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ABSTRACT

Generative Adversarial Networks (GANs) have recently achieved unprecedented success in photo-
realistic image synthesis from low-dimensional random noise. The ability to synthesize high-quality
content at a large scale brings potential risks as the generated samples may lead to misinformation
that can create severe social, political, health, and business hazards. We propose SubsetGAN to
identify generated content by detecting a subset of anomalous node-activations in the inner layers
of pre-trained neural networks. These nodes, as a group, maximize a non-parametric measure of
divergence away from the expected distribution of activations created from real data. This enable
us to identify synthesised images without prior knowledge of their distribution. SubsetGAN effi-
ciently scores subsets of nodes and returns the group of nodes within the pre-trained classifier that
contributed to the maximum score. The classifier can be a general fake classifier trained over sam-
ples from multiple sources or the discriminator network from different GANs. Our approach shows
consistently higher detection power than existing detection methods across several state-of-the-art
GANs (PGGAN, StarGAN, and CycleGAN) and over different proportions of generated content.

1 Introduction

The accelerated growth of deep learning models for synthetic generation, such as GANs (Goodfellow et al., 2014), has
made it possible to create near realistic fake content at a massive scale, generating thousands of samples in seconds.
The generation capabilities range from full synthetic faces (Karras et al., 2017, 2020), or partial image modification,
such as attribute editing (Choi et al., 2018; Liu et al., 2019) to image style transfer (Zhu et al., 2017a). The generated
samples from GANs were reported to be challenging for the human eye to distinguish from real samples2 (Karras
et al., 2017). With near realistic generated content and high throughput capacity, several high-profile concerns are on
the rise in critical areas such as security, ethics, democracy, and intellectual property rights. If the trend continues,
the traditional perspective of treating images (”A picture is worth a thousand words”) as reliable and trustworthy
content may no longer be valid. This will challenge data-driven decision making in societal and commercial activities.
Therefore, an effective technique to detect fake (AI-synthesized) content is crucial for platforms that need to verify
content from unknown sources. Several methods for detecting counterfeit or synthetic content employ either ad-hoc
forensics features or dedicated deep learning architectures to distinguish fake from real content in a given data type
and form. These methods rely on labeled samples from different generative sources, data augmentation via replication
processes, or specialized deep learning models and training techniques (Hsu et al., 2020; Zhang et al., 2019). In this
paper, we propose SubsetGAN that determines whether a given batch of input samples contains a synthesized subset of

∗The paper is under consideration at Pattern Recognition Letters
2https://thispersondoesnotexist.com/
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Pattern Detection in the Activation Space for Identifying Synthesized Content

Figure 1: Overview of the proposed approach - SubsetGAN. First, we analyze the distribution of the activation space
of the given network. The model can be a pre-trained fake classifier C(x) or the discriminator network of an off-the-
shelf GAN D(x). After we extracted the activations from the model, we compute the empirical p−values followed by
the maximization of non-parametric scan statistics - NPSS (Chen and Neill, 2014). Finally, a subset of images and the
corresponding anomalous subset of nodes in the network are identified.

samples using an anomalous pattern detection method called group-based subset scanning (Neill, 2012; McFowland III
et al., 2013). This work builds on top of recent works that employ individual scanning to detect adversarial attacks
across audio and images (Cintas et al., 2020; Akinwande et al., 2020) without exploiting the patterns potentially
shared across a group of samples. We hypothesize that synthesized content from off-the-shelf GANs (e.g., PGGAN
(Karras et al., 2017), DCGAN (Radford et al., 2015), and StarGAN (Choi et al., 2018)) leave a potentially subtle but
systematic trace in the activation space across multiple generated samples. We test this hypothesis through group-
based subset scanning over the activation space that encodes groups of samples that may appear anomalous when
analyzed together. In short, this work identifies which, of the exponentially-many, subset of samples in a test set have
higher-than-expected activations at which, of the exponentially-many, subset of nodes in a hidden layer of a pre-trained
neural network. An overview of the proposed approach is shown in Figure 1.

This work makes four main contributions. First, we show how to detect synthesised image content by applying group-
based subset scanning methods on activations from internal layers of pre-trained models, including binary classifiers
(trained to detect fake from real) and state-of-the-art GANs. Second, we present the unique ability to identify patterns
of anomalous activations across a group of images. Third, we validated our detection capabilities for both total and
partial generation of images from one to multiple generation sources. Fourth, we enhance the performance of the
discriminant component of GANs and off-the-shelf fake classifiers to detect the synthesized images without extra
labeled examples, data augmentation, or model retraining. We compare the proposed SubsetGAN with state-of-the-art
methods, such as FakeSpotter (Wang et al., 2020) and AutoGAN (Zhang et al., 2019). SubsetGAN is also validated
across the state-of-the-art generative models (see Tables 2, 4 and 5). We show that the proposed group-based scanning
method achieves higher synthesized content detection power compared to existing methods, tested under different
types of content generation such as attribute editing, image translation, and full synthetic samples.

