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Abstract

The increasing complexity of deep learning models led to the development of Knowledge Distillation (KD) approaches
that enable us to transfer the knowledge between a very large network, called teacher and a smaller and faster one,
called student. However, as recent evidence suggests, using powerful teachers often negatively impacts the effective-
ness of the distillation process. In this paper, the reasons behind this apparent limitation are studied and an approach
that transfers the knowledge to smaller models more efficiently is proposed. To this end, multiple highly specialized
teachers are employed, each one for a small set of skills, overcoming the aforementioned limitation, while also achiev-
ing high distillation efficiency by diversifying the ensemble. At the same time, the employed ensemble is formulated
in a unified structure, making it possible to simultaneously train multiple models. The effectiveness of the proposed
method is demonstrated using three different image datasets, leading to improved distillation performance, even when
compared with powerful state-of-the-art ensemble-based distillation methods.
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1. Introduction

Deep Learning (DL) models have evolved rapidly
over the recent years, leading to state-of-the-art perfor-
mance. However, DL models typically require an im-
mense amount of parameters, which leads to large and
slow models. The advent of powerful dedicated accel-
erators, e.g., Graphics Processing Units (GPUs) (Chetlur
et al., 2014) and Tensor Processing Units (TPUs) (Jouppi
et al., 2017), allowed the training of such enormous mo-
dels, as well as effectively deploying them in many ap-
plications. However, deploying DL models in mobile and
embedded settings, e.g., on mobile phones, robots, etc.,
still remains especially challenging due to energy and
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computational power constraints. These limitations fu-
eled the interest of the scientific community in developing
a wide range of methods for reducing the size and com-
plexity of DL models and increasing their speed, with-
out reducing their accuracy. These methods range from
replacing computationally intensive operations (Cheng
et al., 2015), pruning approaches (Srinivas and Babu,
2015), quantizing the parameters of the models to re-
duce memory requirements and increase inference speed
and/or applying hashing methods (Wu et al., 2016; Peng
and Chen, 2019; Peng et al., 2019; Durmaz and Bilge,
2019), as well as developing faster and more lightweight
architectures optimized for inference (Iandola et al., 2016;
Howard et al., 2017; Luo et al., 2020).

Another very promising research direction is Knowl-
edge Distillation (KD) (Hinton et al., 2015; Romero et al.,
2015; Duan et al., 2019). KD works by employing a large,
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well trained model, known as teacher, to guide the train-
ing process of another lightweight model, known as stu-
dent. In this way it is possible to distill the knowledge
encoded in the larger model into a smaller and faster one.
Also, note that compared to other methods that aim at re-
ducing the computational requirements for a DL model,
e.g., quantization or pruning, KD aims at increasing the
accuracy of an existing lightweight architecture. This al-
lows KD to be combined with virtually any of the existing
methodologies for developing lightweight DL models and
further increasing their accuracy. In this way, it provides
the flexibility of choosing the exact size and architecture
of the final model that we want to deploy. The effec-
tiveness of KD critically relies on the employed teacher
model. For example, having a less capable teacher will
lead to less knowledge being available to be transferred to
the student, potentially limiting its accuracy. At the same
time, it has also been shown that when powerful teachers
are used, the distillation efficiency can actually be re-
duced (Mirzadeh et al., 2019). More powerful teacher mo-
dels can typically generate more confident classification
decisions, leading to reduced diversity, thus explaining
their apparent failure to effectively distill their knowledge.
Indeed, it has been demonstrated that using less confident
teachers can improve distillation efficiency (Panagiotatos
et al., 2019).

