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a b s t r a c t 

COVID-19 stay threatening the health infrastructure worldwide. Computed tomography (CT) was demon- 

strated as an informative tool for the recognition, quantification, and diagnosis of this kind of disease. It is 

urgent to design efficient deep learning (DL) approach to automatically localize and discriminate COVID- 

19 from other comparable pneumonia on lung CT scans. Thus, this study introduces a novel two-stage 

DL framework for discriminating COVID-19 from community-acquired pneumonia (CAP) depending on 

the detected infection region within CT slices. Firstly, a novel U-shaped network is presented to segment 

the lung area where the infection appears. Then, the concept of transfer learning is applied to the fea- 

ture extraction network to empower the network capabilities in learning the disease patterns. After that, 

multi-scale information is captured and pooled via an attention mechanism for powerful classification 

performance. Thirdly, we propose an infection prediction module that use the infection location to guide 

the classification decision and hence provides interpretable classification decision. Finally, the proposed 

model was evaluated on public datasets and achieved great segmentation and classification performance 

outperforming the cutting-edge studies. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Recently, the human being around the world has been con- 

uered with emergent Coronaviridae species known as severe 

cute respiratory syndrome coronavirus 2 (SARS-COV-2) [1] . The 

lready acknowledged coronaviruses might be considered as a tip 

f the iceberg, with hypothetically extra unrevealed zoonotic ef- 

ects to be discovered. Therefore, it is vitally important to early 

ecognize infected persons for performing preventive containment 

rocedures and medical treatment processes. Although many cri- 

eria enable successful diagnosis of COVID-19 for individuals, the 

linical laboratory tools that depend on virus nucleic acid sequenc- 

ng and Reverse-transcription-polymerase chain reaction (RT-PCR) 

uffers from many shortcomings and deficiencies; for instance, nu- 

leic acid check has been reliant on numerous rate-bounding as- 

ects, involving accessibility and magnitude of the testing appa- 

atus in the affected area [2] . More significantly, the superior- 

ty, constancy, and reproducibility of the examination apparatus 

re controversial [3] . Like many pneumonia diseases, the diagno- 

is of COVID-19 can be performed based on computed tomogra- 
∗ Corresponding author. 

E-mail address: hossamreda@zu.edu.eg (H. Hawash). 

a

e

i

v

ttps://doi.org/10.1016/j.patrec.2021.10.027 

167-8655/© 2021 Elsevier B.V. All rights reserved. 
hy (CT) scan representing the lungs and soft tissues. Even though 

istinctive CT scans might assist early examination of suspicious 

OVID-19 cases, viral types of pneumonia have almost identical 

mages that interfere with other contagious and blazing lung dis- 

ases [4] . Hence, it is troublesome for radiologists to discriminate 

OVID-19 from different viral types of pneumonia, and even from 

ommunity-acquired pneumonia (CAP) [5] . For example, as pre- 

ented in Fig. 1 , the apparition of COVID-19 exhibits high simi- 

arity with CAP in lung CT scan, which in turn sophisticate the 

rocess of CVOID-19 diagnosis [6] . The present clinical environ- 

ent requires an intelligent and consistent diagnosis approach for 

OVID-19 to minimize the clinicians’ burdens and finetune the dis- 

ase diagnosis efficiency. Nevertheless, it is challenging to develop 

uch an approach, due to wide differences in the sizes, shapes, and 

ocations of infection in the lung CT scan, as depicted in Fig. 1 . It

ooks problematic to build an efficient technique to learn from the 

omplex features of pneumonia infections utilizing just the con- 

entional techniques of computer vision [7] . 

Recent advances of convolutional neural networks (CNNs) have 

ome up with a sequence of innovations in the area of natural im- 

ge analysis [8] and other computer vision tasks [9] . The CNNs can 

xtract and learn an improved visual feature representation, elim- 

nating the necessity for manual descriptions. Such advances pro- 

ide extra confirmation that better performance could be achieved 

https://doi.org/10.1016/j.patrec.2021.10.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.10.027&domain=pdf
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Fig. 1. Samples of COVID-19 and CAP as presented in the left and the right column, 

respectively. The main infection regions are specified with blue arrow. 
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ith deeper architecture. Thus, it is reasonable that exploiting 

eeper CNN networks to realize such improvements in the diag- 

osis COVID-19. Currently, it is possible to use residual learning 

locks to develop superior deep models with a number of layers 

igher than 100 [10] . 

.1. Challenges and Research gaps 

The design of efficient and reliable computer-aided-diagnosis 

CAD) for COVID-19 screening still facing multiple challenges and 

esearch gaps that can be summarized as follow: 

It is hard and challenging for doctors to identify a various form 

f pneumonia from a large number of CT images, especially dur- 

ng the COVID-19 outbreak. This confusing issue stems from the 

esemblance and difference of inter-class of infection regions, as 

hown in Fig. 1 . 