2 Related Work

Generation of adversarial content can be categorized into two groups: complete (full) and partial. Complete generation
is the case where a GAN generates the output from a noise vector (Emami et al., 2018; Han et al., 2018). On the
other hand, partial generation is a case where only a part of the content is generated or modified. Examples of partial
generation include image translation, and attribute editing. Image translation refers to taking images from one domain
and transforming them to have the style of images from another domain. Lastly, attribute editing refers to a case where
only the input sample is modified in a specific way for a given characteristic. Next, we review existing methods related
to adversarial content generation and the capability of recent techniques to detect them.
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2.1 Generative Adversarials Networks (GANs)

GANs have shown remarkable results in various computer vision tasks such as image generation (Emami et al., 2018;
Han et al., 2018), image translation (Zhu et al., 2017b; Armanious et al., 2020), face image synthesis (Karras et al.,
2017; Ye et al., 2019; Zhang et al., 2018) and recently in generation of text (Chen et al., 2018; Xu et al., 2018)
and audio (Lorenzo-Trueba et al., 2018). A typical GAN framework contains generative (G) and discriminative (D)
components such that G aims to generate realistic-like content while D learns to discriminate if a generated sample
is from the real data distribution (H0) or not (H1). Multiple iterations will inform G on how to adjust the generation
process to fool D and vice-versa.

We provide a summarised review of the existing methods related to the generation of adversarial content used in
this work: DCGAN (Radford et al., 2015), PGGAN (Karras et al., 2017), StarGAN (Choi et al., 2018), and Cycle-
GAN (Zhu et al., 2017a). Deep Convolutional Generative Adversarial Networks (DCGAN) (Radford et al., 2015) is
one of the popular and successful networks designed for GAN and commonly used as a standard for image generation
. It mainly composes of convolution layers without max pooling or fully connected layers.

More recently, (Karras et al., 2017) presented PGGAN - a new direction for full image synthesis that enhanced the
quality of generated images by employing a progressive training approach that fine-tunes layers increasingly over time,
and a simple technique to increase variation across the generated images without learnable parameters. Furthermore,
PGGAN also provided a novel evaluation technique that takes into consideration both the quality of generated images
and their variations.

StarGAN (Choi et al., 2018) is a multiple attribute editing network and its design is aimed at improving the scala-
bility and robustness via a novel GAN that learns the mappings among multiple domains. StarGAN uses only single
generator and single discriminator to effectively train a model from images of multiple domains.

Lastly, CycleGAN (Zhu et al., 2017a) is an image translation network that provided a means for image translation
in the absence of paired training data, by exploiting the cycle consistent translation property between source and
target domains and later combining the disparity from this property with the standard adversarial loss. CycleGAN
was validated across different applications, such as collection style transfer, object transfiguration, season transfer and
photo enhancement.

2.2 AI-synthesized Content Detectors

Existing methods for detecting synthesized content might use forensic-based approaches or deep learning techniques.
Several works from these two streams are analyzed below. Raw pixels and ad-hoc forensics features, extracted from
real and generated content, were used to train a classifier in (Marra et al., 2018). In (Hsu et al., 2018), the authors
proposed a contrastive loss in seeking the typical features of the synthesized images followed by a classifier to detect
such AI-generated images. Similarly, (Hsu et al., 2020) reported a deep learning-based approach for identifying
the fake images by using the contrastive loss. A simulator was employed to generate images and a spectrum-based
classifier was used in (Zhang et al., 2019). Closer to our work, FakeSpotter (Wang et al., 2020) was designed to
monitor node behavior to detect generated faces since patterns of layer-by-layer node activation may capture more
subtle features that are crucial to detect synthesized content, using a threshold calculated from the average values of
outputs in each layer for a given set of training samples.

We hypothesize that more complex layer-by-layer activation behavior underlies learned representations in deep neu-
ral networks. Thus, we can enhance average threshold information with a subset of nodes in each layer that yield
higher-than-expected activations under generated content. SubsetGAN provides a way to simultaneously detect and
characterize multiple samples created by GANs. Unlike the state-of-the-art adversarial content detection techniques,
our proposed approach does not require extra labeled examples, data simulation processes, or specialized training
techniques, which must be asserted before training time. These capabilities of the proposed approach could also be
employed to enhance the performance of existing deep learning methods.

