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Abstract

A recently proposed method in deep learning groups
multiple neurons to capsules such that each capsule
represents an object or part of an object. Rout-
ing algorithms route the output of capsules from
lower-level layers to upper-level layers. In this pa-
per, we prove that state-of-the-art routing proce-
dures decrease the expressivity of capsule networks.
More precisely, it is shown that FEM-routing and
routing-by-agreement prevent capsule networks from
distinguishing inputs and their negative counterpart.
Therefore, only symmetric functions can be expressed
by capsule networks, and it can be concluded that
they are not universal approximators. We also the-
oretically motivate and empirically show that this
limitation affects the training of deep capsule net-
works negatively. Therefore, we present an incre-
mental improvement for state-of-the-art routing al-
gorithms that solves the aforementioned limitation
and stabilizes the training of capsule networks.

1 Introduction

Capsules in capsule networks are groups of neurons
that represent an object or a part of an object in a
parse tree as introduced by Hinton et al. [4]. A cap-
sule encodes instantiation parameters of an object
(e.g. its position, location, orientation, ...) through
vector-based representations. The norm of this vector
is called the activation of a capsule and it encodes the
probability of whether this object exists in the cur-
rent input or not. Later, Sabour et al. [I5] introduced
the CapsNet architecture, whose first layers construct
primary capsules with ReLU convolutions. Those pri-
mary capsules are then routed to subsequent capsule
layers with so-called routing algorithms. One such al-
gorithm is the iterative routing-by-agreement (RBA)

algorithm from Sabour et al. [I5], which uses pre-
dictions from lower-level capsules to generate upper-
level capsules. Later, Hinton et al. [5] introduced
an improved expectation-maximization based routing
algorithm called EM-routing that uses a pose-matrix
to calculate equivariant upper-level capsules.

Although Sabour et al. [I5] and Hinton et al. [5] al-
ready successfully demonstrated this innovative idea
to connect capsules of different layers with an iter-
ative routing procedure, we were able to improve
on both algorithms. More precisely, we found that
routing-by-agreement and EM-routing prevent cap-
sule networks from being universal approximators be-
cause they limit their representation capabilities to
symmetric functions. Therefore, removing this lim-
itation increases the expressivity and improves cap-
sule networks as we will show in detail later in this
paper.

The existence of this limitation can not only be
evaluated empirically, we also prove theoretically that
for every input to a capsule layer a negative input
exists that cannot be distinguished by capsules, even
when this input represents a different class. Our the-
oretical investigation is independent of specific hy-
perparameters and its independent with respect to
the used architecture. Therefore, the presented proof
holds for the complete hyperparameter-space. We
also use this proof to find specific problems that can
not be solved with capsule networks using RBA or
EM-routing. One such problem is the classification
of the sign of scalar inputs, which we will show em-
pirically later in this paper.

We also found that this limitation negatively af-
fects the training of deep capsule networks for ar-
bitrary datasets. This is especially problematic for
deep networks since the first primary capsules are
constructed with ReLU convolutions which means
that all components of primary capsules are positive.



Therefore, the negative of a vector and the vector it-
self can never both be an input to the first capsule
layer and the limitation mentioned above will not ap-
ply to the first layer. After the first capsule layer,
routing algorithms are used to generate subsequent
capsules and the negative input can indeed occur in
practice. Each subsequent layer increases the proba-
bility that negative inputs occur, and we hypothesize
that those routing algorithms impact the training of
deep architectures negatively. This hypothesis is ex-
tensively evaluated in the experimental section.

