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ABSTRACT

Unsupervised style transfer that supports diverse input styles using only one trained generator is a

challenging and interesting task in computer vision. This paper proposes a Multi-IlluStrator Style

Generative Adversarial Network (MISS GAN) that is a multi-style framework for unsupervised im-

age-to-illustration translation, which can generate styled yet content preserving images. The illustra-

tions dataset is a challenging one since it is comprised of illustrations of seven different illustrators,

hence contains diverse styles. Existing methods require to train several generators (as the number of

illustrators) to handle the different illustrators’ styles, which limits their practical usage, or require to

train an image specific network, which ignores the style information provided in other images of the

illustrator. MISS GAN is both input image specific and uses the information of other images using

only one trained model.

Keywords: Generative Adversarial Networks, Image to Image Translation, Multi-style Transfer.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Many works have demonstrated the power of neural networks

in creating new images with artistic styles in the image-to-

image style transfer task following Gatys et al. [1]. In this task,

given a source content image from one domain and a style ref-

erence image from another domain, the generated image should

resemble the style of the reference image while maintaining the

semantic content of the source image. Style transfer can be used

in various computer vision applications such as artistic image

generation [2, 3], natural images to painting transfer [4], data

augmentation [5], transferring real-world scenes into cartoon

style [6], controlling features of a face image using another face

[7], transforming certain features of the scene [8], etc.

In various cases, mapping one domain to another is a multi-

modal task that entails learning an arbitrarily great number of

diverse styles. In this work, the term modality refers to a spe-

cific style in one domain, i.e., a specific artistic style in the il-

lustration domain. Thus, the concept of multi-modality style

transfer mapping refers to the task of learning to transfer from

one domain to another with multiple diverse styles (see Fig. 1).

For example, in mapping a given edge map image to a realistic

∗∗Corresponding author: noabarzilay11@gmail.com

shoe image, the generated shoe image can have a variety of dif-

ferent fashion design styles [8], which may be related to its de-

signer that usually uses similar shoe materials, colors, patterns,

etc. Thus, having the designer information when transferring

the style of a given image should improve results.

In this study, transferring an image from a source domain to

the target domain is done under the assumption that the map-

ping is multi-modal in nature. This task is challenging since

most style-transfer networks are uni-modal and thus will mix

information between different modalities or use only a single

image as input and thus miss the information available from

other images (especially the ones of the same modality).

Designing models that learn multi-modal style mapping may

be complicated due to the diversity of styles that can be found

in a given dataset. Several works have developed GAN-based

multi-modal image-to-image translation [8, 9, 10]. This work

develops a model that maps natural images to illustrations in

children’s books. It uses only one generator that is able to learn

the various illustrators’ styles available and is input specific.

As we show hereafter, the existing multi-modal solution does

not give satisfying results for this problem and existing ap-

proaches for children’s books illustrations require using a dif-

ferent model per illustrator [11].

Contribution. To address the style diversity, we propose a

http://arxiv.org/abs/2108.05693v1
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Fig. 1. Single modality mapping approaches compared to multi-modality mapping approaches. On the left: two approaches for single modality mapping.

The first is style transfer for a specific artistic style and the second is generating an arbitrary artistic style given a pair of content and style images. On the

right: the multi-modality mapping approach that receives a content image and outputs multiple images of diverse artistic styles.

novel framework which can learn multi-modality mapping for

children’s books illustrations. Instead of training a generator

for each illustrator, we introduce a new generator based on the

GANILLA generator [11], which is combined with an exist-

ing multi-modal state-of-the-art architecture called StarGAN v2

[9]. We enhance the GANILLA generator by adding residual

blocks to its decoder and show that its incorporation in Star-

GAN v2 improves the results. Moreover, to achieve a further

improvement, we propose adding a feature content objective

function to the StarGAN v2 framework. Each of these contri-

butions is validated with a corresponding ablation study. We

further demonstrate the importance of replacing the generator

in the StarGAN v2 framework architecture for the illustrations

dataset. Additionally, we utilize a dataset that consists of 7 of

the illustrators that were presented in [11] with an increased

amount of illustrations (see Table 1).

