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ABSTRACT

Deep neural networks provide unprecedented performance in all image classification problems, in-
cluding biometric recognition systems, key elements in all smart city environments. Recent studies,
however, have shown their vulnerability to adversarial attacks, spawning an intense research effort in
this field. With the aim of building better systems, new countermeasures and stronger attacks are pro-
posed by the day. On the attacker’s side, there is growing interest for the realistic black-box scenario,
in which the user has no access to the neural network parameters. The problem is to design efficient
attacks which mislead the neural network without compromising image quality. In this work, we pro-
pose to perform the black-box attack along a high-saliency and low-distortion path, so as to improve
both the attack efficiency and the perceptual quality of the adversarial image. Numerical experiments
on real-world systems prove the effectiveness of the proposed approach both on benchmark tasks and

actual biometric applications.
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1. Introduction

Deep Neural Networks (DNNs) are by now widespread in
industry and society as a whole, finding application in uncount-
able fields, from the movie industry, to autonomous driving,
humanoid robots, video surveillance, and so on. Well trained
DNNs largely outperform conventional systems, and can com-
pete with human experts on a large variety of tasks. In particu-
lar, there has been a revolution in all vision-related tasks, which
now rely almost exclusively on deep-learning solutions, start-
ing from the 2012 seminal work of Krizhevsky et al. [1] where
state-of-the-art image classification performance was achieved
with a convolutional neural network (CNN).

Recent studies [2], however, have exposed some alarming
weaknesses of DNNs. By injecting suitable adversarial noise
on a given image, a malicious attacker can mislead a DNN into
deciding for a wrong class, and even force it to output a de-
sired wrong class, selected in advance by the attacker, a sce-
nario described in Fig.1. What is worse, such attacks are ex-
tremely simple to perform. By exploiting backpropagation, one
can compute the gradient of the loss with respect to the input
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image, and build effective adversarial samples by gradient as-
cent/descent methods. Large loss variations can be induced by
small changes in the image, ensuring that adversarial samples
keep a good perceptual quality.

Following [2], several attacks have been proposed', mostly
gradient-descent methods with the gradient estimated through
backpropagation, from the early Fast Gradient Sign Method
(FGSM) [3], and its iterative version (I-FGSM) [4], to more
recent and sophisticated methods [5, 6, 7]. All such methods,
however, require perfect knowledge of the network architecture
and weights, a white box scenario which is hardly encountered
in real-world applications. The focus is therefore shifting to-
wards black-box attacks, where nothing is known in advance
about the network structure, its weights, or the dataset used for
training. In this scenario, the attacker can query the network
at will and observe the outcome. This latter can be just a hard
label, the distribution of probabilities across the classes (confi-
dence levels), or even a feature vector.

There are many ways to perform black-box attacks to clas-
sifiers. A popular approach is to train a surrogate network to
mimic the behavior of the target network [5, 8, 9]. The attack
is performed on the surrogate and then transferred to the target.

I As well as defenses, not mentioned here for brevity.
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Fig. 1. Attack scenario. The attacker adds adversarial noise W to the origi-
nal image x( to generate x“ = x+ W. This attacked image should be similar
to xo but such that the associated CNN output y“ is close to the target y'.

However, this calls for full knowledge of the target training set,
a precious information rarely available in practice. A more vi-
able alternative, followed here, is to use again gradient-descent
[10, 11, 12, 13, 14], with the gradient now estimated by means
of suitable queries to the network.

Black-box adversarial attacks should satisfy three main re-
quirements at the same time: being i) effective, ii) fast, and iii)
inconspicuous. The first requirement needs no comment, as it
is the primary goal of the attack. Efficiency (low number of
queries) is also necessary to prevent the attack from becoming
exceedingly slow. As for the third requirement, it is important
in all systems with human-in-the-loop, such as semiautomatic
biometric recognition systems. Unnatural, low quality images
may be readily identified by dedicated statistical tests and sent
to visual inspection, to be eventually easily detected.

To meet all these requirements, we propose a novel, percep-
tual quality-preserving (PQP), black-box attack, where quality
and effectiveness are ensured in advance by a judicious choice
of the perturbation path. Let us briefly summarize the major
features and innovative contributions of our proposal: i) adver-
sarial noise is injected only in “safe” regions where it has low
impact on image quality and high impact on decisions; ii) safe
regions are identified based on the local gradient of a perceptual
quality measure, the structural similarity index (SSIM) [15]; iii)
the SSIM gradient is computed with negligible cost by means
of a simple dedicated CNN; iv) all perturbations and queries
are 8-bit integer, to successfully attack systems that accept only
popular integer formats, such as PNG or JPG.