Additionally, we will present a solution to circum-
vent this limitation by utilizing a bias term, solving
the aforementioned weakness and further improving
state-of-the-art routing algorithms. Neural networks
usually add such a term to the sum of all weighted
inputs, but bias terms are not mentioned by Sabour
et al. [T5] for RBA in their paper. Some authors, such
as Kronenberger and Haselhoff [§], explicitly state
that for capsule networks no bias is used and that
[...] this design of the capsule allows more capabili-
ties in representing its features”. We agree that a bias
term is not mentioned in the paper by Sabour et al.
[15], but prove that this limits the expressivity of cap-
sule networks. On the other hand, for EM-routing
Hinton et al. [5] describes that they use two learned
biases per capsule, namely 5, and £,. We prove in
this paper that these terms are not enough to remove
the aforementioned limitation and will present a so-
lution to this problem.

The novel contributions of this paper are:

e We proof that RBA as well as EM-routing de-
crease the expressivity of capsule networks, pre-
venting them from being universal approxima-
tors when RBA or EM-routing are used.

e We shown that this limitation affects the train-
ing of deep capsule networks negatively.

e We adapt both algorithms to remove the afore-
mentioned weakness and show that this adaption
(1) stabilizes the training, (2) enables deeper
capsule networks and, (3) increases the accuracy.

In the next section we will discuss related work. In
Section 3] we will prove that a capsule network cannot

distinguish inputs and the negation of those inputs if
routing-by-agreement or EM-routing is used to con-
nect different capsule layers. A bias term that we
introduce in Section [ removes this limitation. In the
experimental Section 5] we show that the sign function
is one specific function that can not be expressed with
capsule networks and we show that the proposed bias
term removes this limitation. In the same section, we
also show that a bias term stabilizes the training of
capsule networks, enables deeper capsule networks to
train successfully and increases the achievable accu-
racy. In Section [f] we discuss our findings.

2 Related Work

Capsules were introduced by Hinton et al. [4] who
showed that such capsules can be trained by back-
propagating the difference between the actual and the
target outputs. To implement this idea, Sabour et al.
[15] introduced the concept of routing algorithms.
The goal of these algorithms is to activate upper-
level capsules from lower-level capsules in such a way
that during inference the activated capsules form a
parse-tree that represents the decomposition of ob-
jects into their parts. The RBA algorithm [I5] uses
vectors to activate such upper-level capsules. The
orientation of these vectors encodes the instantia-
tion parameters whereas the activation of a capsule
is encoded by the norm of the vector. The CapsNet
architecture showed the effectiveness of this vector-
based algorithm. Later, Hinton et al. [5] introduced
an expectation maximization based routing algorithm
(EM-routing) to route activations from a lower-level
layer to upper-level layers. Compared to the CapsNet
architecture, the authors use so-called matrix-based
capsules rather than vector-based capsules. A matriz
capsule is composed of a 4 X 4 pose matrix together
with a scalar variable that represents the activation of
this capsule. An RBA based routing algorithm that
uses scaled distance agreements rather than dot prod-
ucts to calculate general agreements is introduced by
Peer et al. [I3]. Another algorithm from Tsai et al.
[16] uses inverted attentions to connect capsules of
different layers. In this work, higher-level parents
compete for the attention of lower-level child cap-



sules instead of the other way round. Kosiorek et al.
[7] proposes an unsupervised version of capsules to
segment images into constituent parts and to orga-
nize discovered parts into objects. Rajasegaran et al.
[14] created some deeper capsule networks, resulting
in state-of-the-art performance on MNIST, SVHN,
smallNORB, and fashionMNIST. The routing strat-
egy is formulated as an optimization problem that
minimizes a KL regularization term between the cur-
rent coupling and its state by Wang and Liu [I7]. The
popularity of capsule networks has increased and they
are used in a wide range of applications such as lung
cancer screening [11], action detection from video [2],
or object classification in 3D point clouds [19], to
name a few.

3 Limitation of capsule networks

In this section, we prove that a capsule network, using
the routing-by-agreement as well as the EM-routing
algorithm, cannot distinguish inputs and their nega-
tive inputs.