The question that naturally arises from the previous
observation is whether it is possible to develop a pow-
erful teacher, which is, at the same time, capable of ef-
fectively transferring its knowledge to a smaller student
model, while maintaining its ability to extract meaning-
ful representations. The main contribution of this work is
to propose the specializing of multiple teachers, each to a
limited range of skills, in order to overcome the aforemen-
tioned limitation. Even though each individual teacher is
confident in its own small set of skills, thus achieving high
accuracy at them, the ensemble’s diversity is achieved by
training them in different tasks. In this way, more mean-
ingful representations can be extracted. Note that for the
purpose of this paper, each skill corresponds to the ability
to recognize one category (class) of data. However, this is
without loss of generality, since the proposed method can
be also applied on other domains, such as reinforcement
learning (Teh et al., 2017).

The proposed method can be better understood by con-
sidering the following example. Training a powerful

teacher to recognize a set of classes will probably lead to
it confidently selecting the correct class most of the time.
However, it will not be able to recognize similarities be-
tween the input object and the rest of the classes, since it
has been trained to suppress the rest of the outputs. In-
stead, consider an ensemble of three teachers, each one
trained in a disjoint set of classes. The teacher that is re-
sponsible for recognizing the correct class will again be
confident in it. The other two, however, despite being
less confident, will still classify the input object, accord-
ing to their corresponding classes. In this way, the rest of
the teachers will provide their opinion regarding the sim-
ilarities of the input object to the classes for which they
are responsible. This approach effectively provides a way
to extract meaningful representations over the classes at
hand, while at the same time employing powerful teacher
models. Indeed, as it is experimentally demonstrated us-
ing three different image datasets, the proposed method
leads to improved distillation performance, even when
compared with powerful state-of-the-art ensemble-based
distillation methods.

The rest of this paper is organized as follows. First,
Section 2 provides a brief overview of related distillation
methods and highlights the key differences between them
and the proposed method. Then, the latter is analytically
derived and discussed in Section 3, while the experimental
evaluation is provided in Section 4. Finally, conclusions
are drawn and future work is discussed in Section 5.

2. Related Work

There is a considerable amount of literature about KD,
describing multiple ways in which it can be performed
and different fields wherein it could be applied. As al-
ready described in the previous Section, the main mo-
tivation for applying KD is to more effectively train a
lightweight DL model. KD is always performed between
two models, where the first one could be either a single
model or even an ensemble of models. In the classical
approach (Bucila et al., 2006), the method utilizes an en-
semble to label unlabeled data that are then used to train
a neural network, thus mimicking the function learned by
the ensemble and achieving similar accuracy. This pro-
cess was then extended in (Hinton et al., 2015), by in-
troducing a temperature parameter in the probability es-
timation process, in order to extract a more meaningful
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distribution over the classes for the input samples. As in
the classical approach, the extracted distributions are used
to train the student model. This seminal approach, which
is called “Knowledge Distillation”, inspired many subse-
quent applications.

Indeed, KD has been used for many other purposes be-
sides model compression. Papernot et al. (2015) have dis-
covered that we can address security issues in DNNs by
using the extracted knowledge of a network in order to
improve its own tolerance to adversarial samples. Using
KD can also significantly increase the speed and effec-
tiveness of a model’s pre-training process (Tang et al.,
2015), providing a good starting point at the optimiza-
tion space for the student. Rusu et al. (2015) successfully
transferred the policies learned by large Deep Q-learning
networks to smaller ones. More recent evidence (Chen
et al., 2017; Li et al., 2018) suggest that KD can also
be effectively applied for transferring the knowledge of
object detection models, used to learn from noisy sam-
ples (Li et al., 2017), improve the performance of low-
precision networks (Mishra and Marr, 2017), or even
boost self-supervised learning, allowing us to use different
models for the pretext and the main task (Noroozi et al.,
2018). The large number of KD applications highlights
the importance of developing more efficient methods for
transferring the knowledge from larger and more complex
networks to a smaller one, an area on which current ap-
proaches seem to be adversely affected by the capacity
gap between the models (Mirzadeh et al., 2019).

