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a b s t r a c t 

Computed tomography has gained an important role in the early diagnosis of COVID-19 pneumonia. How- 

ever, the ever-increasing number of patients has overwhelmed radiology departments and has caused a 

reduction in quality of services. Artificial intelligence (AI) systems are the remedy to the current situa- 

tion. However, the lack of application in real-world conditions has limited their consideration in clinical 

settings. This study validated a clinical AI system, COVIDiag, to aid radiologists in accurate and rapid 

evaluation of COVID-19 cases. 50 COVID-19 and 50 non-COVID-19 pneumonia cases were included from 

each of five centers: Argentina, Turkey, Iran, Netherlands, and Italy. The Dutch database included only 50 

COVID-19 cases. The performance parameters namely sensitivity, specificity, accuracy, and area under the 

ROC curve (AUC) were computed for each database using COVIDiag model. The most common pattern of 

involvement among COVID-19 cases in all databases were bilateral involvement of upper and lower lobes 

with ground-glass opacities. The best sensitivity of 92.0% was recorded for the Italian database. The sys- 

tem achieved an AUC of 0.983, 0.914, 0.910, and 0.882 for Argentina, Turkey, Iran, and Italy, respectively. 

The model obtained a sensitivity of 86.0% for the Dutch database. COVIDiag model could diagnose COVID- 

19 pneumonia in all of cohorts with AUC of 0.921 (sensitivity, specificity, and accuracy of 88.8%, 87.0%, 

and 88.0%, respectively). Our study confirmed the accuracy of our proposed AI model (COVIDiag) in the 

diagnosis of COVID-19 cases. Furthermore, the system demonstrated consistent optimal diagnostic perfor- 

mance on multinational databases, which is critical to determine the generalizability and objectivity of 

the proposed COVIDiag model. Our results are significant as they provide real-world evidence regarding 

the applicability of AI systems in clinical medicine. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS- 

oV-2) has caused a "once in a generation" pandemic. Conven- 

ionally the disease and its corresponding condition termed coro- 
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avirus disease 2019 (COVID-19) was diagnosed early by first- 

ine clinicians or health workers and was confirmed with re- 

erse transcription-polymerase chain reaction (RT-PCR) [1] . The 

igh specificity of RT-PCR is guaranteed by the available diagnos- 

ic kits that target specific regions on the ribonucleic acid (RNA) 

f the virus, which could not be found on other subfamilies of 

he virus [2] . However, this comes at the cost of reduced sensi- 

ivity, as the detection of these sequences depends on high lev- 

ls of technical and procedural efficacy. Early studies suggested 
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hat RT-PCR’s sensitivity was below 70 percent, as a subgroup of 

atients tested negative for the virus when asymptomatic, and 

howed positive tests after becoming symptomatic; furthermore, 

ome patients who were symptomatic with COVID-19 never had 

ositive RT-PCR test result [3-6] . 

To overcome these limitations and address the accessibility 

nd availability of commercial tests, a handful of other diagnos- 

ic methods were considered, especially when RT-PCR is not avail- 

ble or the results are delayed [7] . One of these is chest CT, which

as shown to be sensitive in diagnosing COVID-19 pneumonia and 

ay be used as an adjunct to RT-PCR [8-10] . Early chest CT of

he disease showed a dominant pattern, which consisted of bilat- 

ral ground-glass opacities (GGOs) located at the periphery of the 

ungs. In later stages, the patients developed airspace consolidation 

nd fibrous band formation in some cases. Although no specific 

igns were seen in CT images, the distribution of opacities espe- 

ially during the disease peak, when prevalence was high, made 

iagnosis possible by radiologists [11] . 

Chest CT was considered for initial triage of patients and was 

ater incorporated into treatment guidelines as a proxy indicator 

f disease severity. Some studies also suggested a prognostic role 

or initial CT imaging obtained from the patients [12] . This over- 

eliance on imaging, highlighted the inherent limitations of radiol- 

gy practice. First of all, limited access to the proper imaging ma- 

hines and expert radiologists may limit the wide-scale utilization 

f chest imaging in the frontlines [13] . Second, correct diagnosis 

f condition may be challenging as a wide range of conditions can 

ossibly have similar radiologic presentations, such as other viral 

nd atypical pneumonias [14] . Finally, an overload of patients and 

maging outputs may heavily burden the radiology units, and cause 

ttrition of infrastructure and human resources, reducing the qual- 

ty of image interpretation [ 15 , 16 ]. To mitigate these limitations, a

ovel computer-aided diagnosis (CAD) systems is proposed. 