3.1 Notation

I represents the number of lower-level capsules and
J the number of upper-level capsules. We use i €
1,...,1 to denote a single lower-level capsule and
7 €1,...,J to denote an upper-level capsules. We call
the input u for RBA the positive input and —u the
negative input vector. Note that the input for EM-
routing is M. For any variable v in the algorithm, we
refer to the variable that is calculated using u with
vt and using —u with v=. With v;; we reference
a variable that is used for lower-level capsule ¢ and
upper-level capsule j. To reference component h of
v € RH we write v". For example with vi;h we ac-
cess component h of vector v € R¥ from lower-level
capsule i € 1,...,I to upper-level capsule j € 1,...,J
that is calculated for the negative input.

3.2 Routing-by-agreement

We prove here that for all output capsules the ac-
tivations for inputs and corresponding negative in-

Algorithm 1 Details for the routing-by-agreement al-
gorithm are described by Sabour et al. [15].

V capsules i in layer [ and j in layer [ + 1 with r rout-
ing iterations and predictions ;. The output of the
algorithm are instantiation vectors v;.

procedure ROUTINGBY AGREEMENT (|, 7, [)
Vbij, bij 0
for r iterations do

1:
2
° (bi5)

. exXpl0ij
4 Cij < S ep(bu)
5: Sj 21 Cié'u]“i

) sill® s
6 Ui T TS T Ths, Tl
7 bij — bij + Vj - Ujlq
8 end for
9: end procedure

puts are equal if the routing-by-agreement algorithm
is used. The algorithm and its parameters are shown
in algorithm [I} The inputs for this routing algorithm
are lower-level predictions ;; = Wy;u; where u; is
the activation of lower-level capsule ¢ and W;; the
transformation matrix that is learned through back-
propagation.

Lemma 1. The prediction vector ﬂjli is negated
(ﬁ]_h = fﬁjll) when the input u; is negated.
Proof.

a5, = Wij(—wi) = =Wiju; = —af,;

O

then the activation
+
—Y; ) by

= c..

Lemma 2. Assume that cj'j Y

v;' of a capsule j can be negated (v]_ =
negating all inputs uy,usg, ...uj.

Proof. For the preactivation s; = ), ¢;;1,|; and the
negated inputs u;:

Sj = Zcij“jlz'
7
_ +(_at
= E :Cij( “j\i)

K2
= — Z chat = fsj Definition of sj
i

Definition of s;

Assumption, lemma

i gli T



and therefore
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V) = e Definition of v;
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We see that the activation of a capsule can be
negated by negating all inputs, under the assumption

that cjj = ¢;;. We will now show that the property

+

¢;; = ¢;; holds in every iteration.

Lemma 3. The routing-by-agreement algorithm pro-
duces coupling coefficients c;;- = ¢;; in every routing
iteration.

Proof. First we will show that bjj = b;; for any rout-
ing iteration, using a proof by induction on the rout-
ing iterations.

Base case (BC): For the first routing iteration and
the initialization of bj'j = b;; = 0, we can show that

c+:¥: o
ij

c..

>_1exp(0) *

Therefore, lemma 2| is applicable which implies that
by =0+ (v; u]_l)

Definition of bi_j

Lemmal [T lemma

Jjli

_ oot ) - pt
=0+ (vf i) = b

J

Inductive hypothesis (IH): b;; = b;-;- in the previous
iteration.

Inductive step (IS): We now show that b, = b;-"j also
holds in the next iteration. At first lemma [2| is ap-
plicable, because b;; = b;;- also holds in the previous
iteration. So we can show that

- exp(b;;) exp(b;;) _
T Y exp(by) X exp(by) Y

Therefore we can prove for b;; in the next iteration
that

Definition of b;j

Lemma [} lemma[2] TH

This proof by induction shows that in every itera-
tion the property bjj = b;; holds. Therefore also for
the coupling coefficients it holds that

- exp(b;;) exp(bjj) _
Y Yexp(by) X exp(b) Y

O

Lemma 4. For arbitrary inputs, the output of a cap-
sule layer is negated whenever all inputs are negated.