3 Proposed Approach: SubsetGAN

Subset scanning treats the detection problem as a search for the most anomalous subset of observations in the data.
This exponentially large search space is efficiently explored by exploiting mathematical properties of our measure of
anomalousness.

Consider a set of images X = {X1 · · ·XM} and nodes O = {O1 · · ·OJ} within the discriminator D or pre-trained
classifier C. Let XS ⊆ X and OS ⊆ O, we then define the subsets S under consideration to be S = XS × OS . The
goal is to find the most anomalous subset:

3
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S∗ = argmax
S

F (S) (1)

where the score function F (S) defines the anomalousness of a subset of images and node activations. SubsetGAN
uses an iterative ascent procedure that alternates between two steps: a step identifying the most anomalous subset of
images (Xs) for a fixed subset of nodes (Os), or a step that identifies the converse. There are 2M possible subsets
of images, XS , to consider at these steps. However, the Linear-time Subset Scanning property (LTSS) (Neill, 2012;
Speakman et al., 2016) reduces this space to only M possible subsets while still guaranteeing that the highest scoring
subset will be identified. This drastic reduction in the search space is the key feature that enables SubsetGAN to scale
to large networks and sets of images. Without loss of generality, LTSS also decreases the search space of node subsets
from 2J to J at each of the remaining steps of the ascent procedure. The iterations will converge to a joint, local
maximum such that any change to the subset XS , conditioned on the subset OS , decreases the score F (S). Similarly,
any changes toOS conditioned onXS will also decrease F (S). Multiple random restarts are used to approach a global
maximum.

3.1 Non-parametric Scan Statistics (NPSS)

SubsetGAN uses NPSS that has been used in other pattern detection methods (McFowland III et al., 2013; McFowland
et al., 2018; Chen and Neill, 2014). Given that NPSS makes minimal assumptions on the underlying distribution of
node activations, SubsetGAN has the ability to scan across different type of layers and activation functions. However,
these methods do require baseline or background data to inform their data distribution under the null hypothesis H0 of
no generated content present.

There are three steps to use non-parametric scan statistics on model’s activation data. The first is to form a distribution
of “expected” activations at each node. We generate the distribution by letting the discriminator process samples that
are known to be real (sometimes referred to as “background” samples) and record the activations at each node. The
second step records the activations induced by the group of test images and compares them to the baseline activations
created in the first step. This comparison results in a p-value at each node, for each image in the test set (Eq. 2). See
Figure 2 for an example of this process. Lastly, we quantify the anomalousness of the resulting p-values by finding
XS and OS that maximize the NPSS, which quantify how much an observed distribution of p-values deviates from
the uniform distribution. A visual overview of these three steps is shown in Figure 1.

Let AH0
zj be the matrix of activations from Z real images at each of J nodes in a discriminator layer. Let Aij be the

matrix of activations induced by M images in the test set, that may or may not be generated. SubsetGan computes an
empirical p-value for each Aij , as a measurement for how anomalous the activation value of a potentially generated
image Xi is at node Oj . This p-value pij is the proportion of activations from the Z background images, AH0

zj , that
are larger or equal to the activation from an evaluation image at node Oj .

pij =
1 +

∑|Z|
z=1 I(A

H0
zj ≥ Aij)

|Z|+ 1
(2)

Where I(·) is the indicator function. A shift is added to the numerator and denominator so that a test activation that
is larger than all activations from the background at that node is given a non-zero p-value. Any test activation smaller
than or tied with the smallest background acivation at that node is given a p-value of 1.0.

SubsetGAN processes the matrix of p-values (P ) from test images with a NPSS to identify a submatrix S = XS ×OS
that maximizes F (S), as this is the subset with the most statistical evidence for having been affected by an anomalous
pattern. The general form of the NPSS score function is

F (S) = max
α

Fα(S) = max
α

φ(α,Nα(S), N(S)) (3)

where N(S) is the number of empirical p-values contained in subset S and Nα(S) is the number of p-values less
than (significance level) α contained in subset S. It has been shown that for a subset S consisting of N(S) empirical
p-values, E [Nα(S)] = N(S)α (McFowland III et al., 2013). SubsetGAN attempts to find the subset S that shows
the most evidence of an observed significance higher than an expected significance, Nα(S) > N(S)α, for some
significance level α.

We compare the use of two statistical tests for generated content detection: Berk-Jones (BJ) and Higher-Criticism
(HC). BJ test statistic (Berk and Jones, 1979) is defined as:

φBJ(α,Nα, N) = N ∗KL
(
Nα
N
,α

)
(4)
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Figure 2: Example of an evaluation image at a given node in order to measure how much the p-values deviate from
uniform. Where Nα is the number of p-values less than α, N is the number of p-values, and α is the level of
significance.