Several efforts have been made to improve the effi-
ciency of KD. Romero et al. (2015) used the represen-
tations of intermediate layers of the learning networks as
a hint, in order to assist deep and thin students in the dis-
tillation process. Later, Zhang et al. (2017) developed a
new framework in which the student learns a projection of
the knowledge of a teacher’s intermediate layer, while be-
ing trained at the same time. Zagoruyko and Komodakis
(2016); Song et al. (2018) combined KD with the atten-
tion methodology. Radosavovic et al. (2018) used distil-
lation, in order to transfer knowledge from data and not
from models in an omni-supervised learning task. In their
analysis, Yang et al. (2018) question the need for a more
tolerant teacher, instead of the most accurate one. They
report that it is more important for a teacher to produce
a smooth distribution over its predictions and conclude
that high accuracy with spiked distribution of confidence

is not that important, since the student can be more easily
over-fitted. Lan et al. (2018) proposed an online distilla-
tion framework in which the teacher is being trained and
at the same time its knowledge is being distilled to the stu-
dent. Passalis and Tefas (2018) extended the applications
of KD to representation learning tasks through a Prob-
abilistic Knowledge Transfer (PKT) framework. Simi-
larity embeddings (Passalis and Tefas, 2019) were also
proposed, which can lead to more general, unsupervised
KT and can have many applications, such as cross-domain
data exploitation. Yuan et al. (2019) suggested that we can
remove the role of the teacher from the KD process and
develop a self-learning student. This study differs from
the aforementioned ones in that it aims to improve the
method by focusing on the teacher, instead of focusing on
distillation per se. It should be noted that most of these
approaches can be readily combined with the proposed
one to further improve distillation performance.

To the best of our knowledge, this is the first work
which employs an efficient unified ensemble of diversi-
fied, task-specialized models in order to overcome the ap-
parent ineffectiveness of distillation, when powerful tea-
chers are used. It is worth noting that Hinton et al. (2015)
mentioned in their work that it is possible to create speci-
alized teachers by utilizing smaller datasets enriched with
more samples from the classes of their specialty, which
also requires each teacher to be separately trained. On the
other hand, the proposed method employs an efficient uni-
fied ensemble approach that allows for the one-step train-
ing of the whole ensemble, without the need of individual
datasets. Also, Lan et al. (2018) developed a framework
which allows the simultaneous training of all the teachers
in an ensemble. However, teachers are unspecialized and
trained to predict all the classes, reducing the diversity of
the models in the ensemble, which limits the efficiency of
KD, as also experimentally demonstrated in Section 4.

3. Proposed Method

The proposed Unified Specialized Teachers Ensemble
method, abbreviated as USTE, is presented in this Sec-
tion. The KD process is briefly introduced in the Back-
ground Subsection, while the proposed method is ana-
lyzed in the following one. It is worth noting that even
though the proposed method has been combined with
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the plain KD, most of the more advanced distillation ap-
proaches described in Section 2, can also be used, poten-
tially further increasing its effectiveness.

3.1. Background

KD was introduced as a model compression frame-
work, which eases the training of deep networks by fol-
lowing a student-teacher paradigm, in which the student
is trained according to a softened version of the teacher’s
output Hinton et al. (2015). This suggests that the learned
knowledge of a teacher network is hidden in the soft pro-
babilities of its predictions. Therefore, if we were to
teach a student model the way a teacher model “thinks”, it
would be useful to try and impart these similarities among
the classes for each sample and not only the final predic-
tions. In order to efficiently transfer the knowledge en-
coded in the similarity among different classes, Hinton
et al. (2015) also introduced a temperature parameter T in
the softmax activation. This enables us to tune the fuzzi-
ness of class probability estimations, rendering the output
probability distribution less spiky.