The pneumonia lung image still encompasses a huge fragment 

f regions irrelevant to infection, that have a complex discrepancy 

f tissues. Noticeably, the infection of irrelevant regions has an ex- 

essively negative effect on the model’s performance. This is more 

ophisticated than the recognition of substances with natural im- 

ges. 

.2. Novelty and Contributions 

To tackle the beforementioned issues, this work presents a 

ovel infection-aware approach for diagnosing the infection of 

OVID-19. It comprises the next building blocks: 

At first stage, A novel U-shaped architecture (GR-U-Net) is pro- 

osed for segmenting the lung regions, where the encoder path 

s built using pre-trained Efficient-Net, the bottleneck path is build 

sing a densely connected network that provides a collective learn- 

ng paradigm and prevents gradient vanishing. 

The proposed GR-U-Net redesigns the skip connection a time- 

fficient bidirectional convolutional gated recurrent unit (BCon- 

GRU) to capture Spatial-Semantic features from the encoder and 

ass it to the decoder path. while the squeeze and excite opera- 

ion is applied to perform spatial and channel feature recalibration 

n the decoding layer. 

At the second stage, advanced pre-trained EfficientNet-B7 is 

mployed as a robust feature extractor for extracting the disease 

eatures from the received lung images. multi-scale information is 

xtracted at a different layer of the extractor and then pooled to 

ffectively capture different sizes of infection. 
312 
Motivate by the recent breakthrough in deep attention mech- 

nisms (AM), particularly by the self-attention mechanism in var- 

ous lesion classification task [11] , we develop an interactive AM 

n that utilize the infection ground truth (GT) to enhance network 

ttention, and hence provide extra concentration on the infection 

reas to improve model interpretability. 

.3. Related Works 

As previously stated, Deep Learning approaches have been per- 

orming a significant role in facilitating the recognition of COVID- 

9. For example, Kang et al [12] , introduce a novel multi-view rep- 

esentation learning approach to discriminate between COVID-19 

nd CAP using a group of features captured from patients’ CT scans. 

t learns an integrated latent representation to encode information 

rom diverse aspects of features and thus improve diagnosis ac- 

uracy. Ouyang et al. [13] proposed a dual sampling model that 

lassifies the COVID-19 patients and the CAP patients in chest CT 

sing 3D CNN accompanied with an attention module to concen- 

rate on the lung infection areas to determine the final classifica- 

ion decision. Besides, Wang et al [14] employed two residual con- 

olution modules for discrimination and localization of infection in 

-ray images with the main aim to efficiently discriminate COVID- 

9 from CAP infections. Additionally, Marques et al [15] applied Ef- 

cientNet architecture to recognize the COVID-19 case from nor- 

al or pneumonia cases. In a similar way, the authors of [16] em- 

loyed a convolutional network based on ResNet50 for classify- 

ng the COVID-19 and CAP from chest CT scans. Furthermore, in 

17] , DeepCOVID-XR was introduced as an ensemble of convolution 

odels for detecting COVID-19 features from frontal chest radio- 

raphs. Bai et al [18] introduced Efficient Net B4 network for clas- 

ifying COVID-19 and other pneumonia for each patient, whereas 

T slices were introduced for lung segmentation, then passed to 

wo fully connected layers to pool the slices. 

.4. Study Organization 

The remaining of this work is presented as follows: Detailed ex- 

lanations and information corresponding to our proposed frame- 

ork are presented in Section 2 . The proposed experimental con- 

itions of this work are debated in Section 3 , the results, the com- 

arisons, and the analysis of outcomes are debated in Section 4 . 

ection 5 argues the main limitation of the current work. To end, 

he conclusions and future research direction are explained in Sec- 

ion 6. 

. Proposed Approach 

This section provides a detailed explanation of the proposed model 

or diagnosis of COVID-19 from CT image in two stages. 

.1. Lung Segmentation 

Despite the great effort s to propose a significant image segmen- 

ation schema as in SENet [19] , BConvLSTM [20] , and dense con- 

olutions [21,22] , the complicated nature of COVID-19 require fur- 

her performance improvement on these existing schema related 

o their accuracy, effectiveness, and efficiency. 

In some of U-shaped segmentation networks, the mined fea- 

ure maps in the skip connection are passed to a handling phase 

convolution, attention layers, etc.) and later combined. The major 

ownside of these models is that the handling phase is done in- 

ependently for the encoder and decoder feature maps, and these 

aps are followingly combined. Accordingly, we proposed a GR-U- 

et that redesign the skip connection using BConv-GRU to capture 

igh resolution information from the feature maps of the encoder 
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nd semantic information from feature maps of decoder. The struc- 

ural design of GR-U-Net with advanced skip connection is shown 

n Fig. 3 . 

.1.1. Encoding Track 

Traditional U-Net architecture involves a shrinking path to cap- 

ure contextual representation from the input images hierarchi- 

ally. To gain further performance improvement over U- net, we 

reated our encoder using a pre-trained Efficient-Net based on the 

otion of transfer learning (TL). 