CT images are used as an input to the CAD systems, as they are

idely used in clinical settings and have achieved acceptable accu- 

acy in detecting COVID-19. These systems have been fed by either 

mages or the interpretation of the images [ 17 , 18 ]. Such a system

an be an optimal tool in aiding the diagnosis of COVID-19, as it 

elies on limited information from human source, is fast, accurate, 

nd would omit subjective assessment of relations between differ- 

nt inputs, as radiologists often do. In fact, objectifying this step 

f diagnosis may prove to be detrimental in any form of evidence- 

ased clinical decision-making. 

In order to achieve a desirable level of generalizability for any 

AD system, it needs to be validated using multinational external 

atabases in order to determine the equal performance in differ- 

nt clinical settings, imaging protocols, populations, and countries. 

urthermore, these systems should be compared to radiologists, to 

ee if their relative efficacy would help in real clinical situations 

19] . Importantly, most of the AI systems currently being consid- 

red for COVID-19 detection, have not been compared with radiol- 

gists [20] . In the present study, we validate the clinical CAD sys- 

em (COVIDiag) that yielded better diagnostic performance than ra- 

iologists. Also, we have tested the performance of the model, us- 

ng databases from different countries to determine its efficiency 

n daily routine practices [17] . In this work, the COVIDiag model 

as validated using five databases from five different countries. 

he proposed COVIDiag software is made freely available and at- 

ached to the article. 

. Patients and Methods 

The present study reports the results of the real-world applica- 

ion of an AI system based on CT findings of COVID-19 and non- 

OVID-19 patients. The COVIDiag model was built and validated 

internal validation) in our previous publication [17] . For external 
43 
alidation purposes, the databases used in this study were gath- 

red independently from different countries and were interpreted 

y independent readers. 

.1. Patients 

This study was approved by the Institutional Review Board 

f respective centers. In this study, laboratory-confirmed COVID- 

9 and non-COVID-19 patients from five centers from different 

ountries and continents were included: 1- Hospital Italiano de 

uenos Aires, city of Buenos Aires, Argentina; 2- University of 

ealth Sciences, Sancaktepe Ş ehit Prof. Dr. İlhan Varank Training 

nd Research Hospital, Istanbul, Turkey; 3- Imam-Asadabadi Hos- 

ital, Tabriz University of Medical Sciences, Tabriz, Iran; 4- Zuyder- 

and Medical Center, Heerlen/Sittard-Geleen, The Netherlands; and 

- AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy. The COVID- 

9 confirmation was done by RT-PCR test based on nasopharyn- 

eal and/or pharyngeal swabs. Fig. 1 . demonstrates the geographi- 

al distribution of the databases. 

Exclusion criteria consisted of those individuals with sugges- 

ive clinical symptoms but negative RT-PCR test results, or those 

ho had pre-existing chronic lung conditions, such as silicosis, id- 

opathic fibrosis, cystic fibrosis, etc. Patients with a time gap be- 

ween PCR and CT examination greater than 3 days were excluded. 

he non-COVID-19 group consisted of those individuals with other 

auses of atypical and viral pneumonia, acquired from before the 

OVID-19 pandemic to eliminate all uncertainties and confounding 

actors. 

.2. CT imaging and features extraction 

All cases had undergone high-resolution CT (HRCT) imaging. 

