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Abstract

Online continual learning aims to learn from a non-IID
stream of data from a number of different tasks, where the
learner is only allowed to consider data once. Methods are
typically allowed to use a limited buffer to store some of
the images in the stream. Recently, it was found that fea-
ture replay, where an intermediate layer representation of
the image is stored (or generated) leads to superior results
than image replay, while requiring less memory. Quantized
exemplars can further reduce the memory usage. However,
a drawback of these methods is that they use a fixed (or
very intransigent) backbone network. This significantly lim-
its the learning of representations that can discriminate be-
tween all tasks. To address this problem, we propose an
auxiliary classifier auto-encoder (ACAE) module for fea-
ture replay at intermediate layers with high compression
rates. The reduced memory footprint per image allows us
to save more exemplars for replay. In our experiments,
we conduct task-agnostic evaluation under online contin-
ual learning setting and get state-of-the-art performance on
ImageNet-Subset, CIFAR100 and CIFAR10 dataset.

1. Introduction

The vast majority of deep learning papers consider that
all training data is available jointly, and the learner can pro-
cess the data several times (epochs) to learn the optimal pa-
rameters to solve the task at hand. However, in many real-
world scenarios, this would not be possible, and the learner
has only access to data of a single task at the time, be-
fore proceeding to learn a new task. This scenario refers to
continual learning (or incremental learning, lifelong learn-
ing). The main challenge in this scenario is to learn from
the current data while preventing forgetting the knowledge
of previous tasks. With a naive finetuning approach the
model will suffer a drastic drop in performance on previ-
ous tasks because the model aims to be optimal for the cur-
rent tasks, and ignores performance on previous tasks. This

phenomenon is known as catastrophic forgetting [17, 27].
The field of continual learning studies methods that prevent
forgetting [8, 10, 11, 30, 35, 26].

A challenging setting in continual learning, yet com-
mon in practical application, is online continual learning
of non-iid data streams [1, 5, 22]. In the online setting,
each image can only be observed once during model opti-
mization (except exemplars in storage). These applications
mainly exist in resource constrained devices, such as mo-
bile phones, robots and other smart devices. The majority
of methods in continual learning, known as batch incremen-
tal learning methods, allow for several cycles (epochs) over
the data [6]. These methods cannot operate in the challeng-
ing online continual learning setting. Moreover they take
longer to train. In this paper, we focus on online continual
learning.

Among the approaches to address catastrophic forget-
ting, some of the best performing ones are rehearsal-
based [30, 33, 10]. Several methods save a small set of
exemplar images of previous classes [30, 5, 11, 35]. Re-
trieving them during future training is a straightforward way
to prevent forgetting. For example, GEM [22], A-GEM [5]
and MIR [1], which address online continual learning, be-
long to this type. However, this strategy leads to increased
memory usage and the problem of training from imbal-
anced data (between previous tasks and the current task).
An alternative is to generate images via generative models
(e.g. GANs) [33, 34]. However, image generation is still a
difficult problem in computer vision and requires complex
generative models, which would also need to be continu-
ally learned, making this method not practical for complex
datasets.

To circumvent the difficulties of image replay, recent
work has focused on feature replay [10, 21]. In [21] a gen-
erator is trained to replay compact feature representations of
the images (after the last average pooling layer of a ResNet-
18). In addition, a distillation loss was applied to prevent
forgetting of the feature extractor. Instead of generating fea-
tures, it was also observed by Hayes et al. [10] that saving
them as exemplars is very efficient, since it required less
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memory per image. To even further reduce the memory re-
quirements, the REMIND method [10] also applies product
quantization [13]. This allows them to save up to 1M com-
pressed feature exemplars, instead of 20K exemplar images
saved traditionally, in the same memory buffer. A major
drawback of these feature replay methods [21, 10] is that
they either allow for very little training [21] or no training
at all [10] of the backbone feature extractor (located before
the replay layer). As a consequence, if this backbone is not
yet optimally trained for future tasks, the performance is
sub-optimal.