We assess performance both on widespread benchmark
datasets and on a realistic biometric application, including also
several defensive strategies. In all cases, the proposed method
outperforms reference techniques.

2. Related Work

Early query-based black-box attacks to deep neural networks
appeared almost simultaneously in 2017. In [10] a zeroth
order stochastic (ZOO) coordinate descent algorithm is pro-
posed, based on the coordinate-wise ADAM optimizer or on
coordinate-wise Newtons method. Both solutions modify dy-
namically the intensity of the attack, the former proving even-
tually more effective. Several strategies are proposed to reduce
the number of queries: dimension reduction via bilinear inter-
polation, hierarchical attack and importance sampling.
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In [11] a greedy local search is carried out aimed at per-
turbing only the patches that impact most on decision. The
adversarial samples, however, exhibit odd patches, which are
easily spotted and are sort of a trademark of the attack. More-
over, a very large number of queries is necessary to complete
the attack, as observed also in [12]. Along the same line, [16]
uses single-pixel adversarial perturbations, extended to groups
of five pixels in [17]. The most suitable pixels to attack are
selected through a simple genetic algorithm. However, the suc-
cess rate is rather low, below 80%, and attacks are easily spotted
and very fragile to any form of image processing.

[12] uses a gradient estimation strategy followed by the clas-
sical FGSM attack, with random grouping to reduce the number
of queries. The method compares favourably with ZOO [10],
and proves effective also with real-world systems. A further
variation of ZOO, called AutoZOOM (autoencoder-based ze-
roth order optimization method) [13], uses an adaptive random
gradient estimation strategy to balance query counts and dis-
tortion. Complexity is reduced through subsampling, obtained
by using an autoencoder trained off-line with unlabeled data or
through bilinear interpolation. Also [14] pursues the main goal
of limiting the number of queries. To this end, it makes use
of natural evolution strategies (NES) to estimate the black-box
output gradient with respect to the attacked input image, and
generate suitable adversarial samples. NES is also adopted in
[18] with the aim of estimating the adversarial perturbation dis-
tribution of the network under attack, so as to draw samples
from such a distribution which are likely to fool the classifier.

It is worth underlining that several elegant solutions, e.g.,
[10, 13, 14], rely on real-valued (that is, non-integer) pertur-
bations. The attack is iteratively refined based on closed-form
optimization and estimation methods, and the changes are often
quite subtle. These small changes, however, are readily washed
out at each query by any form of image compression or even
just rounding, with a performance impairment, as demonstrated
experimentally in [19]. This is exactly what happens in all sys-
tems that accept queries only in integer-valued format, an in-
trinsic form of defense [20]. Hence, practical attacks should be
designed and tested to prove robustness to such scenarios [21].

3. Background

A CNN used for image classification computes a function,
y = f(x;6), which maps an input image, x € R"*"2X" into an
output vector, y € RL. In the following, with no loss of gener-
ality, we will consider color images, hence n3 = 3. The specific
function implemented by the CNN depends on the model pa-
rameters, 6, namely, the CNN weights which are learned during
the training phase to optimize a suitable loss function.

Here, we consider two scenarios of practical interest. In the
first one, the classes are known in advance, and the system is
asked to decide which class the query belongs to, and how reli-
able the decision is. Accordingly, it provides in output a vector

of probabilities
y@)=Pr(xeCy), i=1,...,L (1

also called confidence levels, with C; the i-th class, and L equal
to the number of classes. The decision is made in favor of the



maximum-probability class. In the second scenario, a scalable
system is considered, where the classes are not known in ad-
vance, and their number grows with time. This applies, for
example, to biometric identification systems, where new users
keep being enrolled all the time. In this case the CNN is used
as a feature extractor. For each input image, x, the CNN gener-
ates a discriminative vector of features, y, with length L unre-
lated with the number of classes, which is then used to perform
the actual classification, for example, with a minimum distance
rule. In both cases, we assume the CNN to be already trained,
with parameters 6 defined once and for all. Therefore, in the
following we will neglect dependencies on 6.