More specifically, KD works as follows. Let {xi|i =

1, . . . ,m} be a set of m training samples with Ψ number of
classes, while the notation N(·) ∈ RΨ is used to refer to the
teacher network that extracts Ψ logits, one for each class.
To simplify the notation, li j is used to refer to the j-th logit
for the i-th training sample. Then, the probability for the
j-th class for the corresponding sample is estimated as:

pi j =
exp(li j/T )∑Ψ
t=1 exp(lit/T )

. (1)

Higher temperatures will result in a softer probability dis-
tribution, while lower temperatures will result in a sharper
probability distribution. When tuned properly, temper-
ature allows for revealing the intra-class similarities for
each sample.

The student model fW(·), where W refers to its train-
able parameters, can be trained as follows. The soft
student’s probabilities qi j are calculated similarly to (1),
while the notation ŷi j is used to refer to the regular (T = 1)
student’s output. Then, the distillation loss is defined by
combining the regular cross entropy loss with the afore-
mentioned constraint of “mimicking” the teacher’s behav-

ior:

LKD = −λ

m∑
i=1

Ψ∑
j=1

pi j log qi j − (λ − 1)
m∑

i=1

Ψ∑
j=1

yi j log ŷi j,

(2)
where yi is the one-hot encoded ground-truth vector for
the i-th training sample and λ ∈ [0, 1] is a user-defined
parameter that controls the importance of distillation in
relation to normal training for the student.

3.2. Unified Specialized Teachers Ensemble
The proposed method works by compiling an ensem-

ble of teacher models, as shown in Fig. 1. Each teacher is
trained on a subset of the available classes, allowing it to
be highly specialized. At the same time, they can still pro-
vide predictions for input samples that belong to classes
out of their specialization field, diversifying the ensemble.
Furthermore, instead of training each model separately, a
unified one-step training procedure is employed, signifi-
cantly reducing the computational complexity. As a re-
sult, this approach allows for the perspective of the most
certain model to prevail, while at the same time permit-
ting a multitude of opinions, leading to richer dark knowl-
edge. The dominant teacher is likely to be one of those
whose specialization relates to the correct class and there-
fore enhances its specialization ability even more through
the training process. As a result, we believe that the dis-
tribution of the unified ensemble will be more spiked for
the controversial classes and may require a higher temper-
ature to transfer knowledge optimally, as experimentally
demonstrated in Subsection 4.2.

Let {Nk} = {N1,N2, . . . ,ND} be the set of D specialized
teachers. These teachers are trained on the whole training
dataset x1, · · · , xm, where xi denotes the i-th training sam-
ple. Also, note that ground truth annotations yi, which
are one-hot-encoded vectors, also exist for each training
sample xi, as explained in the previous Subsection. The
output of the k-th specialized teacher is denoted by p(k)

i j ,
after passing through a softmax function. Applying the
softmax function individually for each model is essential
to ensure that their output is normalized prior to the fi-
nal aggregation. Furthermore, note that the output can be
softened using the appropriate value for the temperature
as described in (1), if needed.

Each specialized teacher predicts a subset of r =

dKΨ/De classes. The parameter K is called overlapping
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Figure 1: Unified Specialized Teachers Ensemble structure: The teacher models become separate branches of a large unified network. The large
network receives the data as an input and distributes them in every teacher Nk. Subsequently, each teacher Nk predicts the classes of its specialization
field, along with an extra bucket class, which represents every other choice, unrelated to its specialization field. The softmax activation function
is then applied over each teacher’s output in order to produce the normalized probabilities pi. At this point, the probabilities of the identical
classes which have been chosen to be overlapped, are averaged. Finally, the distinct probabilities are aggregated in order to extract the final output
distribution of USTE.

