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Abstract

Precision medicine is an emerging approach for disease treatment and prevention that delivers personalized care to individual
1 ‘patients by considering their genetic makeups, medical histories, environments, and lifestyles. Despite the rapid advancement
of precision medicine and its considerable promise, several underlying technological challenges remain unsolved. One such
challenge of great importance is the security and privacy of precision health-related data, such as genomic data and electronic

health records, which stifle collaboration and hamper the full potential of machine-learning (ML) algorithms. To preserve data

privacy while providing ML solutions, this article makes three contributions. First, we propose a generic machine learning
LL with encryption (MLE) framework, which we used to build an ML model that predicts cancer from one of the most recent
comprehensive genomics datasets in the field. Second, our framework’s prediction accuracy is slightly higher than that of the
mostrecent studies conducted on the same dataset, yet it maintains the privacy of the patients’ genomic data. Third, to facilitate
~— the validation, reproduction, and extension of this work, we provide an open-source repository that contains the design and
(D implementation of the framework, all the ML experiments and code, and the final predictive model deployed to a free cloud

service.
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Precision medicine is a departure from one-size-fits-all
medicine toward the customization of disease treatment and
prevention for individuals by leveraging their individual vari-
ability in genes, environment, and lifestyle. Two key aspects
of the digital revolution of the last decade have been an expo-
nential increase in the amount of data being generated and
a parallel increase in hardware and GPU performance. While
significant progress has been made in storing huge amounts
of data via big-data technologies, the ability to develop ac-
tionable knowledge that facilitates individualized care through
precision medicine has lagged behind.

Despite the exciting prospects of precision healthcare, it
faces several technical and societal hurdles related to the iden-
tification of health risks, diagnoses, and outcomes by analyz-
ing data extracted from integrated biomedical databases. Se-
curity and privacy concerns are such hurdles. While preci-
sion health provides tremendous benefits by enabling better
care, it can lead to personal privacy breaches through genetic
disclosure or genetic discrimination. To deliver targeted, per-
sonalized care, personal data (e.g., specific human genome
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sequencing) must be shared with many professionals in pos-
sibly diverse geographic locations or jurisdictions and some-
times over unreliable channels, such as the internet. This
poses several risks, such as insider threats, social engineering,
distributed denial of service (DDoS), illicit data inferences,
cyber bullying/blackmailing, etc. (Rahman et al., 2019). Un-
like protected health information (PHI), precision health data,
such as genomic data, not only identifies patients but also
multiple generations of their families. Hence, such data can
be leveraged to conduct targeted security and privacy attacks
against vulnerable individuals or groups of related individu-
als if fallen in the hands of malicious actors.

In principle, a machine-learning (ML) model can be trained
on either confidential or public data, allowing more training
samples, data distributions, and therefore more complex, pre-
dictive, and generalizing models. These complex models can
theoretically achieve higher predictive performance and find
novel associations within precision healthcare. However, per-
forming analytics on new cases provided by hospitals or med-
ical centers should be treated with the utmost privacy preser-
vation level for the reasons introduced above.

From this perspective, the purpose of the present article is
threefold. First, we propose a machine learning with encryp-
tion (MLE) framework that considers these requirements and
constraints and facilitates preforming analysis on a real preci-
sion healthcare dataset while preserving its privacy. Second,
we illustrate the model’s success by considering a case study
using the MSK-IMPACT dataset, one of the most recent com-
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prehensive genomic datasets in the field (Zehir et al., 2017),
and we produce a predictive model for cancer with higher ac-
curacy than the most recent publications on the same dataset
(Penson et al., 2020); while preserving the privacy of the cases
as required. Third, to facilitate the capabilities of different
communities, such as software engineering, ML, and preci-
sion medicine, and for the extension and validation of this
work, we provide the following as an open-source repository:
(1) the system design and implementation of the MLE frame-
work, (2) all the ML code and experiments on the MSK-IMPACT
dataset, and (3) a free cloud service for medical practitioners
to predict their own cases using the MLE framework.

The remainder of the present article is as follows. Sec-
tion 2 introduces homomorphic encryption (HE) and related
work on the joint field of ML and HE. Section 3 presents our
proposed MLE framework and its main modules. Section 4
introduces the MSK-IMPACT dataset as a case study, describes
the ML experiments that we conducted on this dataset to pro-
vide a predictive model with privacy preservation via HE, and
introduces the open-source repository for this work. Section 5
concludes the article and suggests future work that would com-
plement the current work. For the present article to be self-
contained, the online supplementary material provides more
explanation of the basics of genomics necessary for our arti-
cle as well as an example of HE.

2. Related Work and Literature Review

Any privacy-preserving precision health analytics builds
on two main components: (1) the security and privacy fea-
tures required to protect interactions with the data by stake-
holders and (2) ML predictive models for this data. Each is
reviewed briefly below.

2.1. Homomorphic Encryption

Encryption is the process of converting data from some-
thing intelligible into something unintelligible by sealing data
in a metaphorical vault that can only be opened by some-
body holding the secret decryption key to prevent unautho-
rized personnel from viewing them. A special scheme of en-
cryption is HE, which was originally proposed by Rivest et al.
(1978) as a way to encrypt data such that certain operations
could be performed on them without possessing that secret
key (i.e., without decryption). The term “homomorphic en-
cryption” describes a class of encryption algorithms that sat-
isfies the homomorphic property; that is, certain operations,
such as addition, can be carried out on ciphertext directly so
that upon decryption the same answer is obtained as operat-
ing on the original messages. Therefore, HE allows other par-
ties (e.g., the cloud and service providers) to calculate certain
mathematical functions expressed only in terms of these op-
erations on the encrypted data while preserving the function
and format of the encrypted data. For brevity, these types of
functions are referred to as “HE-friendly”. Formally, this can

be expressed as
Declks, Enc(kp,m1) o Enclkp,m2)] =myoma, 1)

where ks, kp are the secret and public keys, respectively (since
they are not equal, this is called “asymmetric encryption”),
m1,m2 € M are two values on which we wish to perform en-
crypted operations on, M is the message space of the HE
scheme (i.e., the set of all possible values acceptable by the
scheme), and ¢, 0 are operations in encrypted and plain-text
space, respectively. Like other types of encryption schemes,
HE has three main functions: key generation, message en-
coding, and decoding (the supplementary material provides
some details on these operations.)