To address the limitation of feature replay, we pro-
pose ACAE-REMIND, an auxiliary classifier auto-encoder
(ACAE) that allows for compressed feature replay (as in
REMIND) at intermediate layers of the network. This con-
trasts with current feature replay methods that focus on re-
playing the features in the last layers. The principal advan-
tage of our method is that we can jointly train all layers
after the replay layer. This addresses an important problem
of feature replay methods, namely the reduced performance
because of a large fixed backbone network. Instead of only
the 4M parameters that are trained in REMIND when re-
playing at block 4 of a ResNet-18, we allow to train 9M
parameters jointly when replaying on block 3. This leads
to feature representations that are more discriminative be-
tween the classes of current and previous tasks. We evalu-
ate our method in the challenging, yet more realistic, online
continual learning setting. From experiments under multi-
ple settings and datasets, we observe state-of-the-art perfor-
mance in many-task evaluations and competitive in few-task
settings.

2. Related work
2.1. Continual learning

Continual learning methods can be categorized into three
types which we will shortly comment. For a more elaborate
overview see the following surveys [6, 25]).
Regularization-based methods. The first group of tech-
niques is based on regularization. These methods add a reg-
ularization term to the loss function which impedes changes
to the parameters deemed relevant to previous tasks. The
difference depends on how to compute the estimation. From
these differences, these methods can be further divided into
data-focused [20] and prior-focused [17]. Data-focused
methods use knowledge distillation from previously learned
models. Prior-focused methods estimate the importance of
model parameters as a prior for the new model. However,
it has been shown that data-focused methods are vulnera-
ble to domain shifts [2] and prior-focused methods might
be not sufficient to restrict the optimization process to keep
acceptable performances on previous tasks [9].
Parameter isolation methods. This family focuses on

allocating different model parameters to each task. These
models begin with a simplified architecture and updated in-
crementally with new neurons or network layers in order
to allocate additional capacity for new tasks. In Piggy-
back/PackNet [23, 24], the model learns a separate mask on
the weights for each task, whereas in HAT [32], masks are
applied to the activations. This method is further developed
to the case were no forgetting is allowed in [26]. In general,
this branch is restricted to the task-aware (task incremental)
setting. Thus, they are more suitable for learning a long se-
quence of tasks when a task oracle is present and there is no
constraint over model capacities.

Replay methods. This type of methods prevent forget-
ting by including data (real or synthetic) from previous
tasks, stored either in an episodic memory or via a gener-
ative model. There are two main strategies: exemplar re-
hearsal [30, 5, 11, 35] and pseudo-rehearsal [33, 34]. The
former store a small amount of training samples (also called
exemplars) from previous tasks. The latter use generative
models learned from previous data distributions to synthe-
size data.

One of the main drawbacks of exemplar replay is the
high memory usage required to store exemplars of previ-
ous tasks. REMIND [10] addresses this drawback, instead
of saving original data, it saves compressed latent represen-
tation of intermediate layer features via product quantiza-
tion [13]. This is a more efficient usage of memory and
computation. However, due to restriction that the backbone
is fixed, the majority of feature extraction modules cannot
be adopted to later tasks. Therefore, this model has a strong
bias towards the first task. Recently, GDumb [28] proposes
training a model only from exemplars. The main idea is to
balance the sample reservoir in a selection stage, then the
model is learnt from scratch on this balanced set. While
not designed for any specific continual learning settings, it
achieves excellent performance on many. It reveals that
sample balancing is crucial for rehearsal-based continual
learning methods. While saving images is always expensive
compared to saving features, this point is also mentioned in
paper on feature adaption [12].

2.2. Auto-encoders and product quantization

Auto-encoders [18] learn representations in an unsuper-
vised way by encouraging the model to reconstruct the in-
put data. An encoder projects the high-dimensional in-
put to a low-dimensional space, and the decoder tries to
project back to the original space minimizing the recon-
struction error. Product quantization [13] is an effective
quantization method that performs a decomposition of a
high-dimensional space into the Cartesian product of a se-
ries of subspaces, and quantizes them separately.