Figure 2: An individual teacher model. Note that an extra neuron is
used, apart from those utilized for the r classes the model predicts.
This “bucket” neuron facilitates the effective training of the models with
classes that do not belong in their specialization, i.e., the remaining Ψ−r
classes.

factor and controls how many times each class will be pre-
dicted by a different teacher Nk. The number of times a
class is predicted can be calculated as: K = Dr/Ψ, assum-
ing that KΨ mod D = 0. In order to ensure that no two
models are specialized in the same classes, they are dis-
tributed cyclically over the ensemble. Note that K should
be set to an appropriate value so that models do not pre-
dict all the available classes, i.e., K < D. Furthermore,
K should be large enough to ensure that models will not
predict one single class, i.e., K > dD/Ψe. Finally, Ψ sets
denoted with {Ω(i)|i = 1, . . . ,Ψ} are created, one for each

class, and contain K ∈ [1,D] ⊂ N indexes that indicate
which teachers participate in the prediction of class i. For
example, Ω(2) = {1, 4, 5} symbolizes that the 1-st, the 4-th
and the 5-th teachers all predict class 2.

Each teacher is also equipped with an extra “bucket”
neuron that is responsible for gathering the predictions of
the rest Ψ − r classes, as shown in Fig. 2. This bucket
neuron can be used to train each teacher with data that
belong to classes out of its expertise. Another advantage
of this method is that we can train all the teachers simul-
taneously by feed-forwarding and back-propagating only
one time through the resulting unified architecture. More
specifically, the final output of the model is calculated by
averaging the K values for each class, as predicted by the
individual models. Therefore, the final ensemble’s pro-
bability estimation for the j-th class and i-th sample is
calculated as:

pi j =
exp(ai j/T )∑Ψ
l=1 exp(ail/T )

, (3)

where
ai j =

1
D

∑
t∈Ω( j)

p(k)
t j , (4)
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and Ω( j) denotes the set of teachers that predict the j-th
class. Note that p(k)

t j refers to the neuron of the k-th teacher
that predicts the j-th class. As with regular distillation,
appropriately tuning the temperature for the ensemble’s
output is crucial to ensure that the output distribution will
not be overly spiked, which can negatively impact the dis-
tillation efficiency.

The teacher ensemble model is then directly trained in
a unified, one-step fashion to minimize the regular cross-
entropy loss:

Lt =

D∑
i=1

Ψ∑
j=1

yi j log ŷi j, (5)

where ŷi j refers to the output of the teacher ensemble with
T = 1. Note that the whole ensemble can be directly
trained, since only one forward and backward pass is re-
quired to update the parameters of all the employed mo-
dels. On the other hand, the student model is trained to
minimize the combined distillation loss Ls, as described
in (2), where the teacher ensemble model is used to pro-
vide the training targets. The Adam algorithm Kingma
and Ba (2014), with the default training hyper-parameters,
is used for the optimization in this paper. Note that the
loss Lt is minimized by updating the parameters of the
teachers, while the loss Ls is minimized by updating the
parameters of the student.

4. Experimental Evaluation

First, the datasets used for evaluating the proposed me-
thod are briefly introduced, along with the employed net-
work architectures. Next, the evaluation results are pro-
vided and discussed.

4.1. Datasets and Evaluation Setup
The proposed method was evaluated using three differ-

ent datasets: CIFAR-10, CIFAR-100 Krizhevsky (2012)
and Fashion-MNIST Xiao et al. (2017). A tuning phase
was performed for setting the hyper-parameters described
below, in which the methods depend on, to ensure that the
best performance was achieved.

The CIFAR-10 dataset consists of 60, 000 10-class im-
ages, 32 × 32 in size and is divided into 50, 000 train-
ing data and 10, 000 test data. Five teachers that con-
sist of three blocks are used. Each block is composed of

two convolutional layers with the same number of filters,
which are doubled on each consecutive block (32/64/128
filters). The convolutional layers are followed by a max
pooling and among them, batch normalization is used.
After every block, a dropout layer is used, with an in-
cremented probability of turning a neuron off each time,
which does not exceed 50%. All the convolutional lay-
ers are being l2 regularized. In order to introduce some
diversity among the teachers, we use a ReLU activation
function in two models and eLU in the rest of them Clev-
ert et al. (2015), while at the same time we fluctuate the
weight decay (ranging from 1e − 4 to 1e − 7) that is used
for the l2 regularization. The student that is used, consists
of two blocks and was built following the same method-
ology.