The remarkable properties of HE schemes are not without
limitations. First, the set of functions that can be computed
in ciphertext space is very restricted. Second, the compu-
tational complexity of the HE scheme depends primarily on
the level of multiplication (i.e., the degree of the polynomial
being evaluated) carried out on the encrypted data. Third,
the ciphertext size increases considerably after encryption.
Fourth, random noise is added to encrypted values for secu-
rity reasons that varies with the type of operation (e.g., mul-
tiplication increases noise much more than addition). If this
noise grows too large, then decryption yields incorrect results.
There are three basic approaches to implement HE (see, e.g.,
Acar et al., 2018):

partially homomorphic encryption (PHE), which allows only
one type of operation to be executed on encrypted values an
unlimited number of times.

somewhat homomorphic encryption (SWHE), where the size
of the ciphertext grows with each homomorphic operation
and hence the maximum number of allowed homomorphic
operations is limited.

fully homomorphic encryption (FHE), which supportsanun-
limited number of additions and multiplications (Gentry, 2009).
This property makes FHE the most sophisticated HE scheme
and the “holy grail” of modern cryptography. The FHE scheme
supports basic arithmetic computations on encrypted data.
Despite being a potential cryptographic technique, however,
some FHE schemes remain impractical for real-world appli-
cations due to their computational overhead.

2.2. Machine Learning with Encryption

Any ML algorithm trains on some training dataset tr, fits
amodel‘s parameters M, and finally tests on a testing dataset
ts. Therefore, in principle, there are eight possible combina-
tions or scenarios to introduce privacy via encryption to the
learning process by encrypting (or leaving unencrypted) each
of these three components. Table 1 summarizes those eight
scenarios; below, we provide more details on them and their
connections to the present article. We use 0 to denote an un-
encrypted component, where it still can only be encrypted
using the public key kj, of another component without hav-
ing access to its private key kg, and we use 1 to denote an en-



Table 1: The eight possible scenarios of encrypting the three components:
the training dataset tr, the ML model parameters 4/, and the testing dataset
ts.

# tr M ts Literature Dataset ML Enc. Library

0 000  Ordinary ML

1 001 Our present article MSK many SEAL
Dowlin et al. (2016) MINIST NN SEAL
Hesamifard et al. (2017) MINIST, CIFAR-10 DNN Helib

2 010 Bost et al. (2015) Multiple NB,HP, DT  self-implementation

3 011 —

4 100 Graepel et al. (2013b) Wisconsin FDA Magma
Aslett et al. (2015a) Multiple NB, RF EncryptedStats
Nandakumar (2019) MNIST6 DNN7 HElib

5 101 —— Not possible under the current theory

6 110

—— Not practical: training on encrypted data already produces encrypted model

crypted component, where its private key kg is not available
for the other two components.
Scenario 0is denoted by the binary combination 000, when

tr, M, and ts are all not encrypted; this is the typical ML paradigm,

where no privacy is of concern.

Scenario 1 is denoted by 001, where only ts needs to be
encrypted; this is the scenario of the present article, as Sec-
tions 3 and 4 describe. In such a scenario, since the model
has access to an unencrypted training set, such as a public
dataset, only the client data ts, which could be patients’ genome
records, are sensitive. Although the standard homomorphic
property as defined in (1) would imply that ¢ must be en-
crypted with £, to predict on an encrypted ts, this is not the
case for our work, which leverages special techniques imple-
mented in SEAL Microsoft (2020), that allow encryption with
plain-text multiplication with the caveat that the results them-
selves are encrypted and can only be decrypted with k5. Re-
search exists in this category but in areas of application other
than precision medicine. Dowlin et al. (2016) showed that a
cloud service is capable of applying a neural network (NN) to
encrypted ts to make encrypted predictions and return them
in encrypted forms. They constructed a convolution NN (CNN)
model from the unencrypted MINIST dataset and then pro-
duced a simpler FHE-friendly version of the CNN constructed
only from addition and multiplication operations so that the
parameters could be encrypted using the public key of the
private testing dataset ts. Hesamifard et al. (2017) developed
new techniques to allow testing CNN on encrypted ts. First,
they designed methods to approximate the activation func-
tions commonly used in CNNs with low-degree, FHE-friendly
polynomials. Then, they trained a CNN on unencrypted tr
with the approximation polynomials instead of the original
activation functions. Finally, they converted the trained CNN
to make predictions on encrypted ts.