By considering the shortage of the amount of data for training 

ophisticated models, the complexity of gathering a vast number of 

abeled instances from images, and the isolated learning nature of 

L models (focusing on a specific task) is eliminated. We adopted 

he TL paradigm to leverage pre-trained ResNet18 experience and 

xploit it to solve our issue with less amount of data. We build the 

ncoding direction similar to the first four layers of Efficient-Net. 

In typical U-Net architecture, at the end of encoding direction, 

e have a stack of convolutional layers to learn various features. 

owever, such a sequence of layers leads to redundant feature 

earning. To tackle this problem, we adopt densely linked convo- 

utions by concatenating other layers’ feature maps with the cur- 

ent maps, which are followingly passed to the next convolution 

s an input. Additionally, the dense connection quickly sending the 

radients to empowers features propagation and reusability, which 

n turn enriches the network’s representational power. Up to this, 

t the end of the encoding direction, we introduce a sequence of 

 densely connected consecutive blocks where each block con- 

ists of two successive convolutions. We assume that the output 

f i th convolution block denoted as X i e ∈ R F l ×H l ×W l , and the input 

 th ( i ∈ { 1 , · · · , N } ) of the block is the concatenation of all prior 

ayers maps [ X 1 e , X 2 e , · · · , X N e ] ∈ R ( i −1 ) F l ×H l ×W l . 

.1.2. Decoding Track 

In this part, each stage is an up-sampling operation over the 

receding layer output. For further improvement of network repre- 

entation power, we augmented the conventional U-Net with two 

ntelligent modules, namely Squeeze and Excitation (SE) module 

nd BConvGRU. Merged SE modules help networks utilize global 

atterns to empathize with relevant significant features and ig- 

ore less informative ones. These blocks take up-sampling out- 

ut feature maps and promote them to be more instructive us- 

ng either spatial weight in case of spatial SE (sSE) and channel 

eights in case of channel SE (cSE) depending on spatial and chan- 

el interdependencies respectively. The output of the sSE module 

nd cSE are then concatenated and passed to the next-sampling 

unction. In the typical U-Net, the feature maps in the encoding 

rack are merged with their corresponding produced up-sampling 

aps. Both kinds of feature maps are integrated using the Bi- 

onvGRU layer that produces combined maps to followingly fed 

nto two convolutional layers, concatenated S-SE and C-SE output, 

nd later convolutional layer. Given previous layer output feature 

aps as X d ∈ R 

F l+1 + H l+1 + W l+1 where layer l has F l of feature maps 

ith the size of W l × H l . In the next layer, we got F l+1 = 2 × F l ,

 l+1 = 

1 
2 × W l , and H l+1 = 

1 
2 × H l , which means that the decoding 

rack is halving the number of the feature maps and doubling their 

imensions in each stage to obtain the original size of the input 

mage at the ending layer. 

To empower convolution operation learning performance, we 

dopt modified spatial squeezing and channel excitation operations 

20] after each block to overcome channel dependencies issues. 

ince each of F filters convolves along the corresponding recep- 

ive field, which prevents calculated output U from exploiting rel- 

vant information outside of this region as depicted in Fig. 4 (a). 

ccordingly, we adopted a squeeze operation to calculate channel 

tatistics Z ∈ R c using global average pooling by partitioning U 
313 
long with its spatial scopes H × W . At the same time, the c-th 

omponent of z is expressed using equation (1) . 

 c = F sc ( U c ) = 

1 

H × W 

H ∑ 

i =1 

w ∑ 

j=1 

U c c ( i , j ) (1) 

Then, to exploit the combined features in the channel squeez- 

ng operation, we apply an excitation operation to detect channels’ 

onlinear interaction and also capture a non-mutually exclusive as- 

ociation, and to do that we implemented a simple gating opera- 

ion with a sigmoid activation as formulated in equation (2) . 

 = F ex ( z, W ) = σ ( g ( z, W ) ) = σ ( W 2 & ( W 1 z ) ) (2) 

here & represents Relu activation, W 1 ∈ R C× c 
r , and W 2 ∈ R C× c 

r 

 And for more generalization, we adopted three FCL layers as a 

imensionality-reduction layer where r denotes reduction thresh- 

ld; we got higher results with r = 2 . Finally, the output U is com-

uted and rescaled activations s according to equation (3) . 