The CIFAR-100 dataset consists of 60, 000 100-class
images, 32 × 32 in size and is divided into 50, 000 train-
ing data and 10, 000 test data. For the CIFAR-100, the
same architectures were used after adding one additional
block (with 256 filters). Finally, the Fashion-MNIST da-
taset consists of 60, 000 10-class images, 28 × 28 in size
and is divided into 60, 000 training data and 10, 000 test
data. For the experiments conducted with the Fashion
MNIST dataset, the same architecture with the CIFAR-
10 teachers/students was used, but only one convolutional
layer was kept per block. All the models were trained for
150 epochs using a learning rate of 1e − 4, which was
scheduled to be reduced, multiplying it by 0.4 for each 8
consecutive epochs that showed no improvement in the 3-
rd decimal place and a minimum possible value of 5e− 6.
A mini-batch of 64 samples was used for all the conducted
experiments.

The baseline accuracy among the different trained mo-
dels is reported in Table 1. Note that apart from the ac-
curacy of the individual models, the ensemble accuracy is
also reported. The student was also trained normally, us-
ing the same hyperparameters with the teachers, in order
to compare the results with that of KD. In order to trans-
fer the knowledge, a temperature T = 6 was used and a
λ = 0.9 for CIFAR-10, T = 2 and λ = 0.6 for CIFAR-100,
T = 8 and λ = 0.6 for Fashion-MNIST. The knowledge
was transferred for 150 epochs, with a learning rate of
1e− 3, which was scheduled to be halved, for each 8 con-
secutive epochs that showed no improvement in the 3-rd
decimal point and a minimum possible value of 1e − 8. A
mini-batch of 64 samples was used.
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Table 1: Evaluating the accuracy of different teachers, student and ensembling approaches

Dataset
Method

Student Teacher 1 Teacher 2 Teacher 3 Teacher 4 Teacher 5 Ensemble Unified Ensemble

CIFAR-10 82.19 84.17 84.45 83.72 85.65 85.63 87.10 84.47
CIFAR-100 61.57 59.43 60.44 58.28 60.54 63.14 64.36 59.26
Fashion-MNIST 88.49 92.08 92.33 92.42 92.02 92.10 92.99 92.89

The proposed method was also compared to four other
approaches:

1. “Best Teacher”: Five individual teacher models were
trained and the best of them was used to perform reg-
ular KD to the student model.

2. “Ensemble”: The knowledge contained in an ensem-
ble of five teachers was directly transferred to the
student model using KD, after averaging their out-
put predictions.

3. “Unified Ensemble”: The approach proposed in (Lan
et al., 2018), was employed to train a unified ensem-
ble with unspecialized teachers and then the knowl-
edge was transferred from this ensemble to the stu-
dent model.

4. “Specialized Ensemble” (“Special. Ensemble”):
Training individual specialized models using the
proposed class distribution approach (but without us-
ing a unified model structure).

For the proposed method we used D = 5 teachers, while
the replication factor was set to K = 2. To ensure a fair
comparison between the evaluated methods, the same stu-
dent network was used for all the conducted experiments
with the same dataset.

4.2. Experimental Results

The evaluation results using the CIFAR-10 dataset are
reported in Table 2 from which several conclusions can
be drawn. First, note that using plain distillation (“Best
Teacher”) indeed improves the accuracy of the student, in-
creasing it to 84.28% from 82.19% (baseline student). Us-
ing the ensemble of the different teachers further increases
the classification accuracy to 84.90%. Quite interestingly,
employing a unified ensemble, apart from faster training,

allows to also slightly increase the effectiveness of the dis-
tillation process. We hypothesize that this happens due to
the implicit diversification that emerges through the train-
ing process. That is, in the unified ensemble, a few con-
fident models are enough to correctly classify an input
sample, allowing for an implicit specialization to emerge
among different models. Moreover, when this special-
ization is induced explicitly, through the specialized en-
semble, accuracy further improves. Finally, the best re-
sults are acquired when the proposed USTE approach is
employed, outperforming plain distillation by about 2%
and unified ensemble approach by about 1% (relative in-
crease).

