( p, q > 0 ) 
Output: The class label for y 
Begin 

1: for j = 1 to N do 

2: Compute d EUC (y, x j ) from y to x j 
3: if j < k then 

4: Add x j to nn 

k (y ) 
5: else if x j is closer to y than any of neighbors in 

nn 

k (y ) then 

6: Drop the farthest neighbor from the set nn 

k (y ) 
and add x j 

7: end if 
8: end for 
9: for r = 1 to t do 

10: Find B r in the set nn 

k (y ) using using equation (2) 
and set the correspond class ω r . 

11: Compute d EUC (y, B r ) from y to B r . 
12: Assign membership u r (y ) to ω r in terms of weighed 

distanceaccording to: 

u r (y ) = 

∑ t 
r=1 u rr (1 / ‖ 

y − B r ‖ 

2 / (m −1) ) ∑ t 
r=1 ( 1 / ‖ 

y − B r ‖ 

2 / (m −1) ) 
(3) 

where u rr is 1 for known class and 0 for other classes. 
13: end for 
14: return ω 

∗ (predicted class that has the highest mem- 
bership degree) for y , ω 

∗ ∈ (ω 1 , ω 2 , . . . , ω t ) . 

End 

The proposed method uses the local sub-samples to create lo- 208 

cal mean vectors for all classes that are represented by the k near- 209 

est neighbors. In other words, in BM-FKNN the locally created rep- 210 

resentative vectors for each class, well-positioned to perceive the 211 

class-information, are used instead of comparing the query sample 212 

directly to the original k nearest neighbors. The class imbalance- 213 

problems which have found to be difficult to original KNN, due to 214 

domination of majority class, can this way be overcomed by using 215 

the local means. Moreover, problems that appear when using im- 216 

precise data in situations, where the samples from different classes 217 

are very close to each other [32] , can also be remedied. 218 

Selection of the k value (number of nearest neighbors used) has 219 

typically a critical role in classification accuracy. A very low k may 220 

produce inadequate classification results, while a too high k may 221 

cause outliers to affect the classification [5] . In connection with the 222 

proposed method, the k values selected can be quite high, because 223 

this allows the method to capture larger class-representative sub- 224 

samples and to create more accurate local Bonferroni mean vec- 225 

tors. 226 

3.1. LM-KNN classifier with Bonferroni means 227 

In addition to the main contribution of introducing a new BM- 228 

FKNN classifier, we also investigated how using the Bonferroni 229 

mean influences the performance of the LM-KNN classifier, specifi- 230 

cally the application to the computation of the local mean vectors. 231 

In other words, we present and test a new LM-KNN classifier vari- 232 

ant with Bonferroni means. For the purpose of simplification, we 233 

address this method as BM-KNN in the following sections. 234 
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Table 1 

Information on the data sets used. 