 c = F scale ( u c , s c ) = s c u c (3) 

hile X = [ x 1 , x 2 x c ] and F scale ( u c , s c ) represents channel prod- 

ct of feature maps u c ∈ R 

H×W with value s c . Besides, we 

dopt the channel squeeze and spatial excitation mechanism 

sSE) proposed in [19] , in which the feature map U squeezed 

long the convolutional channels and excited spatially, which 

onsequently finetune image segmentation process; the struc- 

ure of is shown Fig. 4 (b). The sliced input tensor U = 

 u 1 , 1 , u 1 , 2 , u i, j u H,W ] with u i, j ∈ R 1 ×1 ×C denote the spatial coordinate 

 i, j ) where i ∈ [ 1 , 2 . . . . . . H ] and j ∈ [ 1 , 2 . . . . . . W ] . The con-

olution operation ∗ perform spatial squeezing q = W sq ∗ U us- 

ng weight W sq ∈ R 

1 × 1 ×C× 1 where the tensor q ∈ R 

H×W . Then 

ach q i, j denoted linear combination of all cannel C for each 

patial point ( i, j ) that following rescaled into the interval of 

 0 , 1 ] using sigmoid function σ for recalibrating or exciting U

patially ̂ U = [ σ ( q i, j ) u 
1 , 1 , σ ( q i, j ) u 

1 , 2 , σ ( q i, j ) u 
i, j , σ ( q i, j ) u 

H, W ] where 

( q i, j ) u 
i, j reflects the relative significance of spatial point ( i, j ) . in 

ur model, we utilize both the spatial and channel replication from 

oth modules concurrently via the concatenation of their output as 

ector ˜ X 
up 

d 
. 

The output maps of up-sampling , ˜ X 
up 

d 
fed into Batch Normal- 

zation (BN) function that generates 
↔ 

X 
up 

d to overcome the dilemma 

f variation in the distributions of activations methods slowing the 

raining process as a result of the period spent to acclimate for the 

ext iteration. BN [23] is exploited to improve network stability by 

tandardizing each layer’s inputs, which effectively speeds up the 

raining process. 

The batch-normalized output 
← −
X 

up 

d 
∈ R 

F l ×H l ×W l , is now for- 

arded to a Bi-ConvGRU layer. Meanwhile, the typical LSTM net- 

ork does not consider the spatial relationship since it primarily 

tilizes full connections between input and state and also for state- 

o-state transference. This problem is tackled with ConvLSTM in 

20] the convolutional operation exploited to replace the standard 

ull relationship. Inspired by this, we propose ConvGRU to utilize 

he time efficiency of GRU over LSTM. Accordingly, the spatio- se- 

antic attributes extracted convolutional maps could be success- 

ully acquired by ConvGRU, and its units can be calculated with 

quations (4 - 7 ). 

 t = σ ( W xz ∗ X t + W hz ∗ h t−1 ) (4) 

 t = σ ( W xr ∗ X t + W hr ∗ h t−1 ) (5) 

 

 t = f ( W xh ∗ X t + r t � ( W hh ∗ h t−1 )) (6) 

 t = ( 1 − z t ) � ˆ h t + z t ∗ h t−1 (7) 

Where the �, σ , and ∗ respectively symbolize the Hadamard 

roduct, sigmoid operation, and convolution layer. The Z t and r t 
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nd respectively denote the update and reset gates. Having X t sym- 

olizing input tensor as a combination of tensors X e and 

←→ 

X d 

up 
, 

he gated cell initially computes the production values of the up- 

ate and reset gates according to the (4) and (5), correspondingly. 

he sigmoid activation guarantee that the output values of z t and 

 t remain within a range from 0 to 1. Next, equation (6) is used to

ompute the hidden state ˆ h t according to the present input value 

nd the hidden state h t −1 at previous timestep. In equation (7) , 

he final hidden state h t is computed by linearly combining the 

alue of hidden state ˆ h t at current time step and value of hidden 

tate at previous time step h t −1 . The before-mentioned ConvGRU 

nly considers the semantic dependencies in forwarding directions. 

evertheless, the backward dependency information is still un- 

sed; thus, learning the semantic dependencies in a bidirectional 

anner is likely to be more beneficial because of the demon- 

trated efficacy of combing forward and backward learning in a 

ingle network [24] . Therefore, the proposed GR-U-Net introduces 

n improved skip connection based on Bi-directional-ConvGRU (Bi- 

onvGRU) that effectuate two ConvGRU layers to convolve the re- 

eived convolutional maps from encoders in a bidirectional manner 

hen calculate the new feature maps at the decoding track. Where 

hese generated maps contain Spatio-semantic representations cal- 

ulated as Y t = tanh ( W 

�
 H 

t ∗ �
 H t + W 

← 

H 
t ∗

← 

H t ) . In which, Y ∈ R 

F l ×H l ×W l , 

anh indicates the tangent line function, and the of the forward 

idden state and the backward hidden state symbolized as � H t and 

 

 t . 

.2. Feature Extraction Module 

In this subsection, the segmented image is processed to capture 

isease-relevant features. In computer vision, DL models perform 

earning using one of two strategies, namely, learning from scratch 

nd transfer learning (TL) from pre-trained models. Since learning 

rom scratch strategy requires a large amount of data, we decide 

t will be ineffective for the underlying problem; in order to tackle 

his problem, we make use of TL idea by employing two advanced 

re-trained architectures. In particular, we adopt the most modern 

dvanced pre-trained architectures. 