Proof. Lemma[2]shows that the activation vector can
be negated by negating all inputs under the assump-
; - _ .+ - _ .+
tion .that Cij = Cij- Lemmashovx@ that ¢;; = Cij at
any iteration. Therefore lemma [2|is always applica-
ble and outputs are negated whenever all inputs are

negated. O

Theorem 1. A capsule network with RBA cannot dis-
tinguish inputs and their negative inputs.

Proof. By recursively applying lemma [4] at every
layer we see that a negated input produces a negated
output at the last layer such that v;” = —vj. The
classification of an input is based on the norm of the
output vector. But [|v; || = ij'|| holds and therefore
a capsule network cannot distinguish the input and
the negated input. O

3.3 EM-routing

In this subsection we prove that for all output cap-
sules, the activations for inputs and their negated in-
puts are equal if EM-routing is used. The algorithm
and its parameters are shown in algorithm [2} Votes
from a lower-level capsule ¢ to an upper-level capsule
J are calculated with V;; = M;W;; for the lower-level



Algorithm 2 Details for the routing-by-agreement al-
gorithm are described by Hinton et al. [5].

V capsules ¢ in layer [ and j in layer [+ 1 with r rout-
ing iterations and predictions ;. The values for f3,
and [, are learned through backpropagation. The
output of the algorithm are the pose matrices V; and

the activations a;.

1: procedure EM ROUTING:(a, V)
2 Rij < 1/J
3 for r iterations do
4: V4 : M-Step(a, R, V, j)
5: Vi : E-Step(u, 0, a,V, 1)
6 end for
7 return a, M
8: end procedure
9: procedure M-STEP:(a, R,V j)
10: Vi : Rij < Rij * a;
Zi Ria Vz?
> Rij
> Rw(Vz}; /‘]}'L)Z
Z Rij
— (Bu + loga ) Z R;j

14: a; < logistic ()\(,BQ - Zh costh))
15: end procedure
16: procedure E-STEP: (i, 0, a,V, )

H (Vh-—u )2
CXP< Zh Q(Uh)Jz

11: Vho: ol

12: Vh: (ol)? «
13: costl

17: V] 1pj \/Hf 27 ( U;L)2
. y . .. a;jPj
18: Vi Ry < ST arpe

19: end procedure

pose matrix M; and the transformation matrix Wj;
which is learned through backpropagation. Note also
that p; is a vectorized version of the pose matrix Mj.

First, we prove some lemmas that will be used un-
der the assumption that R;; = R;;. We will then
show that this assumption holds after every routing
iteration and conclude our proof.

Lemma 5. Votes VJ are negated when the input MLJ;
is negated.

Proof.

+ _ At _ — _ -
V;j = Mij Wij = _Mij Wij =-V;

)

Lemma 6. Assume that R

Proof.

= R;;, then ujh = —,u;h

RLV "
,Ujh ZZ UR i Definition of ,u;'h
R+V_
_ Z i I B _Uj_h Lemma [5]
Zi Rij
O
Lemma 7. Assume that Rf; = R, then (0]")? =
(O_J—h)Z
Proof.
RE(Vif —pfhy?
(ojh)Z Z z(: e Hj ) Definition of a;-rh)2
i A
I p—/y/+ +h\2
LR=(VT — 4
_ > i ”Z(:I”R Hj ) Assumption
YRV — "))

=Ry

Lemma 8. Assume that R+ = R

cost™"

Proof.

cost Th = (6 + log(o +h
= (Bu + log(o

Lemma 9. Assume that RZT; =R

Proof.

a;r = logistic <)\(6a -

= logistic ()\(Ba -

H
Zcost +h))
h

H
Zcost h)) =a; Lemmald
h

Lemma[5] lemma [6]

O

gt+h
ij» then cost™ =

Definition of cost T"

ZR
ZR =cost " Lemmall

O

then aF

ij? i =4

Definition of aj+
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We will now show that the assumption RZ‘-; = R;;
holds in every iteration of EM-routing:

Lemma 10. The EM routing algorithm, with inputs
@i, Bu, Bas A, produces coupling coefficients R;-; =Ry
i every routing iteration

Proof. We prove this by induction on the routing it-
erations.
Base case (BC): Rj'j =R

tion

;; in the first routing itera-

+ Gy
Rij_j_Rij

Inductive hypothesis (IH): R;; =R
iteration.
Inductive step (IS): We know show that Rj'j =
holds also in the next routing iteration.