Scenario 2 is denoted by 010, where the model is trained
on an unencrypted training dataset tr. However, the model
parameters themselves are then encrypted, which may imply
privacy in tr, as well if the training is pursued locally where tr
resides. Although the testing data ts is denoted by 0, it must
be sent to M encrypted with its public key, as it is not pos-
sible, according to the theory of FHE, to pursue binary op-

erations on encrypted numbers (parameters of M) and un-
encrypted numbers (ts), without the results being encrypted
and only decryptable with the same kg that can decrypt M.
The virtue of scenario 2 is that it entails more freedom in choos-
ing the model M as opposed to scenarios 4-7, where tr is en-
crypted and a stringent limitation is incurred for choosing the
model M that can train on encrypted data. We are not aware
of any literature that applies scenario 2 explicitly; however,
Bost et al. (2015) provided a very nested, layered model that
could be classified as 010 scenario, but without relying solely
on HE. They implemented a decision tree, naive Bayes and
hyperplane decision that could test (not train) on encrypted
data and built their models using cryptographic “building blocks”
that emphasized protecting the model parameters and test
data. They also used garbled circuits to compare encrypted
data, which allowed a construction of argmax with alterations
to ensure the ordering was not leaked. However, this intro-
duced k-1 round trips between the party performing argmax
and the party that can perform decryption. These building
blocks allowed the implementation of decision tree, naive Bayes,
and hyperplane decision with some minor changes. The build-
ing blocks also allowed the construction of other ML methods
and a combination of methods using AdaBoost, which the au-
thors demonstrated.

Scenario 3 islike 2 in that the model is trained on an unen-
crypted tr, and ‘s parameters are then encrypted; however,
the test dataset ts is also encrypted with a different ks than
M. Since there is no known method in the literature that al-
lows the use of binary operations on two numbers encrypted
with different kg, scenario 3 (011) is not theoretically feasible
under the current theory of cryptography.

Scenario 4 is denoted by 100, where an ML model is trained
on encrypted tr (as in scenarios 5-7, as well). Hence, the
model M will have encrypted weights by product, and the
testing data must be sent to M encrypted with the same pub-
lic key of tr, as explained above. Therefore, the reason sce-
nario 5 (101) is not theoretically possible is the same as sce-
nario 3. Furthermore, scenarios 6 and 7 (11x) are not of any
practical interest, since the produced encrypted M does not
need further encryption; this is possibly the reason for the ab-
sence of literature on these two scenarios. Under scenario 4,
Graepel et al. (2013a) defined a fully confidential version of
linear means and Fisher’s discriminant analysis (FDA), which
can train and test on encrypted data. Linear means are rewrit-
ten to avoid division when learning the weights. The resulting
decision function returns a multiple of the original decision
function with the same sign. However, FDA requires the in-
verse of the covariance matrix to obtain the feature weights.
This is found using gradient descent, the 1" iteration of which
is shown to be a d-degree polynomial, where d = 2(r — 1) +
1. Aslett et al. (2015a) provided a completely random forest
(CRF) implementation that could train and test on encrypted
data. Among other alterations to the algorithm, the key dif-
ference was encoding feature values using one hot encoding
after quantile partitioning. CRFs have important benefits, es-
pecially learning incrementally. The authors also provided a
naive Bayes classifier that could train and test on encrypted



Client
* encrypts genomic data using public key.
+ responsible for key management.
* decrypts predicted scores using private key.
« preforms classifier calibration.
performs hard-threshold classification.

Encrypted Encrypted
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* stores tr. « encrypts parameters of M.

Figure 1: A block diagram of a privacy-preserving MLE framework for preci-
sion medicine that can accommodate any of the eight scenarios of Table 1.
Each block contains the functionalities that can be performed in that block
depending on the adopted scenario.

data. It avoided parametric Gaussian modeling of predictors
by directly modeling the decision boundary z ;m ;+b; for each
predictor X ;. This required a homomorphic implementation

of regression, which they also provided. Hesamifard et al. (2017)

discussed the computational complexity that makes NN train-
ing on encrypted data impractical despite being theoretically
possible. Other authors have targeted simpler ML algorithms

to avoid heavy computations of encrypted NNs. However,

Dowlin et al. (2016) show that training CNNs on encrypted

data is possible. If all the activation functions and the loss

function are polynomials, back-propagation can be computed
using only addition and multiplication. However, high-degree
polynomials used during back-propagation make it compu-

tationally prohibitive. Nandakumar (2019) evaluated the fea-

sibility of training NNs on encrypted data completely non-

interactively. His proposed system used the FHE toolkit HE-

lib to implement stochastic gradient descent (SGD) for train-

ing. He used “ciphertext packing” to minimize the number
of required bootstrapping operations and to enable the par-

allelization of computations at each neuron, thereby signifi-

cantly reducing the computational complexity. This, in com-

bination with simplifying the network architecture, allowed
him to practically train neural networks over encrypted data
despite the computational hurdles.

3. AMachine Learning with Encryption (MLE) Framework

In this section we propose a simple four-component sys-
tem architecture to accommodate any of the eight scenarios
of encryption in Table 1. This simple architecture, illustrated
in Figure 1, fulfills the privacy-preserving requirements that
are mandatory for future ML-based precision medicine. The
components of this architecture are explained below.

Database (tr) is areservoir for both publicly available genetic
datasets, which do not require preserving privacy, and pri-
vate datasets, which need encryption prior to public sharing.
Whenever a new dataset is revealed, it can be added to this
reservoir for more accurate future analytics.

ML Construction (M) isthe engine that constructs models—
including transformation, feature selection, resampling, etc.—
from the datasets in the database module. This module can
be open-sourced for the entire community and can always be
updated as new ML methods merge or more accurate mod-
els are constructed. In addition, the module can train on its
own private dataset, which is not part of the database mod-
ule, and then encrypt its model parameters M. Alternatively,
it can establish a protocol with the database module to train
on the private dataset without encryption for a wider range
of algorithms and then encrypt the model parameters to pre-
serve the dataset’s privacy (Cases 01x in Table 1).