.2.1. EfficientNet 

According to the notion that imposing stability among all net- 

orks, dimensions lead to a significant improvement of accuracy 

nd effectiveness. Tan et al. [10] recently proposed a novel Effi- 

ientNet architecture aiming to enhance the CNN architecture per- 

ormance by performing three-dimensional scaling specifically for 

idth (w), depth (d), and resolution (r). Unlike the traditional pro- 

ess of arbitrary scaling, EfficientNet introduces an effective com- 

ound scaling strategy that enables uniform balanced scaling of 

etwork dimension and amazingly achieved such balance by just 

caling each of them with a constant ratio. Particularly, uniform 

imensions scaling can be computed using the compound coeffi- 

ient, as shown in equation (8) . 

 = ∝ 

ϕ 

 = β∝ 

ϕ 

 = γ ϕ 

≥ 1 , β ≥ 1 , γ > 1 (8) 

Where ϕ denotes the user-quantified coefficient for determin- 

ng the number of resources available for model scaling, the con- 

tants ∝ , β, γ are that can be calculated from small grid search to 

etermine how network width, depth, and resolution will respec- 

ively be allocated such resources. 
314 
The architecture of EfficientNet is based on mobile size net lay- 

rs network with nine stages of convolutional layers with a ker- 

el of size 3 × 3 or 5 × 5 with FCL at the end and called

fficientNet-B0 which have ∝ = 1 . 2 , β = 1 . 1 , γ = 1 . 15 under con-

traint ∝ . β2 . γ 2 ≈ 2 with fixed ϕ = 1 , then additional seven archi-

ectures from EfficientNet-B1 to EfficientNet-B7 constructed by fix- 

ng α, β, γ value while scaling up beforementioned baseline net- 

ork with a different value of ϕ. 

.2.2. Multi-Scale Feature Fusion (MsFF) module 

It is broadly known that multi-scale features are beneficial in 

 variety of tasks of natural and medical image analysis tasks. For 

xample, in the segmentation task, the incorporation of multi-scale 

nformation has shown amazing performance [25–28] . Motivated 

y these works, we propose to learn and capture CT features at 

arious scales, aiming to capture and learn both local and global 

emantic information. Particularly, we introduce multi-scale fea- 

ure fusion (MsFF) based on the recently proposed multi-scaling 

echanism. The multi-scales features are denoted as F s , with s 

epresenting the network level (see Fig. 2 ). Meanwhile, features 

usion performed at diverse resolutions corresponding to every 

evel s , bilinear interpolation is used to upsample them into the 

ame resolution; hence generate enlarged feature maps F ′ s . Fol- 

ow, F ′ s from altogether scales are merged creating a tensor that 

ed into convolution layer to generate a joint multiscale feature 

ap, F MS = con v ( [ F ′ 
0 
; F ′ 

0 
; F ′ 

0 
; F ′ 

0 
] ) . Thus, F MS capture low-level rep- 

esentation from earlier layers, and high-level contextual informa- 

ion from the later layers. After that, these aggregated feature maps 

ed into the infection prediction path with AM to calculate the at- 

ention features that are used to guide the classification decision 

s discussed in the next section. 

.2.3. Infection Guidance (GuInf) module 

Given lung-segmented CT slices as an input, the channel of in- 

ection predictions generates a map that represents the infection 

egions related to such that they are diagnostically relevant. As 

resented in Fig. 2 , This path of the network is trained with in-

ection GT annotated by VB-Net toolkit [28] . Branching from the 

eature extraction path at bp (bifurcation position) layer, this path 

omprises an extra convolutional layer with the kernel of 1 × 1 . 

fter that, the generated feature map is standardized via Sof tMax 

unction according to equation (9) . 

 i, j = P 
(
c x i, j 

)
= 

1 

1 + exp 

(
−x i, j 

) (9) 

here x i, j , i ∈ { 1 , 2 , · · · , M } , j ∈ { 1 , 2 , · · · , N } symbolizes the pix- 

ls of size M × N, and P ( c x i, j ) denotes the probability value that 

 i, j belonging to the ct-h class, while c = 1 indicates that the pixel 

s diagnostically relevant while other pixels have C = 0. This path is 

rained to predict infection ROI by reducing the dice loss [29] for 

he estimated infection map and the corresponding GT mask as 

ormulated in equation (10) . 

 i, j = 

2 ×
{∑ M 

I=1 

∑ N 
J=1 y i, j · ̂ y i, j + ∈ 

}
{∑ M 

I=1 

∑ N 
J=1 

(
y i, j + ̂

 y i, j + ∈ 

)} (10) 

he output map with the probability scores y i, j indicating the im- 

ortance of the positional information for the diagnosis. This final 

ap exploited to guide the attention of the model for pneumonia 

lassification. 