Data set Database Instances Features Classes 

Car KEEL 1728 6 4 

Vehicle KEEL 846 18 2 

Ionosphere UCI 351 34 2 

Mammogram UCI 961 6 2 

Wine UCI 178 13 3 

Page Blocks KEEL 548 10 5 

4. Data sets and testing methodology 235 

This section briefly introduces the used data sets and presents 236 

the testing methodology of the proposed new methods. 237 

4.1. Artificial data with imbalance rate modifications 238 

In most of the classification problems, we have to deal with im- 239 

balanced classes that is, the number of samples per class is not 240 

the same or even similar [33] . Typically imbalance is defined as a 241 

ratio between the number of samples in the larger class and the 242 

smaller class(es) [34] . As already discussed, this can be a problem 243 

for the classical KNN and means that the more frequently present 244 

class may tend to dominate the prediction of the new samples, be- 245 

cause they are often more common among the k nearest neighbors. 246 

Because of this we also test how imbalance between classes af- 247 

fects the performance of BM-FKNN and the benchmarks. The test- 248 

ing data included two classes: class 1 ∼ N (9 , 4 2 ) with 10 features 249 

and a sample size of 100, and class 2 ∼ N (10 , 6 2 ) with 10 fea- 250 

tures and a sample size of n that was variable from the set (100, 251 

90, 80, 70, 60, 50, 40, 30, 20, 10). In this way, data with the imbal- 252 

ance ratio (1/1,1/0.9, ....,1/0.1) was adjusted in ascending order and 253 

the tested classifiers’ performance measured for each case. 254 

4.2. Real-world data 255 

In addition to the artificial data, this study uses also six real- 256 

world data sets: Car data, Vehicle data, Ionosphere data, Mam- 257 

mogram, Wine data, and Page Blocks data, all of which are freely 258 

available at the KEEL repository [35] and the UCI Machine Learning 259 

repository [36] . Vehicle, Ionosphere, and Mammogram data repre- 260 

sent binary class problems and Car, Wine, and Page Blocks data 261 

multi-class problems. The entry errors and quality issues on the 262 

data were studied and fixed before using them. The characteristics 263 

of each of data set are summarized in Table 1 . 264 

4.3. Performance measures used 265 

Next, we shortly go through the performance metrics we used 266 

in this study. Since we have multi-class classification problems in 267 

our study, we also shortly present their multi-class analogs. To 268 

evaluate classification methods the most common metric used is 269 

accuracy [2,12,37] as a percentage of correct predictions with re- 270 

spect to the total number of original tested samples. Reporting 271 

accuracy results alone is often not enough to conclude that that 272 

the performance of a classifier is useful for a given task. Hence, 273 

additional performance measures such as the sensitivity and the 274 

specificity are also needed to more comprehensively evaluate the 275 

performance of classifiers. Here we use all three measures to bet- 276 

ter understand the “goodness” of the proposed classifiers and their 277 

benchmarks. 278 

4.3.1. Binary-class problem 279 

In the binary classification, there are only two classes, one is a 280 

positive ( P ) and other is a negative ( N ) class. There are four pos- 281 

sible outcomes from the classification model such as true positive 282 

( TP ), true negative ( TN ), false positive ( FP ), and false negative ( FN ), 283 