Table 2: Comparison between different distillation approaches on three
different datasets

Method CIFAR-10 CIFAR-100 Fashion MNIST

Best Teacher 84.28% 64.61% 91.26%
Ensemble 84.90% 65.70% 91.75%
Unified Ensemble 85.03% 66.41% 92.00%

Special. Ensemble 85.43% 66.73% 92.70%
USTE 85.90% 67.14% 93.07%

Furthermore, we conducted additional experiments to
evaluate the effect of the different ensembling strategies
that were employed. The experimental results are re-
ported in Table 3. For these experiments we used 100
images of the CIFAR-10 dataset and averaged the infer-
ence time for the different models. An interesting obser-
vation is the fact that the proposed USTE method is as fast
as the other methods even though it can lead to more ac-
curate models. This phenomenon can be explained, since
the number of parameters remains the same and the main
difference is the way that the weights are distributed to
different submodels. It is also worth noting that the accu-
racy achieved by the employed architecture is lower than
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Figure 3: Effect of raising the temperature with Baseline and USTE in Fashion-MNIST

Table 3: Inference time evaluation between different ensembling meth-
ods

Method Inference Time

Ensemble 0.036 s
Unified Ensemble 0.035 s

Specialized Ensemble 0.032 s
Proposed (USTE) 0.032 s

the state-of-the-art models (Huang et al., 2017). How-
ever, these more complicated models are difficult to de-
ploy in most mobile and embedded architectures, e.g.,
NVIDIA Jetson-based processors, especially when mul-
tiple DL models must be executed in parallel and there
are requirements for real-time and high resolution infer-
ence (Tzelepi and Tefas, 2020). In these cases, that often
occur in real deployments, the proposed method can pro-
vide significant performance benefits compared to the rest
of the evaluated distillation strategies.

Similar conclusions can be drawn for the other two da-
tasets (CIFAR-100 and Fashion MNIST). For example,
USTE improves the accuracy by 2.8% over plain distil-
lation and about 1% over unified ensemble approach for
CIFAR-100 dataset. These results once again confirm that
a diversified and specialized teachers’ ensemble helps to
transfer knowledge better and that unified training leads

to better results than training the models individually. It
is worth noting that, the results of Table 1, also confirm
the hypotheses reported in (Yang et al., 2018), i.e., that
classification accuracy is not the major goal of the teacher
network when used for KD. Indeed, they report in their
work that “.. although this harms the accuracy of the
teacher network, it indeed provides more room for the
student network(s), and eventually, the students are bet-
ter than those educated by a strict teacher.”. The pro-
posed method builds upon these observations, providing
efficient and diversified teachers that are better suited for
the task of KD.

Another question that arises is the effect of the number
of teachers used to transfer the knowledge to the perfor-
mance of the employed method. Therefore, we ran the
same experiments using 3 and 7 teachers. The exper-
imental results for three different datasets and numbers
of teachers are reported in Table 4. The number of tea-
chers used can have a crucial role in the performance of all
the evaluated methods. Increasing the number of teachers
indeed increases the effectiveness of knowledge transfer.
However, after a certain point, e.g., around 5 teachers, the
accuracy reaches a plateau. We conjecture that this hap-
pens due to some teachers being overly confident in their
decisions, negatively affecting the effectiveness of knowl-
edge transfer. It is worth noting that the proposed method
performs the best, regardless the number of teachers used.