2. Related Work

GANs received wide attention in recent years since Good-

fellow et al. [12] pioneering work. They achieved impressive

results in various applications such as text to photo-realistic

image synthesis [13, 14], super-resolution [15], face synthe-

sis [16], colorization [17], etc. Karras et al. [18] introduced

StyleGAN, which integrates the Adaptive Instance Normaliza-

tion (AdaIN) style control mechanism [2] that provides some

control over attributes at different scales.

In recent years, several approaches for image-to-image style

transfer were developed. Part of them concentrated on learn-

ing input-based style transfer, i.e., learning the style of a spe-

cific input image [19, 20]. Gatys et al. [19] developed a neural

framework for image-to-image style transfer, where deep fea-

tures were used to represent the content, and a Gram matrix

was used to represent the style. Johnson et al. [20] introduced

the perceptual loss, which calculates the distance in the features

space of a pre-trained VGG network [21] between the output

and the reference image. This loss was proven to be efficient

for the image-to-image style transfer task.

Another strategy focused on learning arbitrary artistic style

given a set of content and style images [2, 3, 22, 23, 24]. Yet,

those works generate an output that is solely dependent on the

input, i.e., they do not support the generation of multiple di-

verse styles for a given input. Huang et al. [2] proposed a

network that uses AdaIN layers to control the style of the con-

tent image. In [22], a CoMatch layer was proposed to match

the second order feature statistics with the target styles. Xu et

al. [3] introduced a feed-forward network with encoder-decoder

architecture as the generator for arbitrary style transfer. In [24],

whitening and coloring transforms were proposed in the deep

feature space to directly match content feature statistics to those

of the style reference image. Sanakoyeu et al. [23] presented

style aware content loss for real-time HD style transfer, which

significantly improved stylization by capturing how style af-

fects content. Another approach tried to tackle the style di-

versity by learning a multi-modality mapping from the source

domain to the target domain [8, 9, 25, 26]. Zhu et al. [25] ex-

plored several different training objectives and network archi-

tectures for achieving multiple possible outputs in the image-

to-image translation task. In [26], an approach based on dis-

entangled representation was presented for producing diverse

outputs. Huang et al. [8] developed an architecture called MU-

NIT that assumes a partially shared latent space. Their archi-

tecture contains an auto-encoder that consists of a content en-

coder, style encoder, and decoder that uses a multilayer per-

ceptron (MLP) to produce a set of AdaIN parameters from the

output of the style encoder. The difference between these multi-

modality mapping approaches and single modality methods is

visualized in Fig. 1.

Recently, Choi et al. [9] introduced the StarGAN v2 frame-

work, where one of its main goals is producing images with di-

verse styles of a specific domain, hence, learning a multi-modal

distribution that represents the target domain. Their network

achieved unprecedented results and is now considered a state-

of-the-art architecture for generating diverse images across var-

ious domains. It consists of four main components: a discrim-

inator, a generator, and additional two components that create

the style code: The mapping network that generates it from a

randomized latent code, and the style encoder that extracts it

from a reference image. In this study, we adopt the StarGAN

v2 multi-modal framework [9] and combine it with an improved
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Fig. 2. MISS GAN Generator. The encoder of the generator is similar to the GANILLA encoder architecture [11]. The decoder of the generator contains

three residual blocks. The architecture of each residual block is shown in Fig. 3.

Fig. 3. Overview of the architecture of the residual blocks that are used in

the MISS GAN generator’s decoder

version of the GANILLA generator in order to create a genera-

tor that is capable of learning diverse illustrators’ styles.

3. The MISS GAN model

We turn to introduce now our proposed Multi-IlluStrator

Style Generative Adversarial Network (MISS GAN) for image

to illustration translation. It combines the StarGAN v2 frame-

work [9], which allows learning multi-style transfer and per-

forming an unsupervised image-to-illustration translation, with

a novel generator which is based on the GANILLA generator

[11]. This leads to achieving improved and more diverse illus-

trations that are both appealing and content preserving.

The StarGAN v2 [9] framework consists of four modules:

generator, mapping network, style encoder, and discriminator.

The generator receives the AdaIN information either from the

style encoder that receives a reference image or from the map-

ping network that receives a latent code. We replace this gener-

ator with a modified version of the GANILLA generator. The

resulting MISS GAN architecture is presented in Fig. 2 and the

residual block is detailed in Fig. 3). Note that the encoder of the

generator is similar to the GANILLA generator, which starts

with a 7x7 convolution layer, followed by an instance normal-

ization layer [27], ReLU, and max pooling layers. Then, the

generator continues with four layers, where each layer consists

of two residual blocks. As opposed to the architecture presented

in [11], our decoder contains three residual blocks (Fig. 3).