CNN-based systems are vulnerable to adversarial attacks.
To formalize the problem, we define: xy, the original image,
yo = f(x0), the output vector associated with it, x* = xo + W,
the modified image, with W the additive adversarial noise,
¥4 = f(x%), the output vector associated with it, and y’, the target
output vector. Moreover, we introduce £(y, y2), a suitable loss
function measuring vector mismatch in the output domain, and
D(x1, x,), a suitable measure of the image-domain distortion.
The attacker’s aim is to generate a new image, x“, that is close
to the original in the source domain, hence small D(x%, x), but
whose associated vector is close to the target vector in the out-
put domain, small £(y%,y"), as described pictorially in Fig.1.

We cast the problem as a constrained optimization, setting
a limit on the acceptable image distortion, Dy,.x. Accordingly,
the attacker looks for the image x“ defined by

x* = argmin £(f(x),y"), s.t. D(x, X0) < Dmax )

For typical classification problems, the loss of choice is the
cross-entropy. Instead, when the CNN is used for feature ex-
traction, we will consider the Euclidean distance between the
extracted feature vectors.

As for the attack strategies, starting from a given image, x,
the small perturbation AW that maximizes the loss decrease is,
by definition, proportional to the gradient of the loss itself with
respect to x

AW ~ V, L(f(x),)") 3)

If the loss is differentiable and the CNN is perfectly known with
its parameters, namely, in the white box scenario, the gradient
can be computed through backpropagation, allowing very effec-
tive attack strategies. In a black-box (BB) scenario, instead, the
attacker has no information about the model architecture, its pa-
rameters, 6, or the training set used to learn them. However, the
attacker can query the system at will, and use the corresponding
outputs to estimate the gradient. For any unit-norm direction of
interest, ¢, the attacker collects the outputs, y* and y~, corre-
sponding to the opposite queries x* = x + e and x~ = x — €¢,
with € suitably small, and estimates the derivative of £ along ¢
as,

a‘_£ ~ L(y+»yt) B L(y_»yt)

op 2e
If the selected directions are the individual pixels, the whole
gradient can be computed, but at the cost of a large number
of queries. Hence, practical algorithms approximate gradient-
based BB attacks through more efficient strategies.
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Fig. 2. From top to bottom: original CIFAR10 image, SSIM gradient,
saliency map, attacked image. PQP works on low-SSIM gradient pixels,
often image edges and keypoints, characterized by high saliency. The at-
tacked image is very similar to the original and does not show unnatural
artifacts.

4. Proposed method

We have the twofold goal to drive the classifier towards a
desired decision and preserve a good image quality. Now, in
white-box systems, the gradient of the loss is known, so pertur-
bations are typically taken along the steepest descent path and
the effects on distortion are taken into account only a posteri-
ori, by verifying the quality constraint and rejecting unsuitable
perturbations. In black-box systems, we cannot compute the
gradient of the loss, if not by means of an inordinate number of
queries. However, we can compute the gradient of the distor-
tion. So, we follow the dual approach, and take perturbations
along the path that increases distortion the least, verifying the
loss reduction afterwards.

With Fig.2 we explain the rationale of our approach. The first
row shows some 32x32-pixel images of the CIFAR10 dataset.
On the second row, the corresponding SSIM gradient images
are shown. Note that, contrary to what happens with L, dis-
tortion laws, perturbations cause a smaller or larger increase in
distortion depending on the local context. In active areas of the
image, with keypoints, boundaries and textures, errors are less
visible and, accordingly, the SSIM gradient is smaller, while it
is larger in flat areas, where errors stand out. Therefore, work-
ing in low-SSIM gradient areas, we ensure that attacks have
low visibility. On the other hand, it is exactly these features,
not background areas, that the CNN takes most into account for
classification. This appears clearly in the saliency maps shown
on the third row, obtained for the VGG16 net, where bright col-
ors highlight pixels that contribute most to the final decision.
Therefore, the very same areas that ensure low quality gradient
are also the most important for classification, and SSIM-guided
perturbations are not only inconspicuous but also very effective.
The fourth row shows the final (successful) adversarial samples



Algorithm 1 PQP

Require: xo,y", Dmax, Lmin, O, N, 6, kmax
Ensure: x4
1: x=xp
2: while D(x, x9) < Dmax and L(f(x),") > Liin do

3: G = V,SSIM(x, xp)
4: Moy = Segment(G, Q) > select low-gradient pixels
5: k=0
6: AL=0
7: while k < kiax and AL > 0 do
8: AW = Perturbation(M,qy, N, 8) > generate AW
9: L= L(f(x+AW),y) > BB query
10: L™= L(f(x— AW),y) > BB query
11: AL =min(LY, L7) - L(f(x),y")
12: k=k+1 > if k=kmax accept anyway

13: end while
14: if £L* < £~ then

15: x=x+AW
16: else

17: x=x—-AW
18: end if

19: end while

20: x* = x;

produced by PQP, barely distinguishable from the originals and
free from unnatural artifacts. We note, in passing, that SSIM
was already used in the literature [22], but only for white-box
attacks, and only for checking the effect of perturbations, not
for driving them.