he HRCT protocols of each imaging center are presented in 

able 1 . Fifteen CT features, which were useful to diagnose COVID- 

9 cases [17] , were extracted by an expert pulmonologist with 6 

ears (Argentinian), and expert radiologist with 5 years (Dutch), 6 

ears (Turkish), 5 years (Iranian), 5 years (Italian) of experience in 

horacic imaging: 

a) Location of the lesion, 1 (side of involvement: unilateral vs. bi- 

lateral) 

b) Location of the lesion, 2 (position of involved lobes: lower, up- 

per, or both lobes) 

c) Distribution pattern (central, peripheral or both) 

d) Number of lesions (single, if one patch of a lesion existed; mul- 

tiple, if 2-4 patches of lesions existed; diffuse, if the entire lobe 

affected bilaterally) 

e) GGO (hazy, ill-defined opacities which do not obscure the un- 

derlying lung parenchyma) 

f) Consolidation (an opacification of the lung field which obscures 

the underlying lung parenchyma) 

g) Reticular opacity (linear lesions with a thickness equal or less 

than 3mm) 

h) Nodules (round or oval lesions with well-defined margins, 

without regard to the diameter of the lesion) 

i) Bronchial wall thickening (abnormal thickening of bronchial 

walls usually due to an inflammatory response) 

j) Air bronchogram (the visibility of air-filled bronchi by the 

opacification of alveoli) 

k) Cavity 

l) Crazy-paving (the simultaneous appearance of GGO and inter- 

lobar and intralobular septal thickening) 

) Pleural effusion (abnormal accumulations of fluid within the 

pleural space. This term does not consider the characteristics 

of the fluid accumulated) 

n) Pleural thickening (thickening of either the parietal or visceral 

pleura, which is less than 5mm in most benign causes) 
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Fig. 1. Geographical distribution of databases used in this study. 

Table 1 

Computed tomography parameters of five centers used in this study. 

Center Scanner Tube voltage, 

kVp 

Tube current, 

mAs 

Pitch Matrix Reconstruction slice 

thickness, mm 

Reconstruction algorithm 

Argentina Canon Aquilion 64 120 50-100 1.5 512 × 512 1 Adaptive iterative Dose 

Reduction 3D (AIDR3D) 

Canon Activion 16 120 50-100 0.9 512 × 512 2 Adaptive iterative Dose 

Reduction 3D (AIDR3D) 

Turkey GE Optima 520 120 100-200 0.8-2.0 512 × 512 1.25 Adaptive Statistical Iterative 

Reconstruction (ASIR) 

Iran Siemens 

SOMATOM scope 

120 50-100 0.8-1.5 512 × 512 1.5 Model-based iterative 

reconstruction (MBIR) 

The 

Netherlands 

Philips Incisive 120 73 1.0 512 × 512 1 Iterative 

Siemens 

SOMATOM 

Definition Flash 

120 85 1.2 512 × 512 1 Iterative 

Italy Siemens 

SOMATOM 

Definition Edge 

120 50–150 1.2 512 × 512 1 Advanced Modeled Iterative 

Reconstruction (ADMIRE) 
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o) Lymphadenopathy (the existence of a lymph node with a size 

greater or equal to 10 mm in the short axis) 

.3. Artificial intelligence technique 

In this study, the COVIDiag model was used to evaluate its va- 

idity to differentiate COVID-19 from non-COVID-19 cases. The CO- 

IDiag model is based on ensemble learning, which succeeded in 

iagnosing COVID-19 and non-COVID-19 cases with an area under 

he ROC curve (AUC) of 0.988 and 0.965 in the training and test- 

ng dataset of Ardakani et al. study [17] . All the fifteen CT find-

ngs were fed into the COVIDiag model in the proposed order from 

ach database. The COVIDiag software is made freely available and 

ttached to the article. 

.4. Statistical analysis and performance analysis 

To evaluate the model, the following parameters were deter- 

ined for each of the databases: 

ensitivity ( Sen ) : 
N T P 

N + N 
T P F N 

44 
pecificity ( Spc ) : 
N T N 

N T N + N F P 

ccuracy ( Acc ) : 
N T N + N T P 

N T N + N F N + N T P + N F P 

here N T P and N T N are the number of cases diagnosed correctly 

s COVID-19 and non-COVID-19 pneumonia, respectively. In addi- 

ion, non-COVID-19 cases wrongly diagnosed as COVID-19 and in- 

orrectly diagnosed COVID-19 cases are assigned as N F P and N F N , 

espectively. The ROC curve analysis was used to determine the 

UC with 95% confidence interval (CI) and evaluate the algorithm’s 

erformance on each of the database. A p-value less than 0.05 was 

onsidered significant. All statistical analysis was performed by the 

PSS software (version 24, IBM Corporation). 