Client (ts) is where the testing data, which is probably sensi-
tive and confidential, resides and needs analytics. The owner
of this data can opt to encrypt it, and this encryption can
be provided via simple software components installed on the
client side available via communication with the server. Next,
the encrypted testing data is sent to the server for prediction.
Finally, the encrypted predicted scores are received back. The
client should be responsible for setting the threshold on the
scores for the final hard decision or classification. This is to
achieve a required level of aggressiveness to control the per-
class sensitivity, such as in the case of the binary classification
problem, in which the threshold provides the trade-off be-
tween the sensitivity and specificity and thus controls the op-
erating point on the receiver operating characteristic (ROC)
curve.

Server is the cloud engine for prediction. On the one hand,
it interfaces with the client to receive the encrypted dataset
for prediction and sends back encrypted predictions, and on
the other hand, it interfaces with ML construction to receive
a particular predictive model. Based on the underlying en-
cryption scenario (Table 1), the server receives the appropri-
ate public key from these two modules. In addition, for the C-
class classification problem and for greater privacy preserva-
tion for the model and/or the dataset (tr), the server can op-
tionally multiply the scores s¢(x),c=1,...,C, where x € ts, by
arandom integer. This keeps the relative C' scores unaffected.
However, this disallows the client from inferring information
about the model weights (M) by sending pseudo-feature vec-
tors in the form x = (0,...,1,0,...) (only one feature is 1; the
others are zeros).

To illustrate the utility of this simple architecture, we demon-
strate how scenario 1 can be implemented in a very practi-
cal setup. When ML training is based on public data (tr), the
weights of the trained model 2 are deployed on the serverin
unencrypted form, while the queries (ts) must be encrypted
for security sensitivity. Under a hospital’s public key, many
parties may also be eligible to upload data (e.g., doctors and
patients). The server is used for deploying ML implementa-
tions M. In this case, the hospital sends encrypted data to
the server. In the server, many computations can be done
on the encrypted data and the results sent back to the hos-
pital. Only the hospital can decrypt the data because the pri-
vate key is provided only on the hospital side. In the follow-



ing section, we conduct a large set of ML experiments under
the MLE framework and scenario 1 on one of the most recent
high-quality genomic datasets.

4. Experiments

In this section, we concisely describe the dataset (more
details are provided in the supplementary materials), explain
the different ML experiments to build the predictive model,
demonstrate computational aspects of the encryption pro-
cess, and finally introduce the open-source platform of the
whole project.

4.1. MSK-IMPACT Dataset

For our MSK dataset, we tried 2,240 different ML configu-
rations that were the cross products of five methods for trans-
forming features, two methods for dropping the least impor-
tant features, four values for the number of dropped features
p, and three classifiers, LR, SVM, RE each with several sets of
tuning parameters. The detailed parameters of these 2,240
experiments are listed in Table 2. The best three configura-
tions of the 2,240 are listed in Table 3 and were achieved by
LR, SVM, and RE respectively. LR, after feature standardiza-
tion, x? selection, and dropping the least informative 2,500
features, achieved the highest accuracy of 77.47% (using 10-
fold cross validation), which was higher than that obtained
by Penson et al. (2020) on the same dataset.

Although the model was trained on MSK, a public dataset

MSK-IMPACT, a clinical sequencing cohort dataset (Zehir et althat requires no encryption, the final model parameters (Eq. (2))
2017), comprises genomic patient records extracted from tumor- must be encrypted since they will be multiplied by the en-

tissue samples taken from 10,336 patients. Since tumors are
usually the results of many mutations, there are more than
100,000 discovered mutations. The dataset consists of 11 files
linked together with sample_ID and Patient_ID and con-
tains various information about the somatic mutations mu-
tations within the genomic samples, including mutation sig-
nature, copy number alternation, and gene fusion data files.
“With maturing clinical annotation of treatment response and
disease-specific outcome’, according to (Zehir et al., 2017), “this
dataset will prove a transformative resource for identifying novel
biomarkers to inform prognosis and predict response and re-
sistance to therapy... Tumor molecular profiling is a fundamen-
tal component of precision oncology, enabling the identifica-
tion of genomic alterations in genes and pathways that can be
targeted therapeutically”.

The authors of the dataset tried to associate “biomark-
ers” with a particular type of cancer using simple methods
of association, such as relative frequency. Then, to illustrate
the usefulness of their DNA-sequence approach, they lever-
aged the Oncology Knowledge Base (Chakravarty et al., 2017)
to see how many of the mutations they detected (stratified
by cancer type) were known to be actionable, that is, have
an associated treatment or gene therapy. Recently, a subset
of the MSK-IMPACT-2017 dataset with a portion of these fea-
tures, somewhat lightly engineered, was used by Penson et al.
(2020) with a more ML-oriented approach. Using logistic re-
gression (LR), they achieved an overall accuracy of 75% in de-
tecting the cancer type from genetic information; yet, their
approach did not consider privacy preservation.

4.2. Building the Model

In addition to the predictive power required for any ML
model, the objective of privacy preservation via FHE requires
the final ML model be FHE-friendly, that is, based only on
addition and multiplication operations, as was explained in
Section 2. Some ML models cannot satisfy both of these ob-
jectives. For example, a random forest (RF) has binary deci-
sion splits that are not FHE-friendly. However, although lin-
ear models (LM), logistic regression (LR), support vector ma-
chines (SVM), and many others are all HE-friendly, they may
not perform well on a particular dataset.

crypted features of the testing data. The next section explains
the encryption of both the testing dataset and the parameters
of the final trained model. Since we are using FHE, we must
convert all floats to integers. To do this, we scale all floats by
some 10, where d is the number of decimal places included
in the scaled floats, therefore controlling the computational
precision. After scaling, we round off any remaining decimal
to achieve the final integers. The effect of precision on the ac-
curacy of the best model is illustrated in Table 4, where it is
clear that a multiplier of 10* would be adequate.