Before moving to describe the proposed PQP method in de-
tail, let us consider a naive algorithm which embodies its con-
cepts in the simplest form. At each step, this algorithm com-
putes the gradient of the SSIM, G = V,SSIM(x, xp), with re-
spect to the current attack, x, and selects the component where
a perturbation causes the least increase of the SSIM

(s1,c1) = arg Iglicn |G (s, 0l )

with s the spatial coordinates and ¢ the color band. Then, two
new images x* = x + 15, ., and x~ = x — 1;, ., are generated
which differ from x by 1 level only at the selected component.
The system is probed with these queries, and the one that most
reduces the loss becomes the new attacked image. These steps
are then repeated until convergence. Note that the SSIM gradi-
ent can be computed with negligible cost both in closed form
[23], and by means of a simple convolutional network, as we
do here (see appendix).

This naive algorithm, however, suffers from two practical
problems: i) by modifying only one pixel at a time, and by only
one level, it becomes exceedingly slow, and ii) by choosing de-
terministically the pixel to modify, it is easily trapped in local
minima. The actual PQP method, described by the pseudo-code
of Procedure 1, overcomes both these problems. In particular,
the procedure of line 8 generates a perturbation, AW, which
modifies N pixels at once and by +6 levels. Suitable choices
of N and ¢ allow one to speed up the attack considerably with
respect to pixel-wise perturbations, without a significant qual-
ity impairment. Like in the naive algorithm, the net is queried
twice, with x + AW and x — AW, and the query which most
reduces the loss is accepted. If neither reduces the loss, a new
random perturbation is generated, with the same rules. After
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kmax unsuccessful attempts, the image is modified anyway to
escape local minima.

To avoid local minima, instead, the N pixels to modify are
chosen randomly, with the only constraint to belong to the set
Mo, comprising the Q% pixels with the lowest SSIM gradient.
Choosing Q large enough, e.g. 50% of the image, ensures high
attack variety while avoiding any sharp quality degradation.

A third improvement consists in using color-coherent per-
turbations, such that the sign of perturbations is the same for
all color components of a pixel. This choice prevents abrupt,
highly visible, variations of the hue, and proved experimentally
to improve the attack.

5. Experimental analysis

In this Section, we analyze the performance of the proposed
black-box attack both for general-purpose object recognition,
with the popular CIFAR dataset, and for a biometric face recog-
nition task, using the MCS2018 dataset. As performance met-
rics we will consider the success rate of the attack, SR, the
number of black-box queries necessary to complete the attack,
NQ, and the average distortion of successfully attacked im-
ages. To measure distortion we consider not only SSIM, used
itself to guide the attack, but also two more full-reference mea-
sures, PSNR (peak signal-to-noise ratio), and VIF (visual in-
formation fidelity) [24], and two no-reference ones, BRISQUE
(blind/referenceless image spatial quality evaluator) [25], and
PIQE (perception-based image quality evaluator) [26]. Note
that number of queries and image quality are computed only on
successfully attacked images.

We will compare results with several baselines and state-of-
the-art references: IFD (iterative finite differences) [12] is the
main baseline, with pixel-wise perturbations, slow but charac-
terized by high success rate; IGE-QR-RG (iterative gradient es-
timation with query reduction by random grouping) is a fast
method proposed in [12] based on group-wise perturbations;
Local Search Attack (LSA) [11] is a method that only perturbs
the most salient pixels in the image; AutoZOOM-B is the ver-
sion of AutoZOOM [13] which uses bilinear interpolation to
gain efficiency with no need of prior information; NES-LQ is
the limited-query method proposed in [14] based on a natu-
ral evolution strategy (NES); N Attack [18] is another recently
proposed NES-based approach that draws adversarial perturba-
tions from their estimated distribution. In addition, we provide
results also for the white-box I-FGSM (iterative fast gradient
sign method) attack [4], as a sort of upper bound for the perfor-
mance of black-box methods. We use the code published by the
authors online [27, 28, 29], with the parameters suggested in the
original papers, to which the reader is referred for any further
detail. For the proposed method, based on some preliminary ex-
periments, analyzed in Tab.4, we set 0=66% N=20, 6=1, and
kmax=20. Our own code is published online [30]. Unless other-
wise specified, we consider a 8-bit integer setting, with images
rounded if necessary after each iteration.