. Results 

The performance of COVIDiag model was evaluated by 

atabases from five different countries. Each of database from Ar- 

entina, Turkey, Iran, and Italy had 50 COVID-19 and 50 non- 

OVID-19 pneumonia cases. The database from the Netherlands in- 

luded only 50 COVID-19 pneumonia subjects. 
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Table 2 

CT chest findings of COVID-19 and non-COVID-19 groups based on each center. 

CT 

Findings 

Database 

Argentina Turkey Iran Italy The Netherlands 

C NC C NC C NC C NC C 

Location 1 

Unilateral 1 (2.0) 14 (28.0) 8 (16.0) 17 (34.0) 7 (14.0) 19 (38.0) 0 (0.0) 9 (18.0) 5 (10.0) 

Bilateral 49 (98.0) 36 (72.0) 42 (84.0) 33 (66.0) 43 (86.0) 31 (62.0) 50 (100) 41 (82.0) 45 (90.0) 

Location 2 

Lower Lobe 15 (30.0) 18 (36.0) 17 (34.0) 10 (20.0) 5 (10.0) 12 (24.0) 0 (0.0) 10 (20.0) 5 (10.0) 

Upper Lobe 0 (0.0) 5 (10.0) 2 (4.0) 6 (12.0) 4 (8.0) 25 (50.0) 1 (2.0) 2 (4.0) 0 (0.0) 

Both Lobes 35 (70.0) 27 (54.0) 31 (62.0) 34 (68.0) 41 (82.0) 13 (26.0) 49 (98.0) 38 (76.0) 45 (90.0) 

Distribution 

Peripheral 31 (62.0) 6 (12.0) 34 (68.0) 3 (6.0) 37 (74.0) 8 (16.0) 5 (10.0) 13 (26.0) 26 (52.0) 

Central 0 (0.0) 17 (34.0) 0 (0.0) 1 (2.0) 4 (8.0) 22 (44.0) 0 (0.0) 3 (6.0) 0 (0.0) 

Both Central and Peripheral 19 (38.0) 27 (54.0) 16 (32.0) 46 (92.0) 9 (18.0) 20 (40.0) 45 (90.0) 34 (68.0) 24 (48.0) 

Lesion 

Single 1 (2.0) 12 (24.0) 6 (12.0) 5 (10.0) 7 (14.0) 15 (30.0) 0 (0.0) 4 (8.0) 4 (8.0) 

Multiple 34 (68.0) 33 (66.0) 40 (80.0) 26 (52.0) 35 (70.0) 29 (58.0) 2 (4.0) 23 (46.0) 26 (52.0) 

Diffuse 15 (30.0) 5 (10.0) 4 (8.0) 19 (38.0) 8 (16.0) 6 (12.0) 48 (96.0) 23 (46.0) 20 (40.0) 

GGO 

No 4 (8.0) 38 (76.0) 0 (0.0) 4 (8.0) 1 (2.0) 34 (68.0) 2 (4.0) 11 (22.0) 1 (2.0) 

Yes 46 (92.0) 12 (24.0) 50 (100) 46 (92.0) 49 (98.0) 16 (32.0) 48 (96.0) 39 (78.0) 49 (98.0) 

Consolidation 

No 29 (58.0) 11 (22.0) 33 (66.0) 8 (16.0) 29 (58.0) 26 (52.0) 31 (62.0) 15 (30.0) 28 (56.0) 

Yes 21 (42.0) 39 (78.0) 17 (34.0) 42 (84.0) 21 (42.0) 24 (48.0) 19 (38.0) 35 (70.0) 22 (44.0) 

Reticular 

No 27 (54.0) 44 (88.0) 44 (88.0) 33 (66.0) 47 (94.0) 21 (42.0) 8 (16.0) 9 (18.0) 46 (92.0) 

Yes 23 (46.0) 6 (12.0) 6 (12.0) 17 (34.0) 3 (6.0) 29 (58.0) 42 (84.0) 41 (82.0) 4 (8.0) 

Nodule 

No 48 (96.0) 21 (42.0) 48 (96.0) 21 (42.0) 42 (84.0) 32 (64.0) 48 (96.0) 26 (52.0) 49 (98.0) 

Yes 2 (4.0) 29 (58.0) 2 (4.0) 29 (58.0) 8 (16.0) 18 (36.0) 2 (4.0) 24 (48.0) 1 (2.0) 