Algorithm 1: Single Restart over M test images and J nodes
input : (M × J) p-values
output: score, Xs, Os

1 score← −1 ;
2 Xs ← Random(M) ;
3 Os ← Random(J) ;
4 while score is increasing do
5 (M × J ′) = (M × J)|Os ;
6 score, Xs ← OptimizeRows((M × J ′)) ;
7 (M ′ × J) = (M × J)|Xs ;
8 score, Os ← OptimizeRows((J ×M ′));
9 return score, Xs, Os

where KL refers to the Kullback-Liebler divergence, KL(x, y) = x log x
y + (1 − x) log 1−x

1−y , between the observed
and expected proportions of significant p-values. We can interpret BJ as the log-likelihood ratio for testing whether
the p-values are uniformly distributed on [0, 1].

The second statistic, Higher-Criticism (Donoho et al., 2004) is defined as

φHC(α,Nα, N) =
|Nα − αN |√
Nα(1− α)

. (5)

This can be interpreted as the test statistic of a Wald test for the amount of significant p-values given that Nα is
binomially distributed with parameters N and α under H0. Because HC normalizes by the standard deviation of Nα,
it tends to return small subsets with extreme p-values.

3.2 Efficient maximization of NPSS

SubsetGAN identifies the anomalous subset of p-values through iterative ascent of two optimization steps, see Algo-
rithm 1. Within each step, the number of subsets to consider is reduced from O(2E) to O(E) where E is the number
of elements currently being optimized, either images or nodes, see Algorithm 2. This efficient optimization is a direct
application of the LTSS property (Neill, 2012; Speakman et al., 2016). Each element e is sorted by its priority, which
is its proportion of p-values less than an α threshold. Once sorted, the LTSS property states that the highest-scoring
subset will consist of the top-k elements for some k between 1 and |E|. Any subset not consisting of the top-k priority
elements is sub-optimal and therefore does not need to be evaluated.
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Algorithm 2: Optimize over rows using LTSS (OptimizeRows). It maintains maxscore and arg max subset over
‖E‖ ∗ ‖T‖ subsets.
input : p-values from all rows E and relevant cols C
output: maxscore, arg max subset

1 maxscore← −1;
2 arg max subset← ∅ ;
3 for t in T = LinearSpace(0,1) do
4 sorted priority ← SortByPropCT(E, t) . /* Sort elements in E by proportion of p-values across C < t. */
5 Score(sorted priority, t) . /* Score |E| subsets of sorted priority by iteratively including elements one at

a time. */ ;
6 return maxscore, arg max subset

4 Experimental Setup

We evaluated the performance of SubsetGAN using multiple score functions, under different experimental scenarios
and compared against the state-of-the-art synthesized-content detection methods. The scenarios include different
generation types, i.e., complete and partial. Individual-input scanning was used as our baseline. We experimented
with the proposed SubsetGAN on the activations drawn from the discriminator components of different pre-trained
GANs. SubsetGAN was also validated SubsetGAN on pre-trained classifiers that were trained with samples from
multiple GANs (e.g., fake face detectors based on ResNet or SqueezeNet). This helps to provide a scenario that does
not require knowledge of the source of the generated content, as is the case for scanning over the discriminator. We
also visualized the set of nodes in the discriminators that behaved differently for the anomalous groups. The metrics
used are area under receiver operating characteristic curve (AUC), precision (P ) and recall (R). In group-scanning
results, AUC can be thought of as detection power, which is the method’s ability to distinguish between test sets
that contain some proportion of synthetic images and test sets containing only real content. P and R reflect detection
performance, which is the method’s ability to label which images in the test set are synthetic.

4.1 Datasets, GANs and Methods for Comparison

For our experiments, we used images from CelebA HQ (Liu et al., 2015), MNIST (LeCun et al., 1998) and CycleGAN
datasets (Zhu et al., 2017a) as the background samples. To ensure high-quality and variety of generated samples, we
used the pre-trained, highly cited GANs (Section 2) for each of the generation types considered.

To generate completely synthesized samples, we used a pre-trained PGGAN (Karras et al., 2017) model. We se-
lected attribute editing and image translation as use cases for partial generation of samples, and to this end, we used
StarGAN (Choi et al., 2018) with two different sets of attributes. The first set contains five attributes (Black Hair,
Blond Hair, Brown Hair, Male, and Young). The second set contains only the Brown Hair attribute as proposed by
(Wang et al., 2020), for a fair comparison with other methods. For image translation, we used horse2zebra model
and its dataset as defined in (Zhu et al., 2017a). Moreover, we also evaluated SubsetGAN over classic DCGAN using
benchmarking datasets, such as MNIST.