5.1. Object recognition with the CIFARIO0 dataset

The popular CIFAR10 object recognition dataset comprises
60000 32x32-pixel RGB images, 50000 for training and 10000
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Fig. 3. The CIFARI10 attack scenario. The attacker injects some adversar-
ial noise to increase the confidence level of the target class.

for testing, equally distributed among 10 classes. In the exper-
iments, we consider the most challenging task and target the
class with the lowest confidence score. The attack stops either
when the confidence of the selected target class exceeds 0.9, in
which case we label the attack as successful, or when the SSIM
goes below 0.95, a case of unsuccessful attack. Fig.3 depicts
the CIFAR10 attack scenario.

Tab.1 shows results for the ResNet32 [31] classifier but simi-
lar results have been observed with other deep networks, which
are not reported here for brevity. To allow for an easier inspec-
tion of results, near each indicator an arrow indicates whether
good performances correspond to large T or small | numbers.
First of all, we observe a huge gap between the success rates of
IFD, IGE-QR-RG, and PQP, all very close to 100%, and those
of LSA, AutoZOOM-B, and NES-LQ, much lower. This is not
surprising. While the former are designed or can be adapted
to work in our integer-valued setting, the latter are intrinsically
real-valued, with perturbations that are largely washed out by
rounding, leading to mostly ineffective attacks, despite all at-
tempts to optimize parameters for this scenario. With such low
SRs, of course, it makes no sense to compute the other perfor-
mance indicators. All integer-based methods attack quite easily
this classifier, ensuring also a very low distortion, with a min-
imum SSIM of 0.985. With such high success rates and good
quality indicators, comparable to those of the white-box attack,
the truly discriminative metric is the number of queries. Un-
der this point of view, the proposed method is about 3 times
faster than IGE-QR-RG, and 15 times faster than the pixel-
wise baseline (a comparison with the white-box attack makes
no sense). As for NAttack, with over 10000 queries on the
average, it turns out to be rather inefficient, contrary to what
observed in [18]. This is very likely due to our more challeng-
ing scenario, with worst-case targeted attacks, which renders
impractical to estimate the distribution of adversarial noise. In
summary, PQP ensures successful attacks with a small number
of queries. Moreover, no quality loss is observed, not only in
terms of SSIM but of all quality measures, even with a signifi-
cant improvement in terms of the no-reference PIQE.

The above experiment shows that some inherently “floating-
point” attacks, LSA, AutoZOOM, and NES-LQ, do not fit well
our integer-valued scenario, and hence will not be considered
anymore in our analysis. However, to establish a fair compar-
ison with these state-of-the-art methods, we carry out a further
experiment on the CIFAR10 dataset, relaxing both the 8-bit in-
teger constraint and the SSIM contraint. Instead, we keep tar-
geting the worst class and requiring a confidence level beyond

Table 1. Attacking ResNet32 on CIFAR10.
| SRT | NQL | SSIMT PSNRT VIFT BRIL] PIQE|

Attack

I-FGSM (WB) | 98.69 | 9] 0991 42.65 10.51 39.09 38.92

IFD 99.01 126639 | 0.991

42,67 10.53 39.10 39.08

IGE-QR-RG | 95.84 | 5467 | 0.985 40.84 9.54 39.00 38.92
LSA 0.00 - - - - - -
AutoZOOM-B | 0.00 - - - - - -
NES-LQ 8.74 - - - - = -
N Attack 9297 | 11459 | 0986 37.30 7.67 39.13 42.04
PQP 98.61 | 1593| 0989 39.77 852 3923 3542

Table 2. Attacking ResNet32 with no rounding nor SSIM constraint.

Attack | SRT |NQJ |SSIM? PSNRT VIFT BRL| PIQE]
LSA 2044 - - - - - -
AutoZOOM-B | 2054| - - - - - -
NES-LQ 100.00 | 1495| 0.880 27.56 436 41.16 37.73
PQP 98.61| 1585| 0990 39.82 845 39.24 3537

0.9 to declare a success. Results are reported in Tab.2. Even
in this favourable scenario, AutoZOOM-B and LSA keep pro-
viding poor results, with a success rate around 20%. NES-LQ,
instead, ensures an excellent success rate, but the image quality
shows a serious impairment uniformly for all measures, with
a PSNR loss of about 10 dB, and a SSIM decrease of about
0.1 with respect to PQP. Overall, these results suggest that the
proposed algorithm works much better than reference methods
not only in our challenging “real-world” scenario, but also in a
more abstract scenario in which all constraints on data format
are removed.