Bronchial Wall Thickening 

No 46 (92.0) 37 (74.0) 47 (94.0) 11 (22.0) 30 (60.0) 31 (62.0) 47 (94.0) 22 (44.0) 47 (94.0) 

Yes 4 (8.0) 13 (26.0) 3 (6.0) 39 (78.0) 20 (40.0) 19 (38.0) 3 (6.0) 28 (56.0) 3 (6.0) 

Air Bronchogram 

No 43 (86.0) 38 (76.0) 47 (94.0) 22 (44.0) 34 (68.0) 48 (96.0) 36 (72.0) 22 (44.0) 39 (78.0) 

Yes 7 (14.0) 12 (24.0) 3 (6.0) 28 (56.0) 16 (32.0) 2 (4.0) 14 (28.0) 28 (56.0) 11 (22.0) 

Cavity 

No 50 (100) 43 (86.0) 50 (100) 50 (100) 50 (100) 47 (94.0) 50 (100) 46 (92.0) 48 (96.0) 

Yes 0 (0.0) 7 (14.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (6.0) 0 (0.0) 4 (8.0) 2 (4.0) 

Crazy Paving 

No 35 (70.0) 50 (100) 47 (94.0) 48 (96.0) 36 (72.0) 42 (84.0) 32 (64.0) 42 (84.0) 37 (74.0) 

Yes 15 (30.0) 0 (0.0) 3 (6.0) 2 (4.0) 14 (28.0) 8 (16.0) 18 (36.0) 8 (16.0) 13 (26.0) 

Pleural Effusion 

No 47 (94.0) 36 (72.0) 50 (100) 35 (70.0) 43 (86.0) 37 (74.0) 50 (100) 31 (62.0) 44 (88.0) 

Yes 3 (6.0) 14 (28.0) 0 (0.0) 15 (30.0) 7 (14.0) 13 (26.0) 0 (0.0) 19 (38.0) 6 (12.0) 

Pleural Thickening 

No 50 (100) 47 (94.0) 43 (86.0) 32 (64.0) 50 (100) 45 (90.0) 47 (94.0) 40 (80.0) 48 (96.0) 

Yes 0 (0.0) 3 (6.0) 7 (14.0) 18 (36.0) 0 (0.0) 5 (10.0) 3 (6.0) 10 (20.0) 2 (4.0) 

Lymphadenopathy 

No 45 (90.0) 48 (96.0) 46 (92.0) 38 (76.0) 47 (94.0) 33 (66.0) 48 (96.0) 35 (70.0) 45 (90.0) 

Yes 5 (10.0) 2 (4.0) 4 (8.0) 12 (24.0) 3 (6.0) 17 (34.0) 2 (4.0) 15 (30.0) 5 (10.0) 

e
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The common patterns in the COVID-19 patients were bilat- 

ral involvement (229/250, 91.6%), with multiple patchy opacities 

137/250, 54.8%) affecting both upper and lower segments of the 

ungs (201/250, 80.4%) with the lesions predominantly affecting 

he lungs’ peripheral regions (133/250, 53.2%). In addition, ground- 

lass opacity and crazy-paving were seen in 242 (96.8%) and 67 

26.8%) out of 250 COVID-19 cases. Table 2 demonstrates other CT 

ndings of patients, obtained from each of the five centers. 

In the non-COVID-19 group, the common pattern consisted of 

ilateral involvement (141/200, 70.5%), with multiple patchy opac- 

ties (111/200, 55.5%) affecting both upper and lower segments 

f the lungs (112/200, 56%), with the lesions mostly occurring in 

oth central and peripheral regions of the lobes (127/200, 63.5%). 

he most common imaging sign in the non-COVID19 group was 

onsolidation (140/200, 70%), followed by ground-glass opacities 

113/200, 56.5%). 