4.3. Encrypting the Testing Dataset
4.3.1. The SEAL library

Different libraries exist for implementing HE (Carey, 2020);
among them, SEAL (Microsoft, 2020) is an open-source HE
library developed by the cryptography and privacy research
group at Microsoft. The library is written in C++ and can run
in many environments. SEAL allows addition and multiplica-
tion to be performed on numbers. Other operations, such as
encrypted comparison, sorting, and regular expressions, are
in most cases not feasible on encrypted data using this tech-
nology. SEAL supports two FHE schemes: the Brakerski/Fan-
Vercauteren (BFV) scheme, which allows modular arithmetic
to be performed on encrypted integers, and the Cheon-Kim-
Kim-Song (CKKS) scheme, which allows addition and mul-
tiplication on encrypted real or complex numbers, but this
latter scheme yields only approximate results.

4.3.2. Computational Aspects of Encryption Operations
From the previous section, a C'-class LR model was the
winner for this dataset; formally, this model is given by

Pr(G = | X =) = egp—l(s"’), 2a)
1+3,2 exp(s))
Se =weo twpw, c=1,...,C, (2b)

where, C' = 22 types of cancer, the patient feature vectoris x €
RP p = 5,599; and the testing dataset ts to be encrypted has
N =7,791 patient records. By construction, the MLE frame-
work requires sending the encrypted score of each testing ob-
servation to the client rather than the final hard decision for



Table 2: Different configurations of feature pre-processing and classifiers tried on the dataset: 5 x 2 x 4 x (8 + 36 + 12) = 2,240 different configurations.

Feature Preprocessing

Transformation Selection Reduced p Classifier Parameters
None 0 LR penalty: 11,12; C: 0.1, 1, 10; solver: liblinear, Ibfgs
Staqdardlze MI 2500 SVM kernel:. linear, poly, rbf‘; penalty: 11,12; C:0.1, 1, 10;
MinMax 9 loss: hinge, squared_hinge
% 3500 M e .
log(x) criterion: gini, entropy; n_estimators: 100, 200, 300;
4500 RF

log(x+1) bootstrap: False, True

Table 3: The best three configurations in Table 2. The first two are the LR and SVM, which are HE-friendly.

Feature Preprocessing Classifier Parameters Accuracy
Transformation Selection Reduced p (%)
Standardize X2 2500 LR C: 1; Penalty: 12; Solver: liblinear 77.47
None X2 2500 SVM kernel: linear; C:0.1; penalty: 12; loss: squared_hinge 77.23
Standardize MI 2500 RF criterion: gini; n_estimators: 200; bootstrap: False 73.92

Table 4: Accuracy and percentage of score ranking of the best model at dif-
ferent multiplier precision.

Precision 10! 10? 10% 10* 10° 106 107 108 10°
Accuracy (%) 73.88 77.41 7747 7741 7741 7741 7741 7741 7741
agreeingranks (%) 3649 70.80 9582 9941 99.94 100.0 100.0 100.0 100.0

Table 5: Effect of encryption parameters on encryption time. All libraries
support automatic selection of CoeffModulus. NA indicates noise ~ 0

# polyModulusDegree PlainModulus Time in Sec.
1 8192 2048 3456

2 2048 1024 96

3 1024 512 NA

4 1024 1024 NA

5 2048 1024 87

6 2048 512 88

7 2048 1499 94

8 2048 786433 89

trading off the types of error. In addition, from (2), the nu-
merator is a monotonic exponential function and the denom-
inator is only for scaling, so probabilities sum to 1. There-
fore, it is sufficient to encrypt the linear term s. and treat it as
the final score sent to the client. We applied the BFV scheme
implementation of SEAL to perform this weighted summa-
tion term. The encryption operations are explained as fol-
lows. (1) Scale and encrypt the feature list. (2) Multiply en-
crypted features by plain text weights and sum encrypted val-
ues along with the scaled bias step. (3) Decrypt the results
and repeat step 2 for each set of coefficients, i.e. each class.
We tested different encryption parameters to compare com-
putational time. Table 5 illustrates the computational time
required as a function of a subset of the parameter space.
Rows 3 and 4, caused the ciphertext noise budget to reach
zero. This noise budget is determined by the encryption pa-
rameters, and once the noise budget of a ciphertext reaches

zero, it becomes too corrupted to be decrypted. Thus, it is
essential to choose parameters large enough to support the
desired computations; otherwise, the correct result is impos-
sible to obtain, even with the secret key. The values in row
five give the best average per sample prediction time after
testing on the entire dataset (7791 records), which spanned
over seven days of computations on an i7core-2.5GHz-16G
machine. From Eq. (2b), this time is obviously 7' = NC((p +
DE+M+A) +D), where F/, M, A, and D are the encryption,
multiplication, addition, and decryption times, respectively.
During this experiment, IntegerEncoder was used to en-
code integers to BFV plain-text polynomials. IntegerEncoder
is easy to understand and uses simple computations; how-
ever, there are more efficient approaches such as BatchEn-
coder, which can be investigated in future works.

4.4. MLE Framework: Opensource and Deployment

The official repository of this project (Briguglio et al., 2021)
contains three sets of open-source resources. (1) The Python
code that produced all the ML experiments from Section 4 is
offered, organized, and commented on to challenge the ML
community to develop more accurate, predictive models. (2)
The system design and client-server implementation and im-
plementation code of the MLE framework from Section 3 is
offered to the software engineering community to propose
more system functionalities. (3) A free cloud service that en-
capsulates the best ML model and the client-server design is
offered as a simple end-user interface to individuals in the
medical field to test on particular cases. We hope this kind of
dissemination to different communities helps the evolution
of privacy-preserving ML for precision medicine.