.2.4. Output layer 

In this layer, the output of multi-stream fusion layers concate- 

ated for final disease classification. Where the configuration of 

he final dense layers includes four FCL layers with (512, 256, 15, 

6) separated with 0.5 dropouts, ReLU activations, and batch nor- 

alization layers. The slices were pooled using two FCL layers to 
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Fig. 2. Architecture of Proposed Classification network. 

Fig. 3. The construction of GR-U-Net for lung segmentation. 
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ake predictions at the patient level. Then, the SoftMax function 

s utilized to calculate the probability score concerning each dis- 

ase class, while the class that gains a higher probability score is 

onsidered as the correct disease class as formulated in equation 

15 - 16 ). 

Sooner or later, to training or evaluate our network, we aim to 

alculate and reduce the loss value. herein, we seek to minimize 

ross-Entropy loss (CEL) to calculate classification output according 

o equation (17) . 

Where yi is the truthful disease label while (y_i ) ĩs the model 

redicted classThe model architecture with the highest perfor- 

ance has been chosen. Furthermore, we conducted a grid-search 

or various hyper-parameters and got the most top performance 

ith training epochs within range (60-80), batch size with a value 

f (16,32), and with learning rate in between (0.0 0 01 – 0.001). 

. Experimental Design 

.1. Dataset’s Description 

To assess the effectiveness of the proposed GR-U-Net, we 

dopt a lung segmentation dataset publicly available for eval- 

ating the proposed segmentation technique, we adopt a lung 

egmentation dataset publicly available on The Cancer Imaging 

rchive (TCIA) Public Access ( https://wiki.cancerimagingarchive. 
315 
et/display/Public/Lung+CT+Segmentation+Challenge+2017 ). The 

ata was captured from 60 patients with a total of 9,593 images. 

e split the data into five folds for training purposes and the test 

et constituted 20% of the data. To analyze the classification per- 

ormance, the COVID-CT-MD dataset [30] is employed for training 

nd evaluating the proposed model. The dataset consists of chest 

T scans of 169 persons confirmed as positive COVID-19 patients 

Feb-2020: Apr2020), 60 CAP patients (Apr-2018: Dec-2019), and 

6 non-infected individuals (Jan-2019: May-2020). The data was 

ollected Babak Imaging Center, Tehran, Iran. Three main criteria 

re considered by three radiologists for classifying the cases. The 

abeled portion of data comprises 18,392 slices with no infection 

NIF) and 4,957 slices showing infection. 

.2. Performance metrics 

For evaluating the lung segmentation performance, three com- 

on performance measures are employed i.e., accuracy, Dice simi- 

arity coefficient (DSC), Jaccard index (JI). While in the second stage 

f the framework, five popular performance measures are consid- 

red for evaluating the classification performance. The computa- 

ion of these metrics can be calculated as follow: 

SC = 

2 .T P 

2 .T P + F N + F P 
(11) 

I = 

T P 

T P + F P + T N 

(12) 

ccuracy = 

T P + T N 

TP + TN + FP + FN 

(13) 

p = Sof tMax ( X ) = 

exp ( X ) ∑ c 
1 exp ( X ) 

(14) 

˜ y = argmax ( p ) (15) 

 Entopy = 

∑ 

( y i log ( ̃  y i ) + ( 1 − y i ) log ( 1 − ˜ y i ) ) (16) 

 recision = 

T P 

TP + FP 

(17) 

ecall = 

T P 

TP + FN 

(18) 

 1 − measure = 2 ∗Recall × P recision 

Recall + P recision 

(19) 

Area under the receiver operating characteristic (ROC) curve 

AUC), which represents the relation between true positive rate 

TPR) and the false positive rate (FPR). 

https://wiki.cancerimagingarchive.net/display/Public/Lung+CT+Segmentation+Challenge+2017
https://wiki.cancerimagingarchive.net/display/Public/Lung+CT+Segmentation+Challenge+2017


M. Abdel-Basset, H. Hawash, N. Moustafa et al. Pattern Recognition Letters 152 (2021) 311–319 

Table 1 

Performance comparison of lung dataset. 

Methods Accuracy(%) DSC(%) JI(%) AUC(%) 

R2U-net [31] 92.13 ±13.1 88.98 ±8.64 94.96 ±5.41 94.22 ±8.93 

CE-Net [32] 95.08 ±11.4 91.38 ±4.25 95.26 ±2.93 96.34 ±10.2 

CPFNet [33] 95.61 ±9.18 93.06 ±6.13 94.21 ±3.45 95.62 ±7.55 

GR-U-Net 97.93 ±9.81 93.97 ±3.21 97.28 ±2.61 97.88 ±6.12 

Table 2 

The results of paired t-test experiments 

R2U-net [31] 0.030581 0.030492 0.10078 

CE-Net [32] 0.042270 0.032882 0.052341 

CPFNet [33] 0.028069 0.042838 0.068629 

Fig. 4. GR-U-net performance with different number of dense blocks. 
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Fig. 5. GR-U-Net performance with and without SE blocks. 