The COVIDiag model could distinguish COVID-19 from non- 

OVID-19 pneumonia cases with AUC of 0.983 (95% CI: 0.963- 

f

45 
.0 0 0; 90.0% sensitivity; 96.0% specificity), 0.914 (95% CI: 0.856- 

.972; 86.0% sensitivity; 88.0% specificity), 0.910 (95% CI: 0.849- 

.970; 90% sensitivity; 84% specificity), and 0.882 (95% CI: 0.810- 

.953; 92% sensitivity; 80% specificity) for Argentinian, Turkish, Ira- 

ian, and Italian databases, respectively. As the database from the 

etherlands consisted of COVID-19 patients, only sensitivity was 

etermined. Hence, our model could diagnose 43 out of 50 (86.0% 

ensitivity) COVID-19 cases correctly ( Table 3 ). COVIDiag model 

ould diagnose COVID-19 pneumonia in all cohorts with AUC of 

.921 (95%CI: 0.894-0.948, 88.8% sensitivity, 87.0% specificity, 88.0% 

ccuracy). Fig. 2 represents ROC curves and radar plots of COVIDiag 

or different databases. 

. Discussion 

In the present study, we have validated the performance of our 

roposed novel AI system (COVIDiag) in differentiating COVID-19 

rom non-COVID pneumonia cases using CT images obtained from 
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Table 3 

Summary of developed AI systems for COVID-19 diagnosis. 

Ref Network Origin Patients used for 

training (internal 

validation) 

Pneumonia Groups Number of Centers, 

Countries for 

System 

Development 

Training/Internal validation External validation 

Sen (%) Spc (%) Acc (%) AUC Patients used for 

external validation 

Number of centers, 

countries for 

external validation 

Sen (%) Spc (%) Acc (%) AUC 

[29] DensNet121 United States 984 (296) COVID-19, non-COVID-19 (Viral, 

Bacterial, Fungal) 

Six centers, four 

countries (China, 

Italy, Japan, USA) 

NA/NA NA/NA NA/91.70 NA/NA 1337 Six centers from four 

countries (China, 

Italy, Japan, USA) 

84.00 93.00 90.80 0.949 

[30] Inception Netherlands 476 (105) Negative, positive COVID-19 Two centers, 

Netherlands 

NA/85.7 NA/89.8 NA/NA NA/0.950 262 One center, 

Netherlands 

82.00 80.50 NA 0.880 

[18] ResNet18 China 2246 (260) COVID-19, non-COVID-19 (Viral, 

Bacterial, Mycoplasma), and Normal 

Seven centers from 

China 

NA/94.93 NA/91.13 NA/92.49 NA/0.979 208 Yichang, China 92.51 85.92 90.70 0.971 

242 Hefei, China 94.74 89.19 90.32 0.970 

409 Wuhan, China 94.03 88.46 91.20 0.961 

140 Guangzhou, China 90.00 84.15 84.78 0.951 

107 Ecuador 86.67 82.26 84.11 0.905 

[31] DenseNet China 709 (NA) COVID-19, non-COVID-19 (Viral, 

Bacterial, Mycoplasma, Fungal) 

Two centers from 

China 

78.93/NA 89.93/NA 81.24/NA 0.900/NA 161 Heilongjiang, China 79.35 81.16 80.12 0.880 

226 Anhui, China 80.39 76.61 78.32 0.870 

[32] U-Net based 

algorithm 

China 2447(639) COVID-19, non-COVID-19 Two centers from 

China 

NA/97.30 NA/85.00 NA/NA NA/0.985 369 (820 scans) Xianning, China 83.90 66.00 NA 0.837 

411 (1097 Scans) Tianyou, China 90.70 38.60 NA 0.725 

130 (203 scans) Xiangy, China 83.30 51.70 NA 0.679 

[33] ResNet152 China 2688 (2688) COVID-19, non-COVID-19 pneumonia 

(Viral and Bacterial) 

Three centers from 

China 

NA/87.30 NA/96.60 NA/NA NA/0.974 2539 Seven centers, China 78.00 93.50 NA 0.921 

This 

study 

[17] 

Ensemble 

learning 

Iran 488 (124) COVID-19, and non-COVID-19 (Viral, 

Atypical) 

Single center 94.67/93.54 93.03/90.32 93.85/91.94 0.988/0.965 100 Argentina 90.0 96.0 93.0 0.983 