We also confirmed the statistical significance of the ob-
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Table 4: Effect of using different number of teachers on the effectiveness of knowledge transfer for different ensembling methods

CIFAR-10 CIFAR-100 Fashion MNIST
# teachers 3 5 7 3 5 7 3 5 7

Ensemble 84.30 84.90 84.60 64.73 65.70 65.80 91.34 91.75 91.58
Unified Ensemble 84.41 85.03 84.80 65.80 66.41 66.24 91.83 92.00 91.92
Special. Ensemble 84.98 85.43 85.12 66.21 66.73 66.57 92.18 92.70 92.53
USTE 85.32 85.90 85.81 66.87 67.14 66.98 92.79 93.07 93.05

tained results through statistical analysis using the scikit
library (Terpilowski, 2019). To this end, we first em-
ployed the Friedman rank sum test in order to evaluate
whether the hypothesis that all measurements reported in
Table 4 belong to the same distribution can be rejected.
This hypothesis is indeed rejected (p = 0.0001). Then, we
performed a posthoc test using the Wilcoxon signed-rank
test to perform pairwise comparisons between the evalua-
ted methods. The hypothesis that any pair of methods per-
form the same (i.e., the accuracy measurements belong to
the same distribution) is also rejected (p = 0.0039), con-
firming the statistical significance of the reported results.

As mentioned in the previous Section, the distribution
of the unified ensemble could possibly be more spiked,
and as a result, a higher temperature may be required in
order to extract a suitable probability distribution that can
be used for KD. To evaluate this hypothesis, an additional
set of experiments was conducted. As shown in Figure 3,
the baseline KD performs better with a low temperature,
highlighting that raising it inhibits the extraction of any
additional useful knowledge from the teacher model. On
the other hand, increasing the temperature for USTE al-
lows for the appropriate transformation of the probability
distribution in order to better facilitate KD. This can be
explained by the fact that for USTE, despite the multitude
of opinions, the most specialized teacher prevails as the
training epochs increase. As a result, a more peaked dis-
tribution occurs and higher temperatures are required in
order to appropriately smoothen it. Note that regular mo-
dels typically collapse due to over-fitting, and increasing
the temperature does not, in turn, increase the distillation
efficiency. However, the proposed method effectively re-
covers the latent dark knowledge encapsulated in the out-
put of the model by increasing the distillation tempera-
ture.

Finally, we also evaluated the learning dynamics of dif-

Figure 4: Learning curve dynamics of different methods for the Fashion-
MNIST dataset.

ferent methods in Fig. 4 using the Fashion-MNIST data-
set. The proposed method leads to about the same con-
vergence speed for the first few epochs and, after a cer-
tain point, faster convergence than the rest of the methods.
Therefore, we expect that about the same time would be
needed for training any of the evaluated methods. In ad-
dition, in order to implement the proposed USTE method,
one does not need to train and tune the ensemble’s mo-
dels separately and then combine their decisions. Instead,
only a single model needs to be tuned, which speeds up
the overall process.

5. Conclusion

A method capable of training KD-aware teachers was
proposed in this paper. This method works by training
separate task-specific teachers in a unified ensemble struc-
ture that enables the simultaneous end-to-end training of
all the teachers. Experiments conducted on three data-
sets demonstrated the effectiveness of the proposed me-
thod compared to other baseline and state-of-the-art ap-
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proaches. Moreover, several interesting conclusions were
drawn, providing further insight on the distillation pro-
cess: a) classification accuracy of the teacher network is
not as important in the distillation process as its ability to
extract its knowledge in a way that can be easily trans-
ferred to a student network, b) explicitly or implicitly di-
versifying the models of a teacher ensemble always seems
to provide a positive effect on KD efficiency, and c) tuning
the temperature of the softmax function seems to indeed
allow for more effective KD, but only for certain models
that have been trained in a KD-aware way and have not
been severely over-fitted.
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