In our model, we propose an auto-encoder with an auxil-
iary classifier (ACAE) to force the reconstructions not only
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Figure 1: Drop in performance due to frozen backbones
(Joint training: 81.0)

to remain close to original inputs but also keeping the clas-
sification characteristics. By combining ACAE with Prod-
uct Quantization (PQ), the feature spaces are decomposed
from high dimension to low dimension, from float numbers
to integer indexes, which leads to better compression and
therefore allows to save more exemplars.

3. Compressed Feature Replay

3.1. Feature replay location

Pseudo-rehearsal methods [33, 34] are limited by the
performance of generative models to generate high-quality
images. As a results these methods perform poorly on more
complex real-world datasets. To address this limitation, Liu
et al. [21] proposed generative feature replay (GFR) to gen-
erate features of an intermediate layer. In their proposal,
features before the classifier are generated by a conditional
GAN learned in a continual fashion.

REMIND [10] observes that storing features is much
more efficient than storing images. They operate on the
same block as GFR. With the help of PQ [13] the features
are further compressed in REMIND. The features from
block 4.0 of ResNet-18 are approximated by a number of
codebooks and indexed feature maps. By this means, the
floating point values of feature representations are replaced
by integer index numbers. This allows them to save 50×
more feature exemplars than image exemplars in the same
memory space and obtain excellent results for online con-
tinual learning.

As noted in the introduction, one of the main drawbacks
of REMIND (and feature replay in general) is that these
methods freeze the backbone feature extractor (i.e the lay-
ers before the feature replay) after training the first task.
They only train the layers that come after the feature replay
layer for the remaining tasks. Depending on the continual
learning scenario this could lead to a significant drop in per-

Table 1: Comparison of replay methods.

method name replay layer compression online
GFR last block GAN 7

REMIND last block PQ 3
Ours interm. block ACAE+PQ 3

formance because of a suboptimal backbone network.
To better understand the impact of freezing the backbone

network after the first task we perform an experiment on the
ImageNet-Subset dataset [7] with ResNet-18 as the back-
bone. We consider two scenarios, one with the first task
containing 50 classes and the remaining 50 classes divided
into five more tasks. In the second scenario, we evenly
divide the classes over 10 tasks (each with 10 classes).
Clearly, the second scenario is more challenging for RE-
MIND, because now the backbone network can only be
trained on the 10 classes of the first task. In Fig. 1 we can
see the drop in performance which is caused by freezing the
backbone network as a function of the position of the fea-
ture replay. The performance of the different backbone net-
works is computed in the following way: we first train the
first task and fix the backbone network, then we jointly train
the remaining layers on all training data of all tasks (this can
be seen as the upper bound for this continual learning set-
ting, i.e. joint training with the backbone frozen). As can
be seen, the drop in performance is significant (by compar-
ing the difference of the blue and red with the yellow line),
dropping 8.36% in the first scenario, and 23.04% in the sec-
ond scenario when replaying the features of block 4.0. As
can be seen the drop diminishes considerably by perform-
ing the replay at earlier layers. The reason why REMIND
chooses to replay at block 4.0 is because the proposed tech-
nique does not scale well to lower positions in the network.
This is explicitly discussed and they mention that the quan-
tized features would be too large and would significantly
increase storage requirements1.

To overcome the limitations of feature replay, our pro-
posed ACAE-REMIND model aims to apply replay on an
intermediate blocks. To reconstruct features in intermedi-
ate layers, we introduce a stronger compression module,
which achieves dimension reduction, and feature approxi-
mation while maintaining the classification characteristics
of the replayed features. The method is an extension of
REMIND and is based on an Auto-Encoder with Auxiliary
Classifier (ACAE). We can perform joint training on all lay-
ers after the replay layer (and not only the last block as in
REMIND). This alleviates the drawback of fixing the back-
bone neural network. A comparison among the discussed
feature replay methods is in Table 1.