and T and F are shaped by predicted class and P and N are shaped 284 

by the actual class. Using these metrics, the performance measures 285 

in the classification are defined as Accuracy = 

T P + T N 

T P + F P + T N + F N 

, 286 

Sensit i v it y = 

T P 

T P + F N 

and Speci f icity = 

T N 

F P + T N 

. 287 

4.3.2. Multi-class problems 288 

Multi-class classification refers to classification tasks, where 289 

there are more than two classes. In this research, we utilize the 290 

performance measures computation for the multi-class problems 291 

proposed in [38] . General notation for performance metrics for the 292 

multi-class classification is defined in the following way: 293 

Suppose a confusion matrix with C ( > 2) classes, represented 294 

by { a l,m 

} C 
l=1 ,m =1 

, and a l , m 

is an element of a row l and a column 295 

m in a matrix. When l = m, a l , m 

indicates the number of sam- 296 

ples classified correctly to the correspond class and when l � = m in- 297 

dicates the number of misclassified samples of class ω l as class 298 

ω m 

. Then the number of true positives, true negatives, false posi- 299 

tives, and false negatives for each class ω i ( i ∈ C ) can be measured 300 

as follows: T P (ω i ) = a i,i , ∀ i ∈ C, T N(ω i ) = 

∑ C 
l=1 

∑ C 
m =1 l,m � = i (a l,m 

) , 301 

F P (ω i ) = 

∑ C 
l=1 (a l,i ) − T P (ω i ) and F N(ω i ) = 

∑ C 
m =1 (a i,m 

) − T P (ω i ) . 302 

The accuracy, sensitivity, and specificity are computed for each 303 

class using above measures. The averages of these measures for all 304 

classes are considered as the final performance measures, in vein 305 

with [39] . 306 

4.4. Experimental setting and evaluation 307 

In each selected data set (including artificial data set), the data 308 

sets were separated into a 40% training set, a 40% validation set, 309 

and a 20% testing set. The stratified random sampling technique 310 

was used in the sampling to ensure that class proportions in each 311 

of the divided sets are the same as they are in the whole data set. 312 

The hold out method was used for the cross-validation, in which 313 

30 splits of the training and validation sets were randomly gener- 314 

ated (30-fold cross validation). 315 

We considered the number of neighbors k from the set {1, 316 

2 , . . . , 25 } . This was due to our assumption that the performance 317 

of the proposed BM-FKNN method would increase (and relatively 318 

increase), when the value of k increases. Pan et al [6] had provided 319 

evidence in favor of this assumption by showing that a multi-local 320 

means based k harmonic nearest neighbor classifier achieved bet- 321 

ter performance in the classification with high k values. The values 322 

for the parameters p and q of the Bonferroni mean were chosen 323 

from the range { 0 , 1 , . . . , 9 , 10 } . We first optimized the parameter 324 

values with the training & validation step and the gained optimal 325 

values were then used to test the performance of the new method 326 

with the testing sample. Following the recommendations in [2,14] , 327 

the fuzzy strength parameter m was kept at m = 2 for both BM- 328 

FKNN and FKNN classifiers. The results are presented in terms of 329 

mean values for all performance measures. 330 

To validate the performance of the proposed new methods, we 331 

compare the classification results of BM-FKNN and BM-KNN classi- 332 

fiers with the original KNN, FKNN, and LM-KNN and also with sup- 333 

port vector machines (SVM) [40] , naive Bayes classifier (NB) [41] , 334 

and similarity based classifier (Similarity) [42] . The same training 335 

and validation samples were used for these classifiers for all data 336 

sets and their classification performance was registered for the op- 337 

timized model with the test samples. We carried out the compar- 338 

ative test essentially on the real-world data sets in terms of the 339 

accuracy and other performance measures discussed above. 340 

A paired t -test, in vein with [37] was also performed to reveal 341 

whether the performance difference of the proposed methods is 342 

statistically significant when compared to the benchmarks, a 0.05 343 
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Fig. 1. Classifier performance with respect to imbalance ratio of classes. 

level of significance was used. For this analysis, the samples from 344 

the hold out method (size of 1 × 30) were considered for each clas- 345 

sifier, when the optimal parameters were used. In addition, the 346 

confidence interval and variances were calculated. 347 

5. Results and discussion 348 

In this section we first present the findings obtained for the 349 

artificial case that was generated to investigate the difference be- 350 

tween the new proposed classifiers and the benchmark classifiers. 351 

This is followed by a presentation of the results for the real-world 352 

data sets for the training & validation step and the testing step 353 

separately. 354 

5.1. Results for the artificial data 355 

The artificial data was used to test the class imbalance. For this 356 

data we present a mean classification accuracy plot, taken in the 357 

testing phase for the proposed two classifiers and the three KNN- 358 

based benchmarks. From Fig. 1 one can see how the mean classi- 359 

fication accuracy develops with respect to the imbalance ratio. We 360 

point out that the performance of both the new proposed method 361 

is the same. 362 

In Fig. 1 , imbalance ratio is presented as the sample percent- 363 

age of the larger class in terms of the smaller class. For example, 364 

“1/0.3” denotes a ratio that class 1 has the sample size of 100 and 365 

class 2 has the sample size of 30. It is evident from the Fig. 1 that 366 

classifier performance is at its best, when one class has the lowest 367 

number of instances in comparison to other class (in binary class 368 

problems). A gradual increase in the mean accuracy for all clas- 369 

sifiers can be seen with the increase of the imbalance ratio. It is 370 

clearly visible that over all imbalance ratios the BM-FKNN and BM- 371 

KNN classifiers have achieved higher accuracies than the bench- 372 

marks, the difference is most pronounced with the high imbal- 373 

ances. In general, this result indicates that the proposed methods 374 

are less sensitive to the class imbalance problem than the bench- 375 

marks. 376 

5.2. Results for the real-world data 377 

The obtained results for accuracy, sensitivity, and specificity as 378 

well as for the difference between the classification accuracies of 379 

the new methods and the benchmarks are presented. 380 

5.2.1. Performance with the training & validation data 381 

The parameters of the proposed new approaches and the 382 

benchmarks were optimized with the training and validation steps 383 

by using the holdout method for ensuring sample similarity. A 384 

thirty-fold cross validation was performed with the data. The ob- 385 

tained results for performance measures and the optimal parame- 386 

ter values are presented as an example for the proposed BM-FKNN 387 

Table 2 

BM-FKNN and the BM-KNN classifier results in the validation part. 