Fig. 6. GR-U-Net performance with and without BConvGRU. 
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. Results and discussion 

.1. Segmentation performance 

.1.1. Comparative analysis 

In our experiments, for the purpose of demonstrating the pro- 

osed segmentation technique, we conduct comparative experi- 

ents against other studies R2U-net [31] , CE-Net [32] , CPFNet 

33] and the obtained quantitative results shown in Table 1 . It 

ould be observed that the proposed GR-U-Net achieves the high- 

st accuracy of 97.93%, DSC of 93.97%, JI of 97.28, and AUC of 97.28

hich outperforms the competing cutting-edge segmentation net- 

orks 

.1.2. Statistical Analysis 

Beyond and above, the statistical significance of the segmenta- 

ion outcomes of proposed GR-U-Net compared to the results at- 

ained by the competing segmentation networks, a paired t-test 

xperiment is introduced, and the calculated p-values are pre- 

ented in Table 2 . Where the p-value < 0.05 implies that the find-

ngs of the proposed model statistically vary from those of the 

ompetent methods. It could be seen that all the p-values are less 

han 0.05 which further validate the efficiency of the proposed GR- 

-Net in segmenting the lungs from Chest CT scans. 

.1.3. Ablation Analysis 

In Fig. 4. We compare the impact Number of dense blocks on 

he proposed GR-U-Net return. We could observe that the three 

ense blocks yield higher performance with 97.93% of accuracy and 

3.97% of DSC compared to utilizing one block that gives 94.37% of 

ccuracy and 91.09% of DSC or two blocks that result in 96.21% 

f accuracy and 91.98% of F1-measure. We do not leverage more 
316 
han three blocks to avoid enlarging several network parameters. 

lso, to approve the effectiveness of both SE blocks on the decod- 

ng track, we compare our model with and without these blocks 

n Fig. 5 , and it could be observed that enrolling SE blocks within 

he decoding path achieve performance improvements with 2.51% 

nd 1.9% on accuracy and F1-measure, respectively. Moreover, to 

emonstrate the impact of adopting BConvGRU as a skip connec- 

ion compared to the traditional U-net skip connection, we analyze 

he proposed GR-U-Net performance using both kinds of connec- 

ions, as shown in Fig. 6. It could be noted that capturing Spatio- 

emantic characteristics within BConvGRU raises the model’s accu- 

acy and F1-measure with 2.01% and 0.92%, respectively. 

For extra validation of the efficiency of the proposed, ROC anal- 

sis is performed by plotting the ROC of the proposed GR-U-Net as 

resented in Fig. 7. 

.2. Classification Performance 

.2.1. Comparative analysis 

In this experiment, the proposed model is compared against 

utting-edge COVID-19 screening approaches namely CAD [14] , 

OVNet [16] , AFS-DF [34] , and EfficientNet [15] , as presented in 

able 3 . It is notable that show the lowest AFS-DF classification 

erformance (accuracy:87.12%, f1-measure: 87.69%, recall: 92.82%, 

recision:83.09%. AUC: 92.71%) because of reliance on suboptimal 

eature engineering. Comparatively, deep learning (COVNet [16] , 

FS-DF [34] , EfficientNet [15] ) shows great performance improve- 

ent because of their ability to perform robust feature extraction 

utomatically throughout learning. More significantly, the proposed 

wo-stage model overcomes the competent methods with large 

argins (accuracy: 2.15%, f1-measure: 1.75%, AUC: 1.25%). 
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Fig. 7. GR-U-Net ROC analysis. 

Table 3 

Performance comparison of lung dataset. 

Methods A F1 R P AUC 

AFS-DF [34] 87.12% 87.69% 92.82% 83.09% 92.71% 

CAD [14] 90.24% 89.58% 93.34% 86.11% 95.33% 

COVNet [16] 94.65% 94.31% 96.51% 92.21% 97.12% 

EfficientNet [15] 94.32% 94.68% 95.66% 93.72% 97.61% 

proposed 96.80% 96.43% 96.50% 96.37% 98.86% 

Table 4 

the results of paired t-test experiments 

AFS-DF [3] 0.01393 0.04792 0.02845 

CAD [1] 0.03090 0.04333 0.00150 

COVNet [2] 0.01364 0.03397 0.04286 

EfficientNet [4] 0.02818 0.01361 0.06293 

4

p

c

a

s

Table 5 

ablation studies for the proposed classification model 

A F1 AUC 

Baseline (B) 90.43% 91.22% 90.14 

B(TL) 93.16% 93.22% 95.11 

B(TL) + MsFF 94.82% 94.83% 98.01 

B (TL) + GuInf 95.19% 95.51% 98.36 

Proposed 96.80% 96.43% 98.86% 

Table 6 

confusion matrix of proposed classification model. 