Using the inductive hypothesis and lemma @,

lemma lemma |9 it follows that u;rh = —,u;r ,

(O’;_h)Q = ((Tj_h)2 and at? = ¢=". Therefore it holds
at

;; in the previous

R,

H (Vi —pdhy?
exp (— don W
J
H h
[Ty 2m (o)

H (V5" "—ni")?
exp | — ), 72(%%)2

p; =

H —h
[I;, 2m(o;")?
and we conclude that
+,.+ - -
Rt — 4P _ %P5 _ R
ij J T — 5 ij
Zta?P? Ztatpt

O

We have seen that R$ = R;; is true in every rout-
ing iteration. Using the previously proven lemmas

and R?'j = Ri_j we can conclude that a;’ =aj;:

Lemma 11. For arbitrary inputs to a capsule layer,
the output activation a; for given inputs and negated
inputs does not change. The pose matriz M; is
negated for negated inputs.

Proof. Lemma [10| shows that the routing coefficient
does not change if inputs are negated. From lemma/J]
it follows that the activation does not change and
from lemma |§| it follows that the pose matrix M; is
negated. O

Theorem 2. A capsule network with EM-routing can-
not distinguish inputs and their negated inputs.

Proof. By recursively applying the preceding lemma
at every layer we see that the negated input pose
matrix —M and the input activation a produces a
negated output pose matrix, but the same output
activation for an input and its negation. O

4 Adding a bias to RBA and EM-
Routing

In this section, we propose two simple ways to avoid
the weaknesses of the routing algorithms proven in
the previous sections. To accomplish this, we add a
bias term to the preactivations of the RBA algorithm
and we add a bias to the pose matrix of EM-routing.

4.1 Routing-by-Agreement

To solve this limitation we follow the original im-
plementation of Sabour et al. [I5] as mentioned in
Section This modification targets lemma [2] so
that negative activation vectors cannot preserve their
norm. A different norm ensures that the classification
is also different. If we add biases to the calculation
of the preactivation as follows

s = <Z Czyf‘;) + bias;

Then, a network can learn a bias; # 0 such that:



<Z c” J|Z> + bias;

<Z ci; (= J|Z > + bias; = — <Z c;;ﬁjz> + bias; o

((Z i le> +bm3]> i

This enables the network to learn non zero bias pa-
rameters such that the calculated preactivation vec-
tor is different for inputs and their negative inputs.
This leads to the activation vectors and the norm of
the activation vectors being different. Therefore, the
network can learn a bias so that inputs and negated
inputs can be distinguished.

4.2 EM-Routing

For EM-routing we proceed similarly, but the target
is lemma 5| to let the network learn through a bias
to avoid that inputs and their negations cannot be
distinguished. We update the calculation of the votes
with:

V;'j = MijWij + biasj
A network can learn a bias; # 0 such that:
‘/l;r = M{;—Wij + biasj = —(MfWij) + biasj
7E — ((MJW”) + biasj) ‘/”_

and therefore lemma [ does not hold so that the acti-
vation for inputs and their negations are different. It
is important to mention that this change ensures that
only the votes of lower-level capsules are changed and
not the activations a;.

5 Experimental evaluation

5.1 Setup

Our implementation of the capsule network uses Ten-
sorFlow 2.3 from Abadi et al. [I] and is available on

10
§ - '
i - -

RBA RBA+bias ] EMbias

Figure 1: Mean training accuracy and the std. for
1200 different capsule networks trained using RBA
and EM-routing with and without a bias term.