Each residual block starts with a convolution layer, followed by

an AdaIN layer and ReLU activation. These are followed by

a simple upsample layer, convolution layer, AdaIN layer, and

ReLU activation. The use of AdaIN in our model makes it input

dependent, which is a very desirable property in style transfer.

3.1. Training objectives

Let X and Y be two different domains, where x ∈ X is an

image from the first domain, and y ∈ Y is an image from the

second domain. With these notations, we turn to describe the

objective functions tested.

As a baseline we use the same loss functions that are em-

ployed in the StarGAN v2 framework [9]. The first objective

is the adversarial objective (Ladv) which is computed by using

two discriminator predictions corresponding to the input do-

main and target domain over the input image and the generated

image respectively. The generated image in the adversarial ob-

jective was created by using the style code that was produced

in the mapping network. The adversarial objective ensures that

the mapping network learns to offer the style code that is likely

to be taken from the target domain. Moreover, it guarantees that

the generator will learn to utilize this style code and will pro-

duce an image that is indistinguishable from other images of

the target domain. The second objective is the style reconstruc-

tion objective (Lsty) which enforces the generator to utilize the

style code that was created in the mapping network component

while receiving a generated latent code. This objective is calcu-

lated using the style encoder output over the generated image.

The third objective is the style diversification objective (Lds)

which is calculated by two different generated images that were

created from two different style codes. The style codes for the

style diversification objective were obtained by generating two

latent codes and passing them forward to the mapping network

component. This objective further enables the generator to pro-

duce diverse images. The fourth objective is for preserving the

source characteristics of the input image (Lcyc which is essen-

tially the cycle consistency loss [4]).

In addition to the above four losses, we explore the impact of

adding two other loss functions to further boost performance.

Content features loss. Inspired by Johnson et al. [20], we ex-

amined the impact of a content feature loss that measures dis-

tances in the feature space of a pretrained VGG16 network [21]:

Lcontent f eat = E[||φ(x) − φ(yx)||1], (1)

where x is the original content image, yx is the transformed im-

age by the network (to the target domain), and φ(x) and φ(yx)
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Fig. 4. Samples of the illustrations of the various illustrators, each drawing from a different book. Each illustrator has his own unique style of drawing.

Moreover, by comparing images from the same illustrator it is notable that the drawing style may vary from one book to another (see for example Stephen

Cartwright’s drawings and Patricia Polacco’s drawings).

are the the activations of the second layer of the pretrained

VGG16 network with x and yx as inputs respectively. The

VGG16 was pretrained on the ImageNet dataset [28].

Following [20], we used the ’relu2 2’ feature layer. We em-

pirically found that the ℓ1 norm achieves more visually pleasing

results than the ℓ2 norm. The addition of this feature space loss

was designed to benefit the content preserving goal.

Style aware content loss. Inspired by [23], we adopted the

style-aware content loss, which is an objective function that

is being optimized while the network learns to transfer input

images to the target domain. This objective measures the dis-

tance between the input content image x and the stylized image

yx = Decoder(Encoder(x)) in the latent space:

Lcontent sacl = (2)

1

d
E||Encoder(x) − Encoder(Decoder(Encoder(x)))||22,

where the Encoder and Decoder are the ones used in the gen-

erator, and d is the number of the latent space domains.

Total objective. The total objective function, which is used to

train the network, is given by the following formula:

max
D

min
G,F,E
Ladv + λstyLsty − λdsLds + λcycLcyc (3)

+λ f eatLcontent f eat + λsaclLcontent sacl,

where λsty, λds, λcyc, λ f eat and λsacl are hyperparameters for

each term, D is the discriminator, G is the generator, F rep-

resents the mapping network and E represents the style encoder

of the StarGAN v2 framework (similar to [9]). Notice that for

training MISS GAN we do not use the style aware content loss

(setting λsacl = 0) as we have found that it does not improve

performance (see ablation study in Section 4).