100 Turkey 86.0 88.0 87.0 0.914 

100 Iran 90.0 84.0 87.0 0.910 

100 Italy 92.0 80.0 86.0 0.882 

50 The Netherlands 86.0 NA NA NA 

Sen, Sensitivity; Spc, Specificity, Acc, Accuracy, AUC, Area under the ROC curve 

4
6
 



A .A . Ardakani, R.M. Kwee, M. Mirza-Aghazadeh-Attari et al. Pattern Recognition Letters 152 (2021) 42–49 

Fig. 2. (a) ROC curves and (b) radar plots of COVIDiag model on different centers. Sen, sensitivity; Spc, specificity; Acc, accuracy; AUC, area under the ROC curve. 
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ve countries. As during the pandemic, health systems worldwide 

re overwhelmed by a staggering number of patients, early diagno- 

is is essential for authorities to manage patients in time [ 21 , 22 ]. 

Chest imaging has been used both as an initial screening 

ethod and a secondary measure to determine the extent of 

OVID-19 progression [23] . The inadequate infrastructure in this 

eld has urged radiologists and medical imaging experts to ac- 

ively look for new options to increase the quality and quantity 

f image interpretation. Hence, AI systems have been developed 

sing CT and chest radiographic images which are the most ac- 

essible imaging modalities in almost any clinical setting [8] . Also, 

orld Health Organization (WHO) encouraged the researchers to 

study the role of artificial intelligence in chest imaging in differ- 

nt settings." [7] . The Italian Society of Medical and Interventional 

adiology, has investigated the use of AI in diagnosing COVID-19 

nd has endorsed the multicenter studies by validating different AI 

chemes [24] . However, this particular society and other peers have 

ot endorsed the wide-scale use of AI-based diagnosing tools to be 

sed as the first step for screening and diagnosing [25] . Potential 

actors limiting wide-scale use, are lack of multicenter and multi- 

ational studies, privacy issues, and technical issues pertaining to 

echnical specifications of CT imaging [ 26 , 27 ]. National and inter- 

ational initiatives such as the "AI-ROBOTICS vs. COVID-19 initia- 

ive" set by the European commission and academic, private, and 

rivate non-profit ones have aimed to provide such evidence [28] . 

he results of such research initiatives are presented in the follow- 

ng paragraphs. 

A multicenter study performed by Harmon et al. utilized multi- 

ational databases gathered from China, Italy, Japan, and the 

nited States to validate an AI model using CT images to detect 

OVID-19 and non-COVID-19 (viral, bacterial, fungal) pneumonias. 

heir control group consisted of a wide spectrum of subjects with 

ither bacterial, viral, or fungal pneumonia. They reached an AUC 

f 0.949 and 0.947 in 3D and hybrid 3D model, respectively [29] . 

A similar multicenter study was Dutch authorities, using an AI 

ool that determined COVID-19 report and database scoring (CO- 

ADS) for each series of imaging sequences presented to the ma- 

hine. The deep learning-based algorithm could diagnose positive 

OVID-19 cases with an AUC of 0.95 and 0.88 in the internal test 

nd external dataset, respectively [30] . Zhang et al. validated an AI 

odel on 1366 cases of COVID-19 and non-COVID-19 (viral, bacte- 

ial, mycoplasma) from all over China. Their AI system could diag- 

ose COVID-19 cases with an AUC of 0.979 based on internal vali- 

ation, and AUC of 0.971, 0.96, 0.970, and 0.951 for other indepen- 

ent Chinese Cohorts. However, the system’s performance based 
47 
n an international foreign database (Ecuador) decreased to AUC 

f 0.905 [18] . Wang et al. developed a deep learning algorithm 

hat automatically segmented CT images and diagnosed and dif- 

erentiated COVID-19 from other pneumonias (viral, bacterial, my- 

oplasma, fungal). Their algorithm was based on DenseNet and 

ould diagnose COVID-19 pneumonia with an AUC of 0.900 based 

n the training dataset. The external validation was done on two 

atabases from different regions of China (Anhui, 226 patients, and 

eilongjiang 161 patients). The system achieved an AUC of 0.870 

nd 0.880 for the first and second external validation databases, 

espectively [31] . 