5. Conclusion and Suggested Future Work

Toward building privacy preserving Machine Learning (ML)
models for precision medicine, this article has three contri-



butions. First, we proposed and implemented a machine learn-
ing with encryption (MLE) framework that accommodates dif-
ferent scenarios for encrypting the ML training-testing pro-
cess. Second, and most importantly, we analyzed the recent
high-quality clinical sequencing cohort dataset MSK-IMPACT
and provided a predictive model that is both secure and out-
performing the most recent predictive model built for the same
dataset. Third, we offered the ML, software engineering, and
precision medicine communities free resources: respectively,
the client-server implementation of the framework, the Python
code of all the ML experiments, and a cloud service to test ge-
nomic cases. These offerings contribute to the evolution of
the privacy-preserving analytics of precision medicine.

From Table 1, it seems that scenario 2 is an open venue for
incorporating more accurate ML models on public datasets.
As discussed in Section 2, Bostet al. (2015) implemented a
very sophisticated scenario that can be classified indirectly
as scenario 2. They assumed that the owner of the dataset ts
is responsible for testing the model #/. They designed their
model encryption in a nested way to preserve its privacy and
protect it from the owner of ts to learn anything about its
structure. Because of our MLE framework, we do not need
these constraints, since the computations run on the server
side, not the client side. Therefore, under the MLE frame-
work, future work can benefit from scenario 2 by designing
more ML models on datasets and encrypting the model pa-
rameters if needed.

6. Acknowledgment

The authors thank the National Research Council (NRC)
for funding the project under the Collaborative Research and
Development Grant (award number CDTS-102).

References

Acar, A., Aksu, H., Uluagac, A.S., Conti, M., 2018. A survey on homomorphic
encryption schemes: Theory and implementation. ACM Comput. Surv.
51, 1-35.

Aslett, L.J.M., Esperan ¢ a, PM., Holmes, C.C., 2015a. Encrypted statistical
machine learning: new privacy preserving methods. arXiv:1508.06845v1 .

Aslett, L.J.M., Esperanca, PM., Holmes, C.C., 2015b. A review of homo-
morphic encryption and software tools for encrypted statistical machine
learning.

Bost, R., Popa, R.A,, Tu, S., Goldwasser, S., 2015. Machine Learning Classifi-
cation over Encrypted Data.

Briguglio, W, Moghaddam, P, Yousef, WA, Traore, I, Ma-
mun, M., 2021. Machine Learning via Encryption (MLE)
Framework in  Precision Medicine to Preserve  Privacy.

N., 2017. Oncokb: A precision oncology knowledge base. JCO Precision
Oncology, 1-16.

Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Werns-
ing, J., 2016. Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy, in: 33rd Int. Conf. Mach. Learn. ICML
2016, pp. 342-351.

Gentry, C., 2009. Fully homomorphic encryption scheme.

Graepel, T, Lauter, K., Naehrig, M., 2013a. Ml confidential : machine learn-
ing on encrypted data, in: Kwon, T., Lee, M.K., Kwon, D. (Eds.), Informa-
tion Security and Cryptology - ICISC 2012 (15th International Conference,
Seoul, Korea, November 28-30, 2012, Revised Selected Papers), Springer,
Germany. pp. 1-21. Conference; 15th International Conference on Infor-
mation Security and Cryptography; 2012-11-28; 2012-11-30 ; Conference
date: 28-11-2012 Through 30-11-2012.

Graepel, T, Lauter, K., Naehrig, M., 2013b. ML confidential: Machine learn-
ing on encrypted data, in: Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), pp. 1-21.

Hesamifard, E., Takabi, H., Ghasemi, M., 2017. CryptoDL: Deep Neural Net-
works over Encrypted Data .

Microsoft, 2020. Microsoft SEAL (release 3.6).
https://github.com/Microsoft/SEAL. Microsoft Research, Red-
mond, WA.

Nandakumar, K., 2019. Towards Deep Neural Network Training on Encrypted
Data. IEEE Conf. Comput. Vis. Pattern Recognit. Work. .

Penson, A., Camacho, N., Zheng, Y., Varghese, A.M., Al-Ahmadie, H., Razavi,
P, Chandarlapaty, S., Vallejo, C.E., Vakiani, E., Gilewski, T., et al., 2020.
Development of genome-derived tumor type prediction to inform clinical
cancer care. JAMA oncology 6, 84-91.

Rahman, M.S,, Khalil, I, Alabdulatif, A., Yi, X., 2019. Privacy preserving ser-
vice selection using fully homomorphic encryption scheme on untrusted
cloud service platform. Knowledge-Based Syst. 180, 104-115.

Rivest, R., Adleman, L., Dertouzos, M., 1978. On Data Banks And Privacy Ho-
momorphism. Technical Report. Massachusetts Institute of Technology.

Sathya, S.S., Vepakomma, P, Raskar, R., Ramachandra, R., Bhattacharya, S.,
2018. A Review of Homomorphic Encryption Libraries for Secure Compu-
tation .

Zehir, A., Benayed, R., Shah, R.H., Syed, A., Middha, S., Kim, H.R., Srinivasan,
P, Gao, J., Chakravarty, D., Devlin, S.M., et al., 2017. Mutational land-
scape of metastatic cancer revealed from prospective clinical sequencing
of 10,000 patients. Nature medicine 23, 703.

https://github.com/isotlaboratory/Healthcare-Security-Analysis-MLE.