Data set Mean Acc. Sensitivity Specificity Opt. parameters 

Car 0.9271 0.8079 0.9637 k = 3 , p = 1 , q = 1 

Vehicle 0.9340 0.8557 0.9591 k = 4 , p = 3 , q = 1 

Ionosphere 0.8775 0.8611 0.9245 k = 7 , p = 1 , q = 0 

Mamm 0.7939 0.7901 0.7984 k = 21 , p = 2 , q = 1 

Wine 0.7414 0.7388 0.8730 k = 25 , p = 2 , q = 2 

Page Blocks 0.9358 0.9775 0.8679 k = 3 , p = 2 , q = 2 

Fig. 2. Variance and performance measures for different parameter combinations 

( p , q ) with Vehicle data for the BM-FKNN. 

classifier in Table 2 . In the table, “Mean Acc.” indicates the mean 388 

accuracy from the 30 sample folds gained by using the optimal pa- 389 

rameters. Sensitivity and specificity results are also reported with 390 

mean values accordingly. The highest mean accuracy was used to 391 

determine the optimal parameter values for p , q and k . 392 

From the Table 2 , we can see that the highest mean accuracy 393 

was reached with settings p ∈ {1, 2, 3} and q ∈ {0, 1, 2} for all data 394 

sets considered. 395 

Also the sensitivity and specificity values indicate reasonable 396 

results. In addition, it is also apparent that for all cases, the speci- 397 

ficity is higher than the sensitivity. Fig. 2 illustrates the impact of 398 

the different combinations of the parameters p and q (with the op- 399 

timal k ) on the selected performance measures for the Vehicle data 400 

in the training & validation step. 401 

5.2.2. Performance with the test samples 402 

In this sub-section, we present the classification results of the 403 

classifiers with the testing data samples, which were initially sep- 404 

arated from the original data sets. We also include the comparison 405 

to other classifiers. Optimized parameter values and saved training 406 

samples in the validation step were used to test the classifiers with 407 

the previously unused test samples. Table 3 summarizes the results 408 

for mean classification accuracy, mean sensitivity, mean specificity, 409 

variance, and confidence interval (CI) obtained for the proposed 410 

BM-FKNN and BM-KNN methods and for the benchmarks over all 411 

considered data sets. The results for the BM-FKNN and the BM- 412 

KNN are the same and they are presented in the same column. 413 

The results from the test sets show that the proposed classifiers 414 

have high classification accuracy compared to the benchmarks. 415 

From Table 3 one can observe that the proposed new methods 416 

outperform all benchmarks with two data sets and that the per- 417 

formance is second-best with three data sets. The mean sensitivity 418 

and specificity remains high for all data sets. Besides this, interest- 419 

ingly BM-KNN classifier obtained the exact results which were also 420 

obtained with BM-FKNN for all data sets. This reveals that the in- 421 

fluence of Bonferroni mean inside the learning part of the classifier 422 

has dominating effect compared to membership degree computa- 423 

tion in fuzzy KNN. In particular BM-KNN and BM-KNN classifiers 424 

significantly improved the accuracy compared to KNN, FKNN and 425 

LM-KNN methods. This indicates that introducing the concepts of 426 

Bonferroni mean local vectors as nearest representatives instead of 427 

k nearest samples one can generate more reasonable class repre- 428 
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Table 3 

Classification results with the testing samples. 

Data set Measure BM-FKNN/ BM-KNN FKNN LM-KNN KNN SVM NB Similarity classifier 

Car Mean Accuracy 0.9292 0.8905 0.8956 0.8845 0.8506 0.8158 0.6984 

Variance 1.37E-04 1.56E-04 1.98E-04 1.49E-04 1.67E-04 2.50E-04 2.29E-04 

CI [0.9237 0.9347] [0.8846 0.8963] [0.8890 0.9022] [0.8795 0.8895] [0.8445 0.8566] [0.8083 0.8232] [0.6913 0.7055] 

Mean Sensitivity 0.8251 0.658 0.6345 0.6173 0.7 0.4005 0.6599 

Mean Specificity 0.9659 0.9291 0.9197 0.9142 0.9133 0.8946 0.9017 

Vehicle Mean Accuracy 0.9556 0.9456 0.9371 0.9456 0.9562 0.7015 0.6988 

Variance 1.38E-04 7.96E-05 2.77E-04 7.96E-05 8.01E-04 2.27E-04 8.81E-05 

CI [0.9501 0.9611] [0.9414 0.9497] [0.9309 0.9434] [0.9414 0.9497] [0.9430 0.9695] [0.6944 0.7085] [0.6944 0.7032] 