Training the proposed architecture was done using the im-

plementation provided by the StarGan v2 authors [9]. Namely,

MISS-GAN is trained with the objective in Eq. 3 once using the

latent vectors and once using the reference images. In the latter,

the style codes are generated using the style encoder component

that receives the reference images. Additional implementation

details can be found in Section 4.

4. Experiments

Preserving content in image-to-image translation, yet gener-

ating styled images is a challenging task that received a wide

focus recently [23, 29]. We now turn to show that MISS GAN

achieves this successfully for image-to-illustration translation.

Dataset. For natural images, we used the dataset presented in

CycleGAN [4] which contains 6287 images for training and

751 images for testing. For the illustrations dataset, we ex-

tended 7 of the artists that were used in [11] and created an

illustrations dataset that contains 3757 illustrations images. The

number of illustrations from each illustrator is described in Ta-

ble 1. As the dataset in [30, 11] was not publicly available, we

re-created the dataset by scanning children’s books from open

source libraries (with the help of the script1 provided by [11]),

followed by a manual procedure of removing text areas.

The illustrations dataset contains full-page drawings that

mainly describe complex scenes. By comparing the illustra-

tions of a specific illustrator, it is notable that the drawing style

1https://github.com/giddyyupp/ganilla
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Fig. 5. The differences in the outputs for each ablation model (Table 2). On the left, two natural input images. On the right, the reference illustration

corresponding with the style code that was used to generate the images. The outputs for each ablation model are presented in the middle section.

Fig. 6. Additional generated images of Model B, the StarGAN v2 framework using a similar version of GANILLA generator (Fig. 7). The generated

outputs of Model B appeared with distortions (shown in the red arrows) that are not appealing to the human eye. Those marks did not appear while using

the residual blocks in the decoder.

may vary from one book to another. Moreover, it can be noticed

that each illustrator has his own distinct style of painting (Fig.

4). The input images to StarGAN v2 were resized to 128X128.

Table 1. Details of the illustrations dataset

Illustrator Book Count Image Count

Axel Scheffler 15 426

David Mckee 21 548

Kevin Henkes 18 400

Korky Paul 18 470

Marc Brown 20 522

Patricia Polacco 28 866

Stephen Cartwright 22 525

Implementation details. Our models were trained on all of the

images in the illustrations dataset. The number of domains

was defined to be two (one domain for illustrations and an-

other for natural images). Moreover, all models were trained

from scratch. Note that we trained our models with 2,000,000

iterations and all images were resized to 128×128 pixels. We

used GeForce GTX 1070 with 8GB with which it took approx-

imately two days to train each model. Training with larger im-

ages, 256×256 as suggested by Choi et al.[9], may further im-

prove results. Our code is available online 2.

2https://github.com/NoaBrazilay/MISSGAN

Fig. 7. Overview of the decoder of the ablation model, an architecture that

resembles more the GANILLA generator architecture [11], with additional

convolution and AdaIN layers in order to integrate AdaIN information.

Note that the three arrows with the small yellow rectangle represent the

skip connections originating from the encoder (as in Fig. 2).

Comparison to StarGAN and ablation. To check the effect of

each of the components of our model we perform an ablation

study in which we compare MISS GAN to the baseline Star-

GAN v2 and check the impact of the added residual connections

in the decoder and different loss functions. We empirically ex-

amined the performances of four other ablation models (Table

2). The first ablation Model, Model B, examines the effect of

replacing the StarGAN v2 generator with an architecture that

resembles the one in [11]. The generator is composed of an en-

coder similar to [11], and a decoder to which we have added
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Fig. 8. Different generated illustrations of MISS GAN for several natural input images. The output illustrations were generated using style codes that were

created by the Mapping network component.

Fig. 9. Different generated illustrations of MISS GAN for several natural input images while using reference illustrations. Those images were generated

using the style code created by the style encoder component according to the reference illustrations.



7

Table 2. Details of the trained various models

Model Method

A Baseline StarGAN V2 [9]

B +A version of GANILLA generator (Fig. 7)

C + Res-blocks in generator’s decoder (Fig. 2)

D + Style aware content loss

E + Features content loss

MISS GAN Model C + features content loss

AdaIN layers and convolutional layers to integrate style infor-

mation (Fig. 7).

The second Model, Model C, is similar to Model B, however,

it contains residual blocks in the generator’s decoder (as in Fig.