1See Supplementary material S2 [10].
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Figure 2: Overview of the initialization stage (trained on
first task).
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Figure 3: Overview of our online continual learning phase
(task t = 2, ..., T ).

3.2. Online continual learning setting

Online continual learning is a subarea of incremental
learning, where the algorithm is only allowed to make a sin-

gle pass through the data of each task. It is more related to
real-life and real-time applications since data comes in se-
quential streams, and they are not allowed to use the same
sample more than one time (unless stick to buffer) in the
whole learning process.

Suppose we have a data stream of triplets
{(

xi
t, y

i
t, t

)}
i
,

where xi
t is the i-th input, yit is the corresponding label and t

is the task identifier (t ∈ τ = {1, ..., T} ). Each input-label
pair is an identical and independent sample drawn from an
unknown distribution Pt (X,Y ) of task t. We consider the
number of tasks T is unknown and the tasks are coming se-
quentially as t = 1, ..., T . We also assume that data among
tasks are disjoint. At inference time, the task-id t is un-
known at all time; also referred to as task-agnostic infer-
ence. Under this assumption, the resulting model f (x; Θ),
parameterized by Θ, is optimized to minimize a predefined
loss l (x, y; Θ) over new sequential input samples

(
xi
t, y

i
t

)
from current data stream t. And at the same time, the per-
formance on previous tasks should not decrease.

3.3. ACAE-REMIND for compressed feature replay

The ACAE-REMIND model is designed for online task-
agnostic continual learning in a memory efficient way. As
explained before, we aim to execute feature replay on an
intermediate layer. Since all layers after the feature replay
can be jointly trained, this strategy can potentially lead to
improved performance. Because the distribution in lower
layers is more complex, we propose an improved compres-
sion mechanism based on an ACAE module. The whole
training procedure can be roughly divided into: 1) initializa-
tion stage (in Fig. 2) of the classification model, ACAE and
PQ modules, 2) online continual learning stage (in Fig. 3).

3.3.1 Initialization

During initialization, the classification model, ACAE and
PQ are trained sequentially with data

(
xi

1, y
i
1

)
from the first

task t = 1. In the first step, the whole classification model
is optimized in an offline way. This step aims to learn a
robust pretrained model for future tasks (similar as in RE-
MIND). The parameters Θ are updated by minimizing the
cross-entropy loss:

minimizeΘLCE(yi1, ŷ
i
1) = −yi1 · log ŷi1 (1)

where the prediction is given by ŷi1 = f
(
xi

1; Θ
)
.

Secondly, the ACAE module is inserted into the layer
where we will replay the features. We denote the layers be-
fore and after the replay layer as g (x; Θ1) and h (z; Θ2),
where Θ is the union of Θ1 plus Θ2 and z = g (x; Θ1)
in step 1. The encoder and decoder of ACAE are denoted
as u = Denc (z; Γ) and ẑ = Ddec (u; Π). The ACAE
is trained with an auxiliary classification loss and auto-

4



encoder reconstruction MSE(mean square error) loss on the
same data stream

(
xi

1, y
i
1

)
.

Then parameters Γ,Π are computed by minimizing the
ACAE loss:

minimizeΓ,Π LACAE(yi1, x
i
1) = LCE(yi1, ŷ

i
1)+

∥∥zi1 − ẑi1
∥∥

2
(2)

where

zi1 = g
(
xi

1; Θ1

)
ẑi1 = Ddec

(
Denc

(
zi1; Γ

)
,Π

)
ŷi1 = h

(
ẑi1; Θ2

)
.