To complete our realistic analysis on the CIFARI10 dataset,
we consider the presence of countermeasures. Indeed, with
the diffusion of adversarial attacks, some defense strategies are
becoming widespread, like the so-called NN (nearest neigh-
bor) defense. For each test image, x, the net extracts a feature
vector, called F here, computes its distance from the centroid
of all classes, Fl, .. ,Flo, and decides in favor of the closest
one. The NN classifier is somewhat inferior to the standard
one but more robust to adversarial attacks, and fully sensible
for biometric authentication systems. Here, we consider NN
defense with the worst-case attack, where the target class is
t = argmax.||F — Fc||2- The attack is successful if the fea-
ture vector of the attacked image, F“, becomes closer to F,
than to all other centroids, and the distance ||F® — F,||» goes
below a given threshold y. We set y = 0.2, which is the average
distance between the features of a class and the corresponding
centroid, while the average distance between the test images
and the centroid of their target-class (distance before attack) is
0.81. Results reported in Tab.3 show that the new classifier is
more robust to attacks. Success rates reduce significantly, even
for the white-box reference, going down to 81% for IGE-QR-
RG and to 84% for NAttack. PQP, instead, keeps ensuring a
good success rate, the smallest number of queries among black-
box methods, and a very good image quality.



Table 3. Attacking ResNet32 on CIFAR10 with NN defense.
Attack | SRT | NQL |SSIMT PSNRT VIF! BRIL] PIQE|

I-FGSM (WB) [ 92.03| 23| 0984 37.07 7.73 39.18 3599

IFD 92.37|71420| 0984 37.09 7.73 39.23 35.99
IGE-QR-RG [81.37 | 11278 | 0980 36.04 7.31 39.49 36.79
NAttack 84.00 | 38419 | 0977 34.65 691 39.88 39.99

PQP 95.81| 3991 | 0987 36.07 6.61 39.16 34.57

Table 4. Choosing parameters on the MCS2018 dataset (y = 1.0).

0 N 6 || SRT | NQl | SSIMT  PSNRT
66% 20 1 || 9420 | 13265 | 0976 38.62
3% - - || 98.00 | 18348 0.981 37.74
100% - - || 7200 | *10636 | *0.968  *39.41
- 10— || 9760 | 20093 0.981 39.55
- 40 - || 85.00 8507 0.972 37.69
- - 2| 6320 *5163 | *0.966  *36.91
- - 3 || 2780 - - -

Results marked with “*” may be overly optimistic.

5.2. Face recognition with the MCS2018 dataset

Evaluating the robustness of a face recognition system is of
primary importance to improve its performance in an adversar-
ial setting. This task was originally proposed in the “Adver-
sarial Attacks on Black Box Face Recognition” competition,
in the context of the MachinesCanSee conference (MCS2018)
held in Moscow in June 2018. The reference scenario is de-
picted in Fig.4. A black-box face recognition system is pro-
vided, which extracts a 512-component unit-norm feature vec-
tor from each submitted 112x112 RGB image. This vector is
then fed to a database to single out the best matching identity. In
the competition, the attacker was asked to imperceptibly mod-
ify an input image associated with a given identity, with the
aim of tricking the system into recognizing a different specific
identity. 1000 pairs of source-target identities (S ;, 7;) were pro-
vided, with 5 images for each identity: S; — {xfl, e, xl?'s}, and
T; — {xi;,...,xis}. The goal of the attacker was to move the
feature vector of the attacked image F' l“] close to the centroid, 6,-,
of the target identity features, subject to SSIM(x;,, ;") > 0.95.
In the competition, we (the GRIP team) obtained eventually the
lowest average distance [32], D=0.928, using a preliminary ver-
sion of the proposed algorithm.

Here, we modify slightly the attacker’s goal, in order to
define a success rate and allow for a meaningful comparison
with the other tasks. We declare a success for image xj] when

[|F ?/‘ - 5;‘” < v, with y a suitably chosen threshold, a fail-
ure when the SSIM goes below 0.95. Since the feature vec-
tors have unitary norm, unrelated vectors are nearly orthogonal,
with a distance close to V2 =~ 1.414. Features associated to the
same identity are much closer, with average intra-class distance
0.903. Therefore, we consider two cases, y = 1.0 and y = 0.9,
the latter being the most challenging.