GitHuHﬂ To be able to compare both routing algo-
rithms we use RBA as well as EM-routing following
the CapsNet architecture from Sabour et al. [I5]. To
avoid numerical issues of EM-routing during training
we use the adapted version of EM-routing as intro-
duced by Gritzman [3]. The margin loss from Sabour
et al. [I5] is minimized using the Adam optimizer
from Kingma and Ba [6] with a learning rate of 10~*
and a batch size of 128. We generated a new dataset
as described in experiment 1 and used MNIST from
LeCun and Cortes [9], fashionMNIST from Xiao et al.
[18], SVHN from Netzer et al. [I2] and smallNORB
from LeCun et al. [I0] for experiment 2. The test
accuracy is evaluated using the test set provided by
each dataset.

5.2 Classifying the sign of a scalar variable

In Section 3| we showed that a capsule network can
not distinguish inputs and its negative counterpart
which we will evaluated empirically in this experi-
ment. To this end, we generate a dataset with 20k
samples, where each input and its negative counter-
part represent different classes: z; € [—1,+1] where
x; of class 1 iff z; < 0 and class 2 otherwise. To
evaluate the correctness of the proof from Section
empirically, we measure if the training accuracy is not
better than chance for both, RBA and EM routing.
On the other hand, if this limitation is avoided by
using the method introduced in Section [4 the prob-
lem should be easily solvable. As stated, the proof
is independent with respect to the used architecture.

Thttps://github.com/peerdavid/capsnet-limitations
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To demonstrate this, we evaluate many different ar-
chitectures in this experiment: The inputs are fed
into a network with 1 up to 4 capsule layers. For
each layer, we vary the number of capsules between
10 and 30 in steps of 5 and we also vary the dimen-
sionality of each capsule between 10 and 18 in steps
of two. Each network is trained 3 times with differ-
ent random initialized weights for RBA, RBA+bias,
EM-routing, and EM-routing + bias resulting in a
total of 1200 trained networks.

The mean accuracy together with the std. grouped
by routing algorithms are reported in fig. [I] Capsule
networks without a bias term are not able to achieve
an accuracy higher than chance whereas models that
use a bias term can solve this task with high accuracy,
which supports our hypothesis. We would also like to
mention that not only the mean accuracy is low for
capsule networks without a bias term. We evaluated
each model and none were able to achieve an accuracy
above chance. This demonstrates the importance of
a bias term and supports the correctness of the proof
from Section [3| empirically. We also hypothesized in
Section [I] that this limitation affects the training of
deep capsule networks negatively which we will eval-
uate in the next experiment.

5.3 Training deep capsule networks

To evaluate whether, as hypothesized, the discussed
limitation affects the training of deep capsule nega-
tively, we train the architecture from [I5] and vary
the number of hidden capsule layers. We use 64 pri-
mary capsules of dimension 8, for each hidden layer
32 capsules with dimension 12, and for the output
capsule layer a dimension of 16. The mean and stan-
dard deviation of the test accuracy for 3 runs with
and without a bias term and for different depths are
reported in tables [I] and [2]

First of all, it can be observed that a bias term
enables the training of deeper networks because the
accuracy for RBA without a bias term drops already
after 4 layers and for EM without a bias term after 9
layers. For EM routing we can additionally see that
the accuracy drops for the more complex datasets if
no bias term is used because the accuracy on small-
NORB and SVHN drops already after 9 layers. This

0.8
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(a) 7 capsule layers (b) 8 capsule layers
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(c) 9 capsule layers (d) 10 capsule layers

Figure 2: Comparison of the training curve for a cap-
sule networks that uses EM-routing with and without
a bias term.

supports our hypothesis from Section [1| that the lim-
itation we found will negatively affect the training of
deep capsule networks. We can also see that in al-
most all cases the test accuracy is equal or higher if
a bias term is used for both, RBA and EM-routing.
It is expected that the accuracy will not worsened
when using bias terms since the optimizer can simply
ignore the bias terms by setting all biases to zero.