(3)

After that, the last step is to train a PQ encoder-decoder
pair Penc (u; Υ) and Pdec (v; Ψ) to approximate latent rep-
resentations extracted from ACAE’s encoder. Here Υ,Ψ are
learnt from the object function of PQ MSE loss:

minimizeΥ,Ψ LPQ

(
xi

1

)
=

∥∥ui
1 − ûi

1

∥∥
2

zi1 =(g
(
xi

1; Θ1

)
ui

1 =Denc

(
zi1; Γ

)
ûi

1 =Pdec

(
Penc

(
ui

1; Υ
)
,Ψ

) (4)

3.3.2 Online continual learning

In online continual learning, only layers after the ACAE
decoder can freely adjust to new tasks (the parameters in
Θ2), other modules (including parameters Θ1,Γ,Π,Υ,Ψ)
are all fixed during training. The new coming images from
the data stream are passed through lower layers, the ACAE
encoder and the PQ encoder to get their latent representa-
tions vit with corresponding integer indexes. This is com-
puted as:

vit = Penc

(
Denc

(
g
(
xi
t; Θ1

)
; Γ

)
,Υ

)
(5)

Then its representation is mixed with randomly selected
N previous samples vj

t̂
(t̂ < t) from the reservoir to recon-

struct features via the PQ decoder and the ACAE decoder.
Those features will be taken to optimize the trainable pa-
rameters Θ2 with the cross-entropy loss LCE

(
yit̄, ŷ

i
t̄

)
and

ŷit̄ is formed as:

ŷit̄ = h
(
Ddec

(
Pdec

(
vit̄; Ψ

)
,Π

)
,Θ2

)
, t̄ ≤ t (6)

Reservoir sampling After optimization, the new represen-
tation will be stored in the reservoir memory. If the reservoir
is full, we randomly select a sample to pop up from one of
the classes with most samples in the reservoir.

4. Experiments
4.1. Experimental setup

Datasets. Our evaluations are performed on three datasets:
ImageNet-Subset [7], CIFAR100 [19] both with 100
classes2 and CIFAR10 with 10 classes. We use data aug-
mentation during the initial training of the full model and
the ACAE, but removed it to train PQ (we save the represen-
tation of the original image - without augmentation -) and
during the online continual learning stage. For feature aug-
mentation, we only randomly resize and crop reconstructed
features in the online continual learning stage.
Implementation details. We use Resnet-18 as our clas-
sification network for ImageNet-Subset. For CIFAR10 and
CIFAR100, we use adapted Resnet-18 and Resnet-32 re-
spectively (using only 3 blocks instead of the original 4
blocks). During initialization, the backbone network is
learned from scratch with SGD, then the ACAE is trained
with Adam [16]. For PQ training, we use the implementa-
tion from the Facebook Faiss library [15]. During the online
continual learning stage we use SGD.
Evaluation metrics. We consider two widely used met-
rics: Average of top-1 accuracy over classes (AOC) up
to the current task and top-1 accuracy after the last task
(LAST).
Experimental settings. We will evaluate our method
in five different settings. For the first three settings on
ImageNet-Subset and CIFAR100, we use half of the classes
as the first task and split the remaining into 5, 25 and 50
tasks with equal split (this setting is widely used [8, 11, 28]).
We also refer to these as the 5, 25 and 50 steps setting. The
fourth setting is splitting ImageNet-Subset into 10 tasks of
the same size (this setting is used in [29, 30, 35]). We
compare with several methods: iCaRL [30], BiC [35],
UCIR [11], PODNet [8], GDumb [28], RPSnet [29] and
REMIND [10]. We note that, except REMIND, the other
methods are mainly designed for offline continual learning,
which is a simpler setting compared with our online setting.

The fifth setting is on CIFAR10, where we use the com-
monly used setting from GMED [14], which divides CI-
FAR10 into 5 tasks equally. And we compare with on-
line continual learning methods: AGEM [5], BGD [36],
GEM [22], GSS-Greedy [3], HAL [4], ER [31], MIR [1],
and GMED [14].

4.2. Results of online continual learning

Few-task evaluation (5 steps setting). We report the AOC
metric on ImageNet-Subset with the 5 steps setting in Ta-
ble 2. Every time we have a new input image, we randomly
sample N = 50 previous latent representations from the

2Samples are presented in a random yet fixed presentation order, as
proposed in iCaRL [30], and adopted by others [8, 11, 28, 35].
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Table 2: Comparison on Imagenet-Subset, we show the
averages over classes (AOC) with 50 classes as the first task
and 5/25/50 steps each with 10/2/1 classes. For REMIND
and our method, we show the replay layer (block number) in
brackets. The highest numbers in each row are highlighted.