To select the PQP’s parameters used in all experiments,
0=66%, N=20 and 6=1, we carried out some preliminary tests
on the MCS2018 dataset. Tab.4 shows, for y=1, the effect of

h Original
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Fig. 4. The MCS2018 attack scenario (implicit NN defense). The injected
adversarial noise brings the output feature vector close to the feature vec-
tors associated with the sample images of the target subject.

Feature space

perturbing these parameters with respect to their default values.
Note that statistics are computed only on the successful attacks,
hence they are overly optimistic when SR <« 100%, in which
case we mark results with an asterisk. These tests prove clearly
the importance of working in the low-SSIM gradient region, as
blind attacks (Q=100%) cause a sharp decrease of both success
rate and quality. Moreover, they speak against increasing ¢ to
speed up the attack, while increasing N is less detrimental to
quality.

Tab.5 shows results for attacks to the MCS2018 face recog-
nition system (to carry out experiments in a reasonable time,
we implemented a replica of the competition system based on
the organizer’s description and software, and testing strict com-
pliance of results). Given the stringent MCS2018 rules, attacks
are much more difficult than in the CIFAR10 case. Even with
the larger distance threshold, y=1.0, a level which does not al-
ways ensure reliable face identification, the IGE-QR-RG attack
fails most of the times, while NAttack only reaches 64% suc-
cess rate. At the same level, however, the proposed PQP has
a success rate beyond 95%, even better than I-FGSM and IFD.
With y=0.9 all performance metrics worsen, of course, and only
PQP keeps ensuring a success rate over 80%. It is also worth
underlining the large improvement with respect to PQP-a, the
preliminary version which ranked first in the MCS2018 compe-
tition, called “grip” in that context. As for image quality, it is
guaranteed in all cases by the 0.95 constraint on the SSIM, and
PQP provides always the largest SSIM. Nonetheless, turning to
the other quality measures, results are more heterogeneous. The
NAttack, in particular, seems to ensure a better image quality
than PQP according to the VIF and BRISQUE measures, but
much worse in terms of PIQE. These contrasting indications
are in part due to the fact that results are computed on a limited
and biased sample (only successful attacks). Another warning
concerns no-reference quality estimators, which are typically
trained on large patches drawn from high-resolution images,
whose statistics largely differ from those used in our experi-
ments. All these facts suggest to take these data with a grain
of salt, and refer ultimately to visual inspection of attacked im-
ages, as in Fig.6.

In order to gain a better insight into the performance of all
methods, we consider a “lighter” version of the MCS2018 sys-
tem, which simulates a less watchful human visual inspection.
Accordingly, the constraint on the SSIM is replaced by a much
weaker constraint on PSNR, required only to exceed 30 dB.
With these rules, success rates are always very high, never less



Table 5. Attacking the MCS2018 face recognition system.

y |Attack | SRT | NQI [SSIMT PSNRT VIFT BRI| PIQE]
|I-FGSM (WB) |84.62| 7] 0975 4040 5.65 30.94 23.69
IFD 81.74| 454743 0.971 39.84 7.14 30.80 23.41

LO|IGE-QR-RG |16.44 - - - - - -
N Attack 64.08| *17798|*0.970 *38.23 *8.28 *31.73 *27.57
PQP-a (grip) |66.68| *11883|*0.965 *34.46 *6.30 *29.53 *13.36
PQP 95.80| 13400| 0978 37.13 634 34.66 14.69
|I-FGSM (WB) |62.76 | 9| *0.970 *39.25 *5.80 *31.46 *24.20
IFD 56.86|536919] *0.967 *38.93 *7.58 *31.48 *25.22

0.9|IGE-QR-RG | 4.66 - - - - - -
N Attack 35.20| *24066| *0.966 *37.36 *7.92 *32.09 *25.78
PQP-a (grip) |39.88| *14550| *0.962 *33.87 *6.44 *30.39 *13.44
PQP 83.52| 18244 0973 3590 6.61 3411 1524

Results marked with “*”” may be overly optimistic.