SubsetGAN scanned over the activations extracted from the discriminator components of the following pre-trained
GAN models: DCGAN, CycleGAN3, PGGAN4 and StarGAN5. Furthermore, to present a more general scenario sim-
ilar to (Wang et al., 2020), we scanned over the activations from two available universal pre-trained fake classifier
based on Resnet18 (He et al., 2016) and SqueezeNet (Iandola et al., 2016) architecture and weights. We retrained
the model with partial and complete generated samples with accuracy over test samples of 0.912 and 0.920 respec-
tively.In order to compare the synthesized-content detection power of SubsetGAN, we used recently published works:
FakeSpotter (Wang et al., 2020), specially designed for fake face detection, and AutoGAN (Zhang et al., 2019),
designed for the detection of generic image manipulations.

4.2 Subset scanning setup

We run individual and group-based scanning on node activations extracted from several types of layers, which include
PGGAN’s Scale, GroupScaleZero and Decision layers in addition to common layers such as Conv2D and Batch-

3https://modelzoo.co/model/pytorch-cyclegan-and-pix2pix
4https://pytorch.org/hub/facebookresearch_pytorch-gan-zoo_pgan/
5https://modelzoo.co/model/stargan
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Table 1: Detection Power (AUC) for group-based and individual subset scanning with two different score functions:
BJ and HC, experimented over all layers of DCGAN’s discriminator, under two different proportions for MNIST
dataset.

Layers group-based and indiv. Subset scan

Score Func. BJ Score Func. HC
50% 30% Indv. 50% 30% Indv.

Conv2d 1 1.0 1.0 1.0 1.0 1.0 1.0
LReLU 1 1.0 1.0 1.0 1.0 1.0 1.0
Conv2d 2 1.0 0.781 0.956 1.0 0.758 0.661
BN2d 1 1.0 0.803 0.956 1.0 0.778 0.661
LReLU 2 1.0 0.795 0.956 1.0 0.781 0.661
Conv2d 3 0.378 0.383 0.528 0.487 0.531 0.523
BN2d 2 0.408 0.414 0.528 0.545 0.508 0.523
LReLU 3 0.380 0.425 0.528 0.503 0.455 0.523
Conv2d 4 0.062 0.191 0.380 0.284 0.422 0.380
Sigmoid 0.059 0.185 0.380 0.298 0.373 0.380

Figure 3: Subset scores distribution across layers of DCGAN D(x) with BJ score function for real and generated sam-
ples. The distributions of individual subset scanning scores are shown in green for real images (expected distribution),
and in orange for generated samples. Higher AUCs are expected when distributions are separated from each other
(See layer Conv2d 2) and lower AUCs when they overlap (See BN2d 2). The computed AUC for the subset score
distributions can be found in Table 1.

Table 2: Comparison, in Precision (P) and Recall (R), of the proposed and existing adversarial detection methods
under different Generation Types (GT): TS: total synthesis, AE: attribute editing.

Detection methods
SubsetGAN FakeSpotter (Wang et al., 2020) AutoGAN (Zhang et al., 2019)

GT P R P R P R

TS (PGGAN) 0.941 0.900 0.986 0.987 0.926 0.974
AE (StarGAN) 0.998 0.999 0.901 0.865 0.690 0.567

Norm2D. We run group-based scanning across several proportions of generated content in a group, ranging from 10%
to 50%. We used Z = 5000 images to obtain the background activation distribution (AH0 ) for experiments regard-
ing PGGAN, StarGAN and DCGAN,. For evaluation, each test set had images drawn from a larger set of 1000 real
images (separate from Z) and from 1500 generated samples. The proportion represented in a test set varied in our ex-
periments. For CycleGAN, we followed the same proportion with the sample size from the horse2zebra dataset (Zhu
et al., 2017a).
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Figure 4: PCA for subsets of nodes for two different score functions BJ and HC from DCGAN over MNIST dataset.
In Conv2d 1, we can observe distinctive anomalous subsets of nodes, as we have perfect AUCs at that layer (See
Table 1).

Table 3: Detection Power for various detection methods with multiple network settings for different generation types:
TS: total synthesis, AE: attribute editting.