Actual classes 

Predicted classes COVID-19 CAP NIF Recall 

COVID-19 1291 46 11 95.77% 

CAP 41 906 6 95.07% 

NIF 9 13 1612 98.65% 

Precision 96.27% 93.89% 98.96% 

F1-measure 96.02% 94.47% 98.80% 
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.2.2. Statistical Analysis 

Beyond and above, the statistical significance of the results of 

roposed two-stage frameworks compared to those obtained from 

ompeting approaches, a paired t-test experiment is introduced, 

nd the calculated p-values are presented in Table 4 . It could be 

een that all the p-values are less than 0.05 which further validates 
Fig. 8. (a) CAP samples incorrectly classified as COVID-19 with the proposed model

317 
he efficiency of the proposed model in discriminating COVID-19 

rom CAP in computer-aided diagnosis. 

.2.3. Ablation studies 

In this section, ablation experiments are performed to evalu- 

te the contribution of different building blocks and the obtained 

esults are given in Table 5 . in this experiment, the standard Ef- 

cientNet is employed as baseline architecture. It could be noted 

hat applying the TL to the proposed model show great perfor- 

ance improvement. Besides, the inclusion of MsFF improves the 

erformance because it enables the model to learn disease fea- 

ures with different sizes of infection. The inclusion of GuInf mod- 

le greatly contributes to improving the classification performance 

s it guides the network to take classification decisions based on 

nfection areas. Combining all the beforementioned modules in the 

roposed model gives us the best classification performance 

.2.4. Confusion Matrix and Failure analysis 

Moreover, to provide detailed analysis, the confusion matrix of 

he proposed model is presented in Table 6 . It could be noted that 

he proposed model correctly classified 1291 slices out of 1341 (PR: 

6.27%) as COVID-19, and correctly classified 906 out of 965 slices 

PR:93.89%) as CAP. Thus, most of the misclassification occurs be- 
 (b) COVID-19 samples incorrectly classified as CAP with the proposed model. 
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ween COVID 19 and CAP; this can be explained as co-infected pa- 

ients. The misclassification between the COVID-19 and NIF classes 

an be explained by the early stage of infection where the infection 

s still slightly present in the received CT slice. Based on misclas- 

ification witnessed in confusion matrices, we present eight failure 

ases in Fig. 8 . Particularly, in part (a), we provide four cases of

AP that are classified as COVID-19 infection. While part (b) vi- 

ualizes some of the incorrectly classified COVID-19 as CAP. This 

eans that the generated attention map from both models erro- 

eously gets activated on various regions irrelevant to pneumonia. 

his potentially happens due to the lack of volumetric information 

n our models since the learning performed at slice level. 

. Limitations 

Multiple limitations are observed for the proposed framework. 

irstly, imaged characteristics of COVID-19 is shown higher simi- 

arity with other viral pneumonia. However, owing to the nonexis- 

ence of laboratory etiological confirmation of such cases, we could 

ot choose different viral types of pneumonia for classification in 

his paper. Secondly, we noticed another disadvantage for the deep 

earning paradigm that is the absence of results’ uncertainty; in 

ther words, specifying the value of confidence that the patient 

elongs to a certain class. Thirdly, there is a considerable amount 

f overlap in lung presentation to various viral as well as gener- 

ted lung reactions, which make it impossible to discriminate all 

ung diseases from chest CT with one approach. Which inevitably 

equires a multidisciplinary approach. Finally, this paper emphases 

n detection of COVID-19 and distinguish it from CAP; yet has not 

onsidered categorizing the disease severities. 

. Conclusions and Future Work 

This study introduces a two-stage DL framework for distin- 

uishing COVID-19 infection from CAP in CT scans of patients to 

ssist doctors and researchers to effectively detect SARS-COV-2 in- 

ection from other cases of pneumonia. Firstly, A U-shaped net- 

ork is introduced in the first stage for lung segmentation where 

he Bi-convGRU is introduced to capture spatial-semantic features 

rom the encoding track and the output maps of the former block 

n the decoding track, and also make use of spatial and channel 

eatures recalibration in decoding track. Then, we exploit the re- 

ent advance in TL techniques by independently employing the 

fficientNet-b7 as pre-trained feature extractors while attention 

odules are introduced to learn multi-scale features necessary for 

esion localization purposes. 

Up to this, in future work, we intend to accumulate extra CT 

cans from several centers, demonstrating our model performance, 

nd publish it as a free application. As a subsequent stage, it will 

e necessary to predict not only the presence of infection but also 

stimate the degree of severity to enable continuous monitoring of 

atients during the treatment period. Also, we aim to investigate 

he hierarchical characteristics of CT images along with other as- 

ects such as RT-PCR, epidemiological, and clinical symptoms for 

aster and improved diagnosis. 
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