Carey, A., 2020. On the Explanation and Implementation of Three Open-
Source Fully Homomorphic Encryption Libraries Fully Homomorphic
Encryption Libraries.

Chakravarty, D., Gao, J., Phillips, S., Kundra, R., Zhang, H., Wang, J., Rudolph,
J.E., Yaeger, R., Soumerai, T., Nissan, M.H., Chang, M.T., Chandarlapaty,
S., Traina, TA., Paik, PK., Ho, A.L., Hantash, EM., Grupe, A., Baxi, S.S.,
Callahan, M.K., Snyder, A., Chi, P, Danila, D.C., Gounder, M., Harding, J.J.,
Hellmann, M.D,, Iyer, G., Janjigian, Y.Y.,, Kaley, T., Levine, D.A., Lowery, M.,
Omuro, A., Postow, M.A., Rathkopf, D., Shoushtari, A.N., Shukla, N., Voss,
M.H., Paraiso, E., Zehir, A., Berger, M.E, Taylor, B.S., Saltz, L.B., Riely, G.J.,
Ladanyi, M., Hyman, D.M., Baselga, J., Sabbatini, P, Solit, D.B., Schultz,


https://github.com/isotlaboratory/Healthcare-Security-Analysis-MLE
https://github.com/Microsoft/SEAL

Supplementary Material
7. Genomics

In this section we provide a more detailed description for
the MSK-IMPACT dataset (Zehir et al., 2017).

7.1. Synopsis: MSK-IMPACT 2017
Data_CNA:

In this file, each column is a sample, and each row is a
feature. Each feature is represented by a string (e.g., EGFR)
which is the HUGO symbol for the corresponding gene. The

feature values are floats, which represent the copy number alteration

of the feature’s gene. Positive and negative numbers repre-
sent duplication or deletion of repeat nucleotides respectively.

Data_Fusion:

This file structure is not as straightforward from an ML
perspective. Some general information is easily parsable, but
more specific information contained in the comments column
requires more creative approaches and possibly expert (bio-
chemical background) consultation. The file comprises many
rows, each with a gene HUGO symbol and sample ID, among
other fields (see below). Each row describes half a fusion in
which two genes are mixed together via deletion, inversion,
or translocation. Since two genes are involved, two rows de-
scribe each half of the fusion effect. The only time this is not
true is when the fusion is intergenic. This is when a gene is
mixed with DNA material which is located between genes,
that is, is non-coding. In this case only the information for
the coding DNA material in the fusions is listed in a single
row. The remaining fields in each row are as follows:

e Huge_Symbol: unique gene identified for the 410 genes se-
quenced with some being post-fixed with an Arabic nu-
meral, a Latin letter, or in special cases both to indicate
membership in a gene family

e Entrez_Gene_ID: a gene integer ID used by the National
Center for Biotechnology Information (NCBI), only present
for two samples

¢ Center: where the sample was taken; set to “MSKCC-DMP”,
signifying the Memorial Sloan Kettering Cancer Center, for
all samples in the file

e Tumor_Sample_Barcode: sample ID
» Fusion: indicating which gene(s) are involved in the fusion

* DNA support: “yes” for all samples, indicating that fusion
was detected with DNA sequencing

e RNA support: “unknown” for all samples, indicating that
RNA-sequencing was not preformed
¢ Method: is “NA” for all samples

» o«

¢ Frame: either “unknown”, “out-of-frame”, or “in-frame” in-
dicating the effect of each fusion

¢ Comments: short comments written by practitioners giv-
ing specifics of the mutation

Data_SV:

structural variation, is a more general classification for mu-
tations than fusion mutations or copy number variations. There
are 31 categorical, numerical, and text features describing the
type, location, and prevalence of the structural variances.

* Annotation: specific type and location of structural varia-
tion

* Breakpoint_Type: the type of breakpoint, that is, the junc-
tion between normal and rearranged

¢ Comments: small notes on some mutations

¢ Confidence Class: indicates the confidence in the final se-
quencing, and whether it was automatically or manually
determined

The remaining features are not documented in a single source
but detail various aspects of the structural variations such as
sequencing method, the quality of sequencing, comparison
with germline DNA, variation location, and so on.

Data_Mutation_Significance_Contribution:

This file contains 30 numerical features corresponding to
known mutation signatures. For each sample, the feature value
is the percentage of mutations explained by the correspond-
ing signature

Data_Mutation_Significance_Confidence:

30 numerical features that correspond to the same mutation signati

found abvove, but the feature value is the confidence in the
contribution scores instead. The mechanism used to deter-
mine confidence in contribution score is described in Huang
(2018)"

Data_Mutation_mskcc:

This file contains 46 columns describing mutations using
a subset of the columns found in the mutation annotation
format (MAF) format. All columns and their descriptions can
be found in the GDC MAF Format?, except two:

* Hotspot: zero for all samples; was not configured when the
table was made, so the same label was applied to all muta-
tions

* cDNA_change: the nucleotide change described with HGVS express

Data_Mutation_extended:
This is identical to Data_Mutation_mskcc but is missing
the “cDNA_change” column

Data_Gene_Panael_Matrix:

This file records which type of panel was used to extract
genomic data from the sample: the 341 gene or 410 gene panel.
The 341 genes are a subset of the 410 genes, so this distinction
does not manifest in the other records because when creating
a record from a sample that used the 341 gene panel; the 69
genes are not tested for were marked as not detected

Thttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860213/
2https://docs.gdc. cancer.gov/Data/File_Formats/MAF_Format/


https://cancer.sanger.ac.uk/cosmic/signatures_v2
https://www.ncbi.nlm.nih.gov/variation/hgvs/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860213/
https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/