Table 6. Attacking a “lighter” MCS2018 face recognition system.
y |Attack | SRT| NQl [SSIMT PSNRT VIFT BRL| PIQE|

I-FGSM (WB)| 100.00 | 9] 0968 39.71 545 3021 23.16

IFD 100.00]544140| 0.964 39.18 6.67 30.28 2234
1.0|IGE-QR-RG | 99.98| 17498| 0912 35.02 581 29.66 16.97
NAttack 99.12| 25503| 0.954 37.16 7.54 30.52 25.32
PQP-a (grip) | 99.86| 21286| 0.954 33.90 5.97 27.76 13.36
PQP 100.00| 14620| 0.977 36.98 6.19 34.97 14.71
|I-FGSM (WB)| 98.98| 15| 0949 37.63 545 30.17 23.18
IFD 99.16]893743| 0.944 3731 6.75 30.28 22.39
0.9|IGE-QR-RG | 98.36| 27410| 0.878 33.56 5.79 29.70 17.16
N Attack 90.90| 39728| 0.940 35.74 6.70 30.40 22.48
PQP- (grip) | 97.20| 59440| 0.939 33.05 5.97 27.70 13.44
PQP 99.60| 30967| 0.965 3539 6.19 34.98 14.79

than 90%, allowing for the collection of significant performance
data. In these conditions, PQP is about as fast as IGE-QR-
RG, but ensures a much better quality according to all mea-
sures except BRISQUE. Also the NAttack exhibits better VIF
and BRISQUE numbers but much worse SSIM and PIQE num-
bers and, more important, it requires a much larger number of
queries. Turning to the most interesting case of y=0.9, PQP
keeps providing an average SSIM above 0.95, while for IGE-
QR-RG this drops well below 0.9, which entails very likely
visible distortions. The NVAttack keeps exhibiting contrasting
image quality results, but now with a much smaller success rate.
In general, we believe SSIM and PSNR to be the most reliable
indicators of quality, at least for our scenario characterized by
very small images subject to adversarial attacks.

This is confirmed by Fig.6, showing visual results for the
various types of attacks on two MCS2018 images. Apparently,
the “bearded man” image is relatively simple to attack, and
all methods introduce only limited distortion. Nonetheless, for
v=0.9, weird geometrical patterns and color distortions appear
in the flat areas of images attacked by all methods except PQP.
The “girl” image is obviously more difficult to attack, and vis-
ible distortions arise even for y=1. Also in this case, however,
the PQP images appear more natural than the others, showing
a lower quality than the original but without heavy patterns and
color distortions.
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Fig. 5. Computing SSIM gradient by back-propagation on a ad hoc CNN.

6. Conclusions

We have proposed a new black-box method for attacking
deep learning-based classifiers. The image under attack is iter-
atively modified until the desired classification and confidence
level are achieved. However, changes are constrained to the
low-SSIM gradient part of the image, where perturbations have
a limited impact on perceptual quality and, often, high impact
on classification. As a result, effective adversarial samples with
high perceptual quality are rapidly generated. This makes the
proposed approach suitable to attack semi-automatic biomet-
ric authentication systems, usually implemented in surveillance
systems of smart cities.

Experiments carried out in two quite different scenarios tes-
tify on the potential of the proposed approach. Results are al-
ways very good, both with 8-bit integer and real-valued images,
and do not impair much when some defense strategies are en-
acted. The perceptual quality is always good, visible distortions
appear only in very small images, while adversarial noise intro-
duced in regular-size images is always inconspicuous.

Appendix: Computing SSIM gradient by an ad hoc CNN
The SSIM between two homologous image patches p and ¢
reads as

Quppy + €)20py + €)
2+l +e)ol+ 0+ e)

SSIM(p, g) = (6)
Moments are computed with a suitable weighting window w as
in [15]

Hy = ) w(s)q(s)
sEQ
o2 = > ws)g(s) - ptg)? 7
seQ
Tpg = Y W(P(S) = 11,)(q(s) — 1)
seQ
with s spanning the patch coordinates Q. Similar formulas hold
for u,,, 0'127.

To compute such weighted moments we use the simple CNN
shown in Fig.5, comprising a single convolutional layer and
some further block for algebraic operations. Hence, the gra-
dient of the SSIM with respect to the whole image is then ob-
tained by the usual back-propagation of the loss.
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Fig. 6. Example attacks on two MCS2018 images with y = 1.0 (top) and y = 0.9 (bottom). Originals are shown in the left column. For the ‘“bearded man”,
a light adversarial noise is sufficient, and attacked images show little signs of distortion, more visible in the flat areas except for PQP. A heavier adversarial
noise is necessary to attack the “girl”, with visible distortions and many “weird” patters. PQP images are also distorted, but keep a natural appearance.
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