Method Generation Type Network AUC

FakeSpotter TS Fake face classifier 0.985
FakeSpotter AE Fake face classifier 0.881

AutoGAN TS GAN 0.948
AutoGAN AE GAN 0.656

SubsetGAN (indv) TS D(x) from PGGAN 0.950
SubsetGAN (indv) AE D(x) from StarGAN 0.999

SubsetGAN (group) TS D(x) from PGGAN 0.999
SubsetGAN (group) AE D(x) from StarGAN 1.
SubsetGAN (group) AE & TS Fake classifier (ResNet) 0.941
SubsetGAN (group) AE & TS Fake classifier (SqueezeNet) 0.994

5 Results

We compared detection power of two different non-parametric measures of anomalousness: Berk-Jones (BJ) and
Higher Criticism (HC) (see Section 3) for MNIST data generated by DCGAN. Table 1 shows AUC for both measures
and two proportions (50% and 30%) of synthetic content in each test set. Berk-Jones provides better detection power
particularly when scanning over individual images only. Scanning over earlier layers in the discriminator provides
better detection power than deeper layers. An example of subset scores distributions for this network can be seen in
Fig 3.

To better understand the subsets of anomalous nodes that were identified by SubsetGAN, we used dimensionality
reduction techniques to visualise which subsets were similar-to or distinct-from each other. We performed principal
component analysis on the vector representations of the subsets of nodes. Figure 4, shows each subset of nodes
returned by SubsetGAN across the top-2 principal components. We observe that HC returns one consistent group of
nodes when synthetic inputs are in the test set for both proportions while in BJ varies across ratios but with similar
patterns. Furthermore, we observe the randomness of the anomalous nodes when the test set contains all real images.
Under this condition, SubsetGAN does not identify any consistent group of nodes with higher activations. The rest
of our experiments in this paper are all executed with the BJ score function to measure anomalousness. Below, we
provide the results achieved by SubsetGAN and existing methods in detecting partially, and completely synthesized
samples. We have also evaluated the proposed SubsetGAN across different generation types, discriminator networks
and universal fake classifiers as shown in Table 3.

8
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Figure 5: ROC curves for individual and group scanning over 80%-20% proportion for PGGAN with CelebA-HQ.

Table 4: Detection power (in AUC) for group-based and individual subset scanning over all layers of StarGAN D(x)
under two different proportions (50% and 20%) for detection of edited attributes that include Black Hair, Blond Hair,
Brown Hair, Male and Young (Choi et al., 2018).

Scanning
Group

Layers 50% 20% Indv.

Conv2d 1 1.0 0.478 0.225
LeakyReLU 1 1.0 0.694 0.225
Conv2d 2 1.0 0.997 0.351
LeakyReLU 2 1.0 0.995 0.351
Conv2d 3 1.0 1.0 0.961
LeakyReLU 3 1.0 1.0 0.961
Conv2d 4 1.0 1.0 0.992
LeakyReLU 4 1.0 1.0 0.992
Conv2d 5 1.0 1.0 0.997
LeakyReLU 5 1.0 1.0 0.997
Conv2d 6 1.0 0.888 0.258
LeakyReLU 6 1.0 0.922 0.258

Table 5: Precision and recall metrics for group-based scanning over different fake content proportions with 200 runs
across D(x) PGGAN layers and CelebA-HQ dataset.

layers/prop. metric 50% 40% 30% 20% 10%

scaleLayers.0.0 precision 0.929± 0.035 0.895± 0.052 0.832± 0.076 0.719± 0.125 0.405± 0.153
recall 0.855± 0.051 0.851± 0.058 0.867± 0.072 0.875± 0.071 0.886± 0.105

scaleLayers.1.0 precision 0.941± 0.034 0.909± 0.046 0.859± 0.066 0.759± 0.110 0.483± 0.162
recall 0.900± 0.045 0.900± 0.052 0.904± 0.053 0.912± 0.063 0.938± 0.071

scaleLayers.1.1 precision 0.942± 0.036 0.899± 0.045 0.841± 0.072 0.727± 0.105 0.416± 0.148
recall 0.885± 0.046 0.891± 0.048 0.891± 0.058 0.891± 0.058 0.899± 0.068

groupScaleZero.0 precision 0.942± 0.037 0.907± 0.051 0.853± 0.071 0.752± 0.108 0.482± 0.108
recall 0.828± 0.054 0.837± 0.059 0.840± 0.072 0.857± 0.081 0.871± 0.121

groupScaleZero.1 precision 0.942± 0.035 0.917± 0.048 0.868± 0.066 0.777± 0.104 0.474± 0.162
recall 0.832± 0.055 0.836± 0.065 0.843± 0.062 0.845± 0.079 0.875± 0.111

decisionLayer precision 0.326± 0.065 0.245± 0.065 0.171± 0.061 0.110± 0.045 0.048± 0.033
recall 0.218± 0.072 0.213± 0.082 0.209± 0.089 0.205± 0.093 0.196± 0.142

9
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5.1 Detection of partially synthesized samples

Attribute editing is considered as an example for partially synthesized content. We compared the performance of Sub-
setGAN (group-based and individual) and selected existing methods, FakeSpotter (Wang et al., 2020) and AutoGAN
(Zhang et al., 2019), in detecting samples (from CelebA-HQ datset) with an edited attribute.