On-
line

Exemplar info Methods AOC over various steps

Num.
Shape

(CHW)
Mem.
(MB) 5 25 50

7 2K

3
224
224
(int)

301

iCaRL 65.56 54.56 54.97
BiC 68.97 59.65 46.49

UCIR(NME) 69.07 60.81 55.44
UCIR(CNN) 71.04 62.94 57.25

PODNet(CNN) 75.54 68.31 62.08
GDumb - - 62.86

3 130K

8
7
7

(int)

51

REMIND(3.0) 70.58 67.93 67.35
REMIND(4.0) 71.02 70.50 70.14

Ours(1.0) 60.70 56.37 56.10
Ours(2.0) 70.24 67.65 66.23
Ours(3.0) 72.58 71.43 70.69

3 130K

32
7
7

(int)

204

REMIND(3.0) 72.46 - -
REMIND(4.0) 73.98 - -

Ours(1.0) 74.08 - -
−LCE 70.26 - -

Ours(2.0) 73.75 - -
Ours(3.0) 73.63 - -

sample reservoir. It can be seen that our method outper-
forms REMIND and that, especially for larger memory, we
can obtain excellent results by replaying lower layers. For
comparison, we have also computed results for block 3.0
for standard REMIND (going to lower blocks did further
reduce performance). We observe that our method with 32
codebooks is only 1.46% lower than the state-of-the-art of-
fline PODNet method, and it well outperforms other meth-
ods. Even when we have only 8 codebooks, it is still better
than all offline algorithms except PODNet. Another inter-
esting phenomenon is that, with 32 codebooks, we get an
increase from block 3.0 to block 1.0, but this trend gets re-
versed with only 8 codebooks. The reason is that in the
lower layers, the latent representations contain more infor-
mation and thus require more codebooks to be represented.

For CIFAR100 with 5 steps, the performance is shown in
Table 3. Due to smaller image-size, the compression ratio is
not as high as in ImageNet-Subset. In this case, offline con-
tinual learning (PODNet) outperforms the online settings
by a larger margin (6.1%) under the same memory alloca-
tion. It should be noted that PODNet runs for 160 epochs
over the data whereas the online methods can only do one
epoch. Also, among the online methods, our method per-
forms worse than REMIND(3.0) when considering a mem-
ory of 6.4MB. This is because a first task with many classes
and more data allows REMIND to also learn a high-quality
backbone network. For the larger memory setting (12.8MB)
our method performs comparable to REMIND(3.0).
Many-task evaluation (25/50 steps setting). Here the
number of rehearsed samples is set to N = 200 because

Table 3: Comparison on CIFAR100 dataset, we show the
averages over classes (AOC) with 50 classes as the first task
and 5/25/50 steps each with 10/2/1 classes. For REMIND
and our method, we show the replay layer (block number) in
brackets. The highest numbers in each row are highlighted.

On-
line

Exemplar info Methods AOC over various steps

Num.
Shape

(CHW)
Mem.
(MB) 5 25 50

7 2000

3
32
32

(int)

6.14

iCaRL 58.08 50.60 44.20
BiC 56.86 48.96 47.09

UCIR (NME) 63.63 56.82 48.57
UCIR (CNN) 64.01 57.57 49.30

PODNet (CNN) 64.83 60.72 57.98
PODNet (NME) 64.48 62.72 61.40

GDumb - - 58.40

3 25000

4
8
8

(int)

6.40

REMIND(2.0) 55.79 58.25 57.93
REMIND(3.0) 58.71 59.26 58.99

Ours(1.0) 53.38 53.74 54.25
Ours(2.0) 57.57 59.28 59.50

3 50000

4
8
8

(int)