Data_cna_hgl9:

This file is the output of DNAcopy, which is an open-source
software package written in R that “identifies genomic regions
with abnormal copy number”, that is, copy number alterations.
Each row in the file corresponds to one such region or “seg-
ment” and has five columns describing it:

e ID: the sample ID

e chrom: the chromosome the segment is in

* loc.start: startlocation of the segment

* loc.end: end location of the segment

e num.mark: number of probes bound to the segment

e seg.mean: the mean value, across all probes, of the seg-
ment; represents the log2-ratio of tumor copy number
to normal copy number; a positive value indicates that the
tumor has a higher copy number and vice versa

Data_clinical_patient:
Each row corresponds to a patient and contains five columns:

¢ #Patient Identifier: the patient ID
* Sex: the patient’s gender
» Patient’s Vital Status: whether they are deceased or alive

¢ Smoking History: whether they previously, currently, or never
smoked

e Overall Survival (Months): How long they survived since
initial diagnosis; blank if they are currently alive or died
after last follow up

¢ QOverall Survival Status: the same as Patient Vital Status with
a slightly different format

Data_clinical_sample:
Each row corresponds to a sample and contains 16 columns:

o #Patient Identifier: the patient ID
¢ Sample Identifier: the sample ID

e Sample Collection Source: whether the sample was col-
lected in house at MSKCC or by another party

¢ Specimen Preservation Type: method used to preserve the
sample

* Specimen Type: how the specimen was collected
e DNA Input: amount of DNA in the sample in nanograms

¢ Sample Coverage: number of unique reads that included a
given nucleotide during sequencing

e Tumor purity: percentage of cancer cells in sample

¢ Matched Status: whether the patient was matched with a
gene therapy

e Sample Type: whether the sample came from the primary
or metastatic tumor

* Primary site: the location of the primary tumor

¢ Metastatic site: where the metastasis occurred

e Sample Class: type of cancer tissue (is tumor for all sam-
ples)

* OncoTree Code: unique code for specific tumor type
* Cancer Type: type of cancer that caused the tumor

* Cancer Type: Detailed: more specific sub-type of the can-
cer

7.2. Glossary

breakpoint the beginning or end point of a structural varia-
tion

chromosomal inversion mutation in which a segment of a
chromosome is reversed

chromosomal translocation two types; Robertsonian translo-
cation, which occurs when two non-homologous chromosomes
get attached, and reciprocal translocation, which oc-
curs when parts are exchanged between two non-homologous
chromosomes

chromosome a molecule that contains part of the genome
in a condensed, manageable package

copy number alteration a change in copy number that has
arisen in any cell of the body after conception

fusion when two previously independent genes are combined
or fused together that results from chromosomal translocation,
interstitial deletion, and chromosomal inversion

gene family a set of several similar genes formed by duplica-
tion, generally with similar function

genome genetic material of an organism
HUGO symbol unique gene identifier derived from the HUGO gene n¢

in-frame a mutation, where the translation into protein is
not completely disrupted, creating still-functional pro-
teins

interstitial deletion a mutation in which part of the DNA (not
including the terminal portion of a chromosome) is left
out during DNA replication

metastasis secondary malignant growth distant from the pri-
mary site of cancer

mutation alteration of the nucleotide sequence of the genome

mutation signatures characteristic combinations of mutations
arising from specific mutation processes

out-of-frame a mutation, where the translation into a pro-
tein is completely disrupted, creating non-functional
proteins.


https://bioconductor.org/packages/release/bioc/html/DNAcopy.html
http://oncotree.mskcc.org/#/home
https://www.genenames.org/about/guidelines/

primary site the location on the body where the first tumor
progression begins

somatic mutation genetic alteration acquired by cells that
are the progeny of cancerous cells

structural variation any kind of structural variation to the
genome

8. Homomorphic Encryption

Below is an example presented by Sathya et al. (2018) to
introduce the high-level concept of Homomorphic Encryp-
tion (HE).

1. Let m be the plain text message.

2. Let a shared public key be a random odd integer p.
3. Choose arandom large ¢, small r, |[r| < p+2.
4

. Ciphertext ¢ = pq+2r+m (ciphertext c is close to multiple
of p).

Perform homomorphic addition/multiplication as required.

o

6. Decrypt: m = (c modp) mod 2.

Homomorphic addition can be illustrated as follows

ca=qxp+2xri+m (3a)
Co=QXP+2xXTr9+Mmy (3b)
c1+c2=(q1+q2) xp+2x(ry +72) + (M1 +mp), (3¢

and Homomorphic multiplication as follows

cl=qlxp+2xrl+ml (4a)
Co=QaXp+2xT2+MY (4b)

caxcp=((c1 x@)+q1 xcaxq1xq2) xp+
22 %711 X7ro+1T] XM2 +M XT2) +M X M2. (4c)

Although homomorphic encryption holds massive potential

in theory, it suffers from notable shortcomings in practice. In
many cases, it is limited to only addition and multiplication
meaning many functions must be approximated with high
degree polynomials which incur a large computational over-
head. Even when using only this subset of operations, homo-
morphic operations are orders of magnitude slower than con-
ventional operations on plaintext data. Homomorphic en-
cryption also leads to substantial ciphertext expansion of a
magnitude proportional to the targeted security strength. Fur-
ther, homomorphic encryption schemes do not allow unlim-
ited operations without first decrypting and re-encrypting or
running an expensive denoising operation. These and other
considerations make homomorphic encryption not easily adapt-
able to practical applications without substantial foresight and
planning. For a more in depth review of the limitations and
practical considerations of homomorphic encryption (Aslett et al.,
2015b).
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