Mean Sensitivity 0.8852 0.879 0.8695 0.879 0.9077 0.4351 0.4315 

Mean Specificity 0.9796 0.967 0.9594 0.967 0.9714 0.94 4 4 0.9359 

Ionosphere Mean Accuracy 0.8914 0.8529 0.8914 0.8529 0.8906 0.9164 0.8621 

Variance 4.60E-04 0.0013 4.60E-04 0.0013 4.83E-04 9.30E-04 0.0026 

CI [0.8814 0.9015] [0.8362 0.8695] [0.8814 0.9015] [0.8362 0.8695] [0.8813 0.9009] [0.9022 0.9307] [0.8382 0.8861] 

Mean Sensitivity 0.8562 0.824 0.8562 0.824 0.8601 0.9446 0.8737 

Mean Specificity 0.9523 0.9541 0.9523 0.9541 0.9649 0.8762 0.8596 

Mammogram Mean Accuracy 0.7927 0.7844 0.7909 0.7833 0.7906 0.7844 0.7789 

Variance 1.16E-04 1.87E-04 1.18E-04 8.68E-05 1.16E-04 1.15E-04 2.99E-05 

CI [0.7877 0.7977] [0.7780 0.7908] [0.7858 0.7960] [0.7790 0.7877] [0.7856 0.7957] [0.7793 0.7894] [0.7763 0.7815] 

Mean Sensitivity 0.7528 0.7275 0.7437 0.7303 0.7819 0.7457 0.7054 

Mean Specificity 0.8343 0.8535 0.8434 0.8456 0.8058 0.827 0.885 

Wine Mean Accuracy 0.8306 0.8097 0.8306 0.8069 0.8833 0.9722 0.9681 

Variance 0.002 0.0028 0.002 0.0028 0.0022 2.08E-31 1.04E-04 

CI [0.8095 0.8516] [0.7850 0.8344] [0.8095 0.8516] [0.7822 0.8317] [0.8616 0.9051] [0.9722 0.9722] [0.9633 0.9728] 

Mean Sensitivity 0.811 0.7897 0.811 0.7897 0.8712 0.9722 0.9724 

Mean Specificity 0.9105 0.9012 0.9105 0.9012 0.9379 0.9848 0.9846 

Page Blocks Mean Accuracy 0.9255 0.92 0.915 0.9191 0.8918 0.9259 0.6586 

Variance 3.74E-05 2.74E-05 3.72E-05 2.56E-04 2.52E-05 3.07E-04 0.0018 

CI [0.9219 0.9290] [0.9165 0.9235] [0.9121 0.9179] [0.9165 0.9235] [0.8895 0.8942] [0.9211 0.9307] [0.7185 0.7579] 

Mean Sensitivity 0.9597 0.9619 0.9597 0.9615 0.9337 0.989 0.9954 

Mean Specificity 1 1 1 1 NaN 0.7366 0.4735 

Average (overall) 0.8875 0.8672 0.8767 0.8654 0.8772 0.8527 0.7775 

Table 4 

Results of the t -test on the performance of the proposed methods vs. the six 

benchmarks on the test sample data. 