12.8

REMIND(2.0) 58.51 59.94 59.87
REMIND(3.0) 61.23 61.02 61.00

Ours(1.0) 56.40 56.98 57.01
Ours(2.0) 61.27 62.49 62.30
−LCE 56.11 60.19 60.07

there are less samples in each step. The results for 25 steps
on ImageNet-Subset are shown in Table 2. We obtain state-
of-the-art with 3.12%, 0.93% and 4.50% higher than POD-
Net, REMIND (block 4.0) and REMIND (block 3.0) re-
spectively. The hardest setting is the 50 steps split, where
only 1 class is viewed at every time step. We show our per-
formance in Table 2. It is 8.49% higher than GDumb in the
offline setting and 1.21% better than REMIND in the online
setting.

For the many-task evaluation of CIFAR100 shown in Ta-
ble 3, we got marginally better than PODNet in 50 steps and
worse in 25 steps under higher memory allocation. With
lower memory allocation we still got competitive perfor-
mances. In conclusion, from the many-task evaluation, we
observe that bias correction methods suffer from a drop in
performance with more time steps, while our model obtains
better results and without much drop in performance when
the number of tasks increases.

Equal split with 10 tasks (9 steps) on ImageNet-Subset.
In the equal split setting, the 100 classes are divided into
10 tasks with 10 classes each. The top-5 accuracies in each
time step are shown in Table 4 (For comparison, top-5 ac-
curacy is adopted here since it is commonly used in this
case). For this more challenging setting, REMIND obtains
8.5% lower results than ours, which is due to the less flexi-
ble backbone model. Especially here, it makes more sense
to perform replay on a lower layer. Also note that in this
setting, we get competitive results compared with the meth-
ods BiC [35] and RPSnet [29]. However, these methods are
offline and perform multiple loops over the data.
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Table 4: Comparison on ImageNet-Subset, we show top-5
accuracy with 10 classes as the first task and 9 steps each
with 10 classes. For REMIND and our method, we show
the replay layer (block number) in brackets. The highest
numbers in offline and online settings are highlighted.

Methods iCaRL RPSnet BiC
REMIND

(4.0)
Ours
(3.0)

Ours
(2.0)

Ours
(1.0)

Online 7 3

Exem.
Info

Num. 2000
(20*100)

130000
(1300*100)

Shape
(CHW)

3*224*224
(integer)

32*7*7
(integer)

Mem.
(MB) 301.06 203.84

Acc.

1 99.3 100 98.4 98.4 98.4 98.4 98.4
2 97.2 97.4 96.2 91.6 93.3 93.5 94.1
3 93.5 94.3 94.0 87.1 90.5 91.1 92.7
4 91.0 92.7 92.9 82.2 87.2 87.7 90.2
5 87.5 89.4 91.1 79.7 85.3 85.5 89.2
6 82.1 86.6 89.4 77.7 84.0 85.0 87.8
7 77.1 83.9 88.1 74.8 81.0 83.7 85.7
8 72.8 82.4 86.5 72.8 80.9 82.7 85.4
9 67.1 79.4 85.4 72.2 80.8 83.4 84.7

10 63.5 74.1 84.4 70.9 79.6 81.8 83.9
AOC 83.1 88.0 90.6 80.7 86.1 87.1 89.2

Table 5: Comparison on CIFAR10 dataset, we show the
LAST accuracy with 2 classes as the first task and 4 steps
each with 2 classes. For REMIND and our method, we
show the replay layer (block number) in brackets. The high-
est numbers in each row are highlighted.

Online Exemplar info Methods LAST

Num.
Shape

(C*H*W)
Mem.
(MB) 4 steps

3 500 3*32*32
(integer) 1.536

Finetuning 18.5
AGEM 18.5
BGD 18.2
GEM 20.1

GSS-Greedy 28.0
HAL 32.1
ER 33.3

MIR 34.5
GMED(ER) 35.0

GMED(MIR) 35.5
GDumb 45.8

3 24000 1*8*8
(integer) 1.536 REMIND(3.0) 45.2

Ours(2.0) 48.4

Equal split with 5 tasks (4 steps) on CIFAR10. Several
existing online methods cannot be straightforwardly applied
to large datasets. To be able to compare to them, we also
include results on CIFAR10 in Table 5. We divide the 10
classes into 5 tasks with 2 classes each. On this setting, we
got 48.4%, which is 2.6% higher than the best reported re-
sults of GDumb. We also outperform the REMIND method
with more than a 3% margin.