2). Model D is similar to model C, however, it was trained with

an additional objective function, the style-aware content loss

[23]. Model E is basically equivalent to Model D, except of an

additional objective content loss function, the features content

loss. The proposed MISS GAN is similar to Model C, however,

it uses the feature content loss as an additional loss function.

We used the StarGAN v2 framework with no modifications

as our baseline model. We then trained it on the two datasets

while using the implementation provided by the authors, how-

ever, the learning rates of the discriminator, generator, and style

encoder components were set to 10−4.

Fig. 5 shows the visual results of the different models. By

observing the different generated outputs, it is apparent that us-

ing the GANILLA generator significantly improves the results

by preserving better content information (Model B compared

to the baseline). The generated outputs of the baseline model,

Model A, are distorted, and content preservation hardly occurs.

Another modification that benefits content preservation is

adding the residual blocks in the generator’s decoder (Fig. 2).

By comparing the generated outputs of Model B and Model C,

it appears that Model C generates styled images and yet pre-

serves more edges derived from the input image (for example,

compare the windows of the buildings between the two gen-

erated images in Fig. 5). Adding the residual blocks in the

decoder also eliminates unappealing distortions that appears in

the generated images of Model B (Fig. 6).

Significantly, the baseline model and the two first ablation

models do not preserve the content of the input image properly.

Therefore, we adopted two content loss functions that were pro-

posed in [20, 23]. We inspected the performances of the frame-

work with these additional content loss functions (Model D,

Model E and MISS GAN). Fig. 5 presents the results. By ob-

serving the generated illustrations, it appears that using the fea-

ture content objective with the proposed architecture benefits

the most. The proposed MISS GAN is able to create appealing

yet content preserving illustrations with diverse styles.

Style code based generation. More generated illustrations are

presented in Fig. 8. Those images were generated using style

codes that were created by the mapping network component.

It is very noticeable that the generated outputs are different in

style. Particularly, by observing Fig. 8, it is evident that various

diverse styles and color schemes are present among the gener-

Fig. 10. Examples of failure cases of MISS GAN

ated outputs (darker and brighter schemes which appear in the

illustrations dataset, as shown in Fig. 4).

Reference illustration based generation. Illustrations that were

generated using a style code that was created by the style en-

coder component are presented in Fig. 9. By observing the gen-

erated illustrations in this figure, it is possible to see the great

effect each reference illustration has on its related generated im-

ages. Since our model was trained on all of the illustrators’ im-

ages, it utilizes this information to generate a styled illustration

that is fine-tuned according to a reference image which corre-

lates to a specific illustrator.

MISS GAN failures. The illustrations dataset which we used to

train MISS GAN contains highly abstract drawings. Therefore,

transformations of natural images that contain small shapes and

details are lacking some of the high-frequency details that are

present in the original image. Samples of failure cases are

shown in Fig. 10.

5. Conclusions

In this work, we proposed the MISS GAN framework, which

successfully transfers natural images to diverse styled illustra-

tions using only one trained generator. The generated images

preserved the content of the input image while altering its style

according to a reference illustration or according to a random-

ized latent code. Existing architectures require to train several

generators to handle the variety of styles that can be found in

the illustrations dataset [11]. Moreover, performing the ablation

study emphasized the importance of the architectural modifica-

tions we performed compared to the baseline model.

The evaluation in this work was performed by using empir-

ical evaluation. Some works utilize the FID [31] and the In-

ception score [32] for evaluating GANs performance. Yet, such



8

measures were not proved as efficient in the illustration field.

For future work, subjective human scoring or other automatic

methods may be incorporated in the evaluation stage.

There are several possible future directions to this work.

First, all images have been reduced to 128×128 pixels. Train-

ing on larger images may further improve results. This may be

achieved by training our generator in a progressive way as done

in [33]. Also, since the illustrations dataset contains highly

abstract drawings, it appears that natural images that contain

rich information of high frequencies fail to transfer properly.

This might be mitigated by adding a loss on the higher frequen-

cies. Recent papers have shown the power of working with the

Fourier domain with deep neural networks [34]. Thus, to ad-

dress the lack of high frequency details in the generated images,

it might be possible to compute the feature space objectives in

the Fourier domain, which is likely to mitigate this problem. Fi-

nally, while this work focused on illustrations, we believe that

the proposed MISS GAN can be used to handle also other types

of multi-illustrator/designer style images.
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