Tables 2 and 3 show that the proposed group-based SubsetGAN outperformed FakeSpotter and AutoGAN across
both GAN types (PGGAN and StarGAN). Particularly, both FakeSpotter and AutoGAN struggled to detect partially
synthesized contents drawn from StarGAN. Comparatively, FakeSpotter performed higher than AutoGAN, achieving
AUC values second to the proposed SubsetGAN that gains its detection power by efficiently identifying a subset of
nodes that deviate away from expected behavior. Other methods may rely on aggregate changes (i.e. a change in
average across all node activations). This ability to identify a group of nodes maintains high detection power when
only part of the image is edited. Furthermore, SubsetGAN (group) shows that the identified anomalous set of nodes
persists across multiple edited samples, which underlines it unique ability to identify patterns of anomalous activations
across a group of images.

We also evaluated SubsetGAN across different layers of StarGAN, with more edited attributes and different ratios of
synthesized samples in a group. Both individual and group-based scanning resulted in impressive detection perfor-
mance, particularly in the middle layers of StarGAN as shown in Table 4. Moreover, SubsetGAN achieved impressive
detection performance when the ratio of synthesized samples is 50%. Generally, SubsetGAN exhibited higher de-
tection of samples even when only a few attributes are edited. Similar experiments were performed for an other
validation task, i.e. image translation. Specifically, we tested SubsetGAN with CycleGAN dataset horse2zebra (Zhu
et al., 2017a), yielding 0.973 AUC from individual scan, 0.997 from group-based scanning with P = 0.990 and
R = 0.996.

5.2 Detection of completely synthesized samples

In addition to our validation on detection of partially generated samples, we also evaluated SubsetGAN in detecting
completely synthesized samples. We used synthesized samples from PGGAN, real samples from CelebA-HQ dataset
and group-based SubsetGAN was applied to detect those synthesized samples. The detection performance across
different layers of PGGAN and for different ratios of synthesized samples are shown in Table 5. We started with a
50% proportion because it is a standard procedure to use minibatch discrimination that looks at multiple examples
(real and generated) rather than in isolation, as this helps avoid a collapse of the generator (Salimans et al., 2016).

Results showed that the intermediate layers had more discriminative activations compared to the other layers, consis-
tent with partially synthesized-content detection using StarGAN (see Table 4). Compared to other synthesized samples
ratios, 50% achieved superior trade-off between precision and recall, as expected, given the more balanced positive
and negative samples in the group. Smaller ratios, e.g., 10%, exhibited higher recall values due to the lower likelihood
of samples being predicted as false negatives. This is validated by the low precision values achieved by smaller ratios
due to the higher likelihood of samples being predicted as false positives.

Figure 5 shows the ROC curves with their corresponding AUROC across different layers of the discriminator for
CelebA-HQ real samples and completely synthesized samples from PGGAN, across several proportions from group-
based scan and individual scan. Table 5 shows precision and recall averaged across 200 runs for group-based scanning
over different fake content proportions over the discriminator layers of PGGAN and using CelebA-HQ dataset. We
observe across different experiments with DCGAN and PGGAN, that the first layers maintain high detection power
(AUC) when the proportion is higher than 20% of generated samples, but decays when the amount of generated
samples is below or equal to 10%. In this case, opting for individual scan will yield better detection power.

5.3 Run-time benchmark

Scalability is often an issue in most existing anomalous sample detection techniques, particularly, when the group of
samples is large. After all, there are exponentially many subsets with respect to the group size. To this end, SubsetGAN
utilises linear-time subset scanning property that helps to scan across samples in linear time via its ranking function.
In Table 6 we can see the execution time for subset scanning under a convolutional layer (main.2) with 131, 200 learn-
able parameters from PGGAN D(x). For the evaluation we performed 200 runs with the Berk-Jones (Berk and Jones,
1979) score function. We evaluated the proposed method for single and multiple images (each image is 256 × 256
pixels) as input for the network. The tests were performed in a desktop machine (2.9 GHz Quad-Core Intel Core i7,
16 GB 2133 MHz LPDDR3).
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Table 6: Benchmark for SubsetGAN. Scan time involves p-value calculation and scanning process for both evaluation
samples. Total time measure the complete pipeline from node activation extraction till output metrics recording.