Table 6: Ablation study of classification loss on CIFAR100
and ImageNet-Subset. The features are replayed from block
2.0 for CIFAR100 and block 1.0/2.0/3.0 for ImageNet-
Subset.

method name CIFAR100 ImageNet-Subset
block 2.0 block 3.0 block 2.0 block 1.0

Uncompressed features 76.00% 80.96% 80.96% 80.96%
ACAE replay(w/o LCE) 73.31% 78.80% 77.64% 76.52%
ACAE replay(w/ LCE) 74.45% 79.40% 79.76% 80.44%

4.3. Ablation study

One of the key ingredients of the ACAE-REMIND
method is the auxiliary classification loss that is used dur-
ing the training of the auto-encoder (see Eq. 2). This loss
ensures that the compression does not remove the features
that are crucial for classification. Here we ablate this factor.
To show the impact of the classification loss, we evaluate
the classification accuracy after compression with and with-
out the loss (directly after Step 2), and compare this to the
results that would be obtained with the uncompressed fea-
tures (see Table 6). The results show that classification loss
mitigates the classification drop that occurs due to compres-
sion. Finally, we have also ablated the loss in Table 2 and
Table 3 on our best performing setting (indicated by rows
with −LCE). The results show that the loss does greatly
improve results resulting in a performance gain of 2-5%.

To better evaluate the influence of the block number n
(the block where we introduce the ACAE-REMIND as seen
in Fig. 3) we have included Fig. 4. Here we show a com-
parison on ImageNet-Subset and CIFAR-100 under the 5,
25 and 50 steps settings. We can conclude that under these
settings, the performances are increasing with the feature
replay from the first block to the penultimate block, and
then decreasing when replaying on the last block. As can
be seen the optimal block is relatively stable with respect
to the number of steps while keeping the same amount of
data for the first task. If we however reduce the number of
data for the first task, it becomes more difficult to learn a
good backbone network and, as expected, the optimal n de-
creases: in Fig. 4(c) we can see that n = 1 yields optimal
results.

5. Conclusions
In this paper, we proposed an extension to the REMIND

method, called ACAE-REMIND. We propose a stronger
compression module based on an auxiliary classifier auto-
encoder that allows to move the feature replay to lower lay-
ers. The method is memory efficient and obtains better per-
formance. In evaluation, we perform a comparison over
multiple metrics among competitive methods. The strength
of our model lies in the fact that with high compression ra-

7



5 25 50
Steps

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

ImageNet-Subset
Ours(block 1.0)
Ours(block 2.0)
Ours(block 3.0)
REMIND(block 4.0)

(a) 1st task is 50 classes then 5/25/50 steps

5 25 50
Steps

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

CIFAR-100
Ours(block 1.0)
Ours(block 2.0)
REMIND(block 3.0)

(b) 1st task is 50 classes then 5/25/50 steps

9
Steps

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

ImageNet-Subset
Ours(block 1.0)
Ours(block 2.0)
Ours(block 3.0)
REMIND(block 4.0)

(c) 1st task is 10 classes then 9 steps

Figure 4: Ablation study on the block number n on ImageNet-Subset and CIFAR100 with various settings. The backbone
for ImageNet-Subset is a 4-block Resnet-18 and for CIFAR100 is a 3-block Resnet-32. We show top-1 accuracy in (a) and
(b), and top-5 accuracy (c).

tio, we could save more feature exemplars than image ex-
emplars. Especially, when the first task is relatively small
(the 10-task scenario in ImageNet-Subset and 5-task in CI-
FAR10) we outperform REMIND with a large margin. As
future work, we are interested in extending this framework
to other continual learning problems.
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