A similar study was performed in China, where an AI model 

as developed using 2447 patients. This AI model was based on 

-Net algorithm, and consecutive slices of CT imaging were fed to 

he system as the primary input. Internal and external validations 

ere done by applying 639 and 910 cases from three different cen- 

ers to the algorithm. The model achieved an AUC of 0.985 for the 

nternal validation dataset. However, the performance of the model 

ropped to 0.725, 0.837, and 0.679 for three external validation 

atabases, respectively [32] . Another multicenter study developed 

n AI system using 2688 patients with COVID-19 and other pneu- 

onias (viral and bacterial) obtained from three Chinese centers. 

heir system achieved an AUC of 0.974 and 0.921 using the inter- 

al and external validation dataset, respectively [33] . Our results 

ndicate that the performances of COVIDiag model are comparable 

o these studies. Also, our COVIDiag model is simple, easy to run, 

nd does not require any high-performance computer as is based 

n machine learning, but the models proposed by other studies 

re based on deep learning. One point which needs to be noted 

s that these studies included all types of non-COVID-19 pneumo- 

ia, which can improve their model significantly as the differen- 

iation between COVID-19 and non-viral pneumonia is not criti- 

al. Since the image patterns of the patients with COVID-19 and 

ther viral or atypical pneumonias look similar, radiologists’ main 

nd vital task is to differentiate these two groups [34-36] . The CO- 

IDiag model was developed to differentiate COVID-19 and other 

iral or atypical pneumonias to help the radiologists in their daily 

ractices. Table 3 shows the summary of comparison between our 

roposed COVIDiag model with other similar studies. 

According to the WHO advisory guide, chest imaging should be 

sed as a primary method to diagnose COVID-19 pneumonia under 

hree conditions: 1- RT-PCR kits are not available, 2- results of RT- 

CR are not available within 24 hours, and 3- RT-PCR results are 

egative for patients suspected of COVID-19 pneumonia. Therefore, 

he COVIDiag model can be used based on CT findings for those 
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[  
onditions effectively and eliminate the relevant WHO’s concerns, 

specially in section 5.1 of the advice guide [7] . Furthermore, the 

odel can be used in regions where there is shortage of diagnos- 

ic kits or whenever the results of the PCR test are not instantly 

vailable [37] . 

Although the results of COVIDiag model is encouraging, its lim- 

tations are as follows. A majority of studies reported earlier and 

hose not mentioned in this study, only depended on images and 

ot their interpretations. Since the COVIDiag model is based on CT 

ndings, which are determined by radiologists, the model is prone 

o human errors. However, relying on basic radiologic signs, which 

an even be distinguished by non-radiologist clinicians such as 

ront-line emergency room physicians, pulmonologists, and other 

pecialists, maybe more implementable in resource-poor settings. 

maging outputs are also prone to alterations in individuals with 

OVID-19 undergoing treatment, those with pre-existing condi- 

ions or superimposed medical problems such as bacterial or fun- 

al pneumonia or cardiac failure, and those being under treat- 

ent with certain medications. These conditions may cause a devi- 

tion from the typical pattern reported for COVID-19 patients and 

ccordingly affect the performance of AI model [ 18 , 38 ]. Human- 

ased interpretations of imaging signs may adjust this error to 

ome extent, but cannot eliminate it. The main advantage of the 

OVIDiag model is that it cannot be affected by imaging param- 

ters. Hence, the COVIDiag model can be readily used more than 

ther AI models. However, other AI models based on deep learning 

ould be affected by image characteristics such as resolution [29] . 

nother limitation is that our study did not involve any pediatric 

atients. However, according to the literature, the CT findings of 

ediatrics and adults are similar [39] . Therefore, we presume that 

ur model can also be used for children, but this application needs 

urther validation. 

. Conclusion 

The significant increase in the number of COVID-19 patients 

ndergoing CT imaging for diagnostic and prognostic reasons has 

ed to an unbalance between radiologists’ workforce and workload. 

ne proposed method to reinstate this balance has led to incorpo- 

ate AI systems in routine medical practice. 

In the present study, the performance of our proposed AI 

ystem called COVIDiag, was validated using five multinational 

atabases obtained from five different countries in three conti- 

ents. We found that the proposed COVIDiag model has yielded an 

cceptable diagnostic performance for all databases and can per- 

orm consistently among different groups of patients from various 

ountries. Our results are significant as they provided evidence re- 

arding the applicability of AI systems in real-world clinical set- 

ings and integration of AI in medicine. 
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