To further evaluate the effect of a bias term, we
compare training curves for EM-routing with and
without a bias, trained on MNIST, in fig.[2] It can be
seen that the capsule network utilizing a bias imme-
diately starts improving, independent of the depth of
the network. The same network without a bias needs
at least 1k steps to start lowering its loss (fig. .
The improvement of the loss gets delayed further as
the depth of the network increases (fig. fig. [2d).
Therefore, it can be concluded that the training of
capsule networks converges faster if a bias is used.
We also want to mention that the method we provide
only needs a small number of additional parameters.
For example, a bias term for a network with 5 layers
increases the number of parameters by only 0.07%c.



Table 1: Mean and std. test accuracy (3 runs) for a capsule network with RBA for n layers.

DATASET METHOD ‘ 2 3 4 5 6
MNIST RBA 99.4 4+ 0.03 99.5 4 0.03 99.4 + 0.02 9.8 +£0.00 9.8 +£0.00
rba+bias | 99.4 4-0.01 99.5+0.02 99.54+0.04 99.34+0.06 99.0+0.11
FASHION RBA 87.4 +0.20 89.0 £+ 0.06 89.0 £ 0.16 10.0 & 0.00 10.0 & 0.00
rba+bias | 87.5 +0.26 89.1 +=0.08 89.0+ 0.08 87.94+0.19 85.3+1.71
SVHN RBA 91.9 £+ 0.10 92.94+0.16 92.3 4+ 0.05 6.7 £0.00 6.7 £0.00
rba+bias | 91.9 4+ 0.15 93.04+0.14 92.54+0.24 91.440.07 87.1+0.79
NORB RBA 91.0 £ 0.24 89.4 +0.48 88.2 +0.53 20.0 =+ 0.00 20.0 £ 0.00
rba+bias | 91.0 4+ 0.11 89.7+0.19 88.84+0.39 87.14+0.32 82.5+1.46

Table 2: Mean and std. test accuracy (3 runs) for a capsule network with EM-routing for n layers.

DATASET ~ METHOD | 7 8 9 10 11
MNIST EM 99.3 +0.04 99.2 4+ 0.06 98.8 +0.20 35.3 & 27.62 10.7 £ 0.26
em-bias 99.4 4+ 0.03 99.3 +£0.06 99.2+0.07 99.1+0.04 99.0+ 0.04
FASHION EM 87.8 +0.18 87.1 +0.39 83.9 4+ 0.64 37.7+21.54 10.7 £ 0.07
em-+bias 88.3 +0.05 87.9+0.26 87.84+0.23 87.4+4+0.26 87.0+0.10
SVHN EM 90.4 4+ 0.19 85.3 +1.83 50.1 = 11.68 24.0 +£6.23 19.6 £ 0.01
em-+bias 89.5 +0.26 89.2+0.34 88.5+0.26 88.34+0.14 87.7-+0.40
NORB EM 88.0 4= 0.34 74.8 +2.03 20.8 £ 0.18 20.5+0.11 20.5 4+ 0.04
em-+bias 87.6 £0.73 87.8+0.85 87.04+0.65 86.2+0.48 86.0+ 0.28
6 Conclusion References

Although routing algorithms already proved suc-
cessful in connecting capsules of different layers, as
demonstrated by Sabour et al. [I5] and Hinton et al.
[5], we found a method to further improve both algo-
rithms by increasing the expressivity of capsule net-
works. We theoretically proved the existence of a lim-
itation and empirically showed that this negatively
influences the training of deep capsule networks. Fi-
nally, we introduced a solution to this problem that
(1) removes the aforementioned weakness, (2) enables
the training of deep capsule networks, and (3) leads to
a faster convergence of capsule networks while adding
a negligible amount of parameters.
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