# images Scan time (secs) Total time (secs)

1 62.0± 0.43 67.7± 0.49
10 77.7± 0.41 83.8± 0.82

100 94.41± 0.42 100.7± 0.94
1000 248.5± 1.27 262.77± 1.34

6 Conclusion and Future Work

We proposed SubsetGAN - a novel method to detect AI-synthesized content via subset scanning. Unlike SubsetGAN,
existing methods to detect synthesized content often require labelled generated examples, re-training of models and/or
augmentation of data. Our proposed method works by analysing the activation space of the discriminator component of
any given generative network or off-the-shelf fake classifier. SubsetGAN provides both the subset of the input images
identified as AI-synthesized and the corresponding nodes in the network that gave rise to the identification of those
images. With this approach, we aim to enhance the detection power of current deep learning based fake detectors.

SubsetGAN (individual) can operate on a per-image basis and shows strong detection power without requiring multi-
ple images in a test set. This is because our method does not require aggregate-level changes to the activation space
to detect generated content. However, additional unique insights are gained with the ability to identify anomaolaous
nodes across a group of images. We validated SubsetGAN across different generative networks (e.g., PGGAN, Star-
GAN, CycleGAN and DCGAN) and types of generation: partial (e.g., attribute editing) and complete. Further, we
evaluated the case where no information of the generative source is provided, with general fake classifiers, that are
trained with samples from multiple GANs and generation types. We compared the detection capability of SubsetGAN
with existing methods FakeSpotter and AutoGAN. The results showed that SubsetGAN outperformed those existing
methods consistently across different validation scenarios, and also drives towards interpretability of the detection
process. Future work includes utilising the characteristics of the anomalous nodes in improving the generative com-
ponent. SubsetGAN also sets the foundation to transition from robust detection of generated content to explainability
and retraining of generative models.

References
Victor Akinwande, Celia Cintas, Skyler Speakman, and Srihari Sridharan. 2020. Identifying Audio Adversarial Exam-

ples via Anomalous Pattern Detection. In Workshop on Adversarial Learning Methods for Machine Learning and
Data Mining, KDD’20.

Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Tobias Hepp, Konstantin Nikolaou, Sergios
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A Supplementary Material

A.1 Additional Experiments on baseline DCGAN and MNIST

The architecture of the scanned D(x) from DCGAN can be found in Table 7. For a qualitative inspection of the
samples used in the experiments, we can observe a PCA overlapping both generated and real samples can be seen in
Figure 6.

Figure 6: PCA over clean and generated samples from DCGAN-MNIST. To verify that the distributions overlap.

Figure 7: ROC curves for group-based scanning over multiple proportions till 90-10 proportion for PGGAN with
CelebA-HQ.
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Table 7: D(x) layers and parameters description from DCGAN

Name type parameters

main.0 Conv2d kernel size=4×4, stride=2×
2

main.1 LeakyReLU negative slope=0.2
main.2 Conv2d kernel size=4×4, stride=2×

2
main.3 BatchNorm2d eps=1e-05, momentum=0.1,

affine=True
main.4 LeakyReLU negative slope=0.2
main.5 Conv2d kernel size=4×4, stride=2×

2
main.6 BatchNorm2d eps=1e-05, momentum=0.1,

affine=True
main.7 LeakyReLU negative slope=0.2
main.8 Conv2d kernel size=4×4, stride=2×

2
main.9 Sigmoid -

A.2 Additional experiments on completely synthesized samples detection

In Figure 7 we can observe a more detail behaviour for completely synthesized samples across smaller proportions.

A.3 Additional experiments on partially synthesized samples detection

Regarding image translation with horse2zebra dataset (Zhu et al., 2017a) we report Precision and Recall across layers
of CycleGAN D(x) in Table 8.

Table 8: Precision and Recall for group-based subset scanning over all layers of CycleGAN D(x) for image transla-
tion with horse2zebra dataset (Zhu et al., 2017a).

Layers Group-based Subset scan for D(x)
20%

P R

Conv2d 1 0.959± 0.022 0.998± 0.007
LeakyReLU 1 0.961± 0.023 0.997± 0.010
Conv2d 2 0.990± 0.006 0.997± 0.010
InstanceNorm2d 1 0.860± 0.041 0.983± 0.025
LeakyReLU 2 0.849± 0.036 0.978± 0.026
Conv2d 3 0.990± 0.005 0.958± 0.036
InstanceNorm2d 2 0.948± 0.026 0.998± 0.007
LeakyReLU 3 0.953± 0.027 0.997± 0.010
Conv2d 5 0.997± 0.011 0.684± 0.099
InstanceNorm2d 3 0.804± 0.080 0.882± 0.055
LeakyReLU 4 0.784± 0.068 0.882± 0.058
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