Data set Paired-t with P-value test-statistic 

BM-FKNN / BM-KNN 

Car FKNN 2.4770e-12 significant 

LM-KNN 6.30E-10 significant 

KNN 3.88E-14 significant 

SVM 6.75E-22 significant 

NB 1.12E-25 significant 

Similarity classifier 1.57E-37 significant 

Vehicle FKNN 0.0042 significant 

LM-KNN 1.24E-05 significant 

KNN 0.0042 significant 

SVM 0.9317 not significant 

NB 5.63E-41 significant 

Similarity classifier 4.30E-42 significant 

Ionosphere FKNN 3.48E-04 significant 

LM-KNN 1 not significant 

KNN 3.48E-04 significant 

SVM 0.0025 significant 

NB 5.62E-07 significant 

Similarity classifier 0.4808 not significant 

Mammogram FKNN 0.0387 significant 

LM-KNN 0.597 not significant 

KNN 0.0055 significant 

SVM 0.5443 not significant 

NB 0.019 significant 

Similarity classifier 9.38E-06 significant 

Wine FKNN 0.0871 not significant 

LM-KNN 1 not significant 

KNN 0.0839 not significant 

SVM 1.05E-22 significant 

NB 3.34E-34 significant 

Similarity classifier 2.31E-32 significant 

Page Blocks FKNN 0.0096 significant 

LM-KNN 3.77E-06 significant 

KNN 1.02E-04 significant 

SVM 6.56E-20 significant 

NB 0.6917 not significant 

Similarity classifier 1.49E-21 significant 

sentative vectors. Regarding SVM, NB and similarity classifiers even 429 

though in some cases they are able to achieve little higher accu- 430 

racies BM-FKNN and BM-KNN classifiers still outperform them on 431 

majority of the data sets. 432 

Moreover, it seems that the performance of the classification 433 

has been significantly increased by using the higher values for the 434 

parameter k with the proposed methods. Obviously, this is interest- 435 

ing since the low values of k are performing better for the bench- 436 

marks and it is also confirmed by showing that the KNN classifier 437 

worked well with k = 1 with two data sets considered. This finding 438 

is in agreement with previous findings by Derrac et al. in [2] . 439 

The preliminary conclusion that can be stated based on the 440 

results is that the proposed new classifiers outperform the KNN- 441 

based benchmarks and thus excels with data sets where KNN- 442 

based classification fits well. 443 

Table 4 presents the paired t -test results for the BM-FKNN and 4 4 4 

BM-KNN and benchmark classifiers with the test samples. From 445 

the evidence on the table, it is visible that the BM-FKNN and BM- 446 

KNN methods have yielded statistically significantly higher classifi- 447 

cation accuracies in the cases where the accuracies produced were 448 

superior. 449 

6. Conclusion 450 

This paper introduced two new methods to the family of fuzzy 451 

k -nearest neighbor classifiers that are both developed by using 452 

the Bonferroni mean in the computation of local mean vectors, 453 

which are used in the classification of new query samples to know 454 

classes. The proposed BM-FKNN and BM-KNN methods differ from 455 

FKNN and LM-KNN methods in that they use the bonferroni mean 456 

in the computation of local mean vectors for the set of k near- 457 

est neighbors, where the difference with the FKNN is that no lo- 458 

cal mean vectors were previously calculated and with the LM-KNN 459 

mean operator was arithmetic mean. 460 

To illustrate and study the performance of the proposed classi- 461 

fiers they were tested with an artificial data set and six real-world 462 

data sets. The obtained results show that the new methods can 463 
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give improved classification accuracy compared to the benchmarks 464 

used. Specifically it can be mentioned that the proposed new 465 

methods matched or outperformed all KNN-based benchmarks in 466 

all performance tests. The results were tested for statistical signifi- 467 

cance and it was found that the proposed methods had better clas- 468 

sification accuracy than the benchmarks. 469 

From the artificial data set experiment we found that the new 470 

methods are less sensitive to class imbalances, than its “original”471 

counterparts. From the results with the real-world data, the most 472 

obvious finding to emerge for the new methods is that the best 473 

classification accuracy is achieved with a relatively high number 474 

( k ) of nearest neighbors. This is reasonable, because when the sam- 475 

ple size increases, the mean of the sample gets closer to a pre- 476 

cise representation of the sample. However, we should note that 477 

due to the more complex calculations involved the execution of 478 

the proposed BM-FKNN method takes little more time than that of 479 

the benchmarks. Also finding a suitable parameters for Bonferroni 480 

mean requires a lot more classification runs since grid search is 481 

used and this takes time. In other words, computational complex- 482 

ity of the proposed approach is rather high in comparison to the 483 

classical methods. 484 

Moreover, this study offers some insight into our understanding 485 

of the Bonferroni means and its usage in the classifiers and learn- 486 

ing algorithms. In fact, further research directions include test- 487 

ing the effect of combining Bonferroni means together with other 488 

known variants of the KNN algorithm such as IV-KNN [2] , kNN-TSC 489 

[43] , and modified evidential KNN [10] . It also would be interesting 490 

to see how Bonferroni means can be employed in some other ma- 491 

chine learning applications, e.g. in [44–47] , where arithmetic mean 492 

has been extensively used. 493 
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