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Abstract—The success of deep learning based models for com-
puter vision applications requires large scale human annotated
data which are often expensive to generate. Self-supervised learn-
ing, a subset of unsupervised learning, handles this problem by
learning meaningful features from unlabeled image or video data.
In this paper, we propose a self-supervised learning approach to
learn transferable features from MR video clips by enforcing
the model to learn anatomical features. The pretext task models
are designed to predict the correct ordering of the jumbled
image patches that the MR video frames are divided into. To
the best of our knowledge, none of the supervised learning
models performing injury classification task from MR video
provide any explanation for the decisions made by the models
and hence makes our work the first of its kind on MR video
data. Experiments on the pretext task show that this proposed
approach enables the model to learn spatial context invariant
features which help for reliable and explainable performance
in downstream tasks like classification of Anterior Cruciate
Ligament tear injury from knee MRI. The efficiency of the novel
Convolutional Neural Network proposed in this paper is reflected
in the experimental results obtained in the downstream task.

Index Terms—Self-supervised, representation learning, MRI

I. INTRODUCTION

Deep learning techniques have displayed great success in
computer vision tasks like object detection, tracking, segmen-
tation, etc. [1]–[5]. These deep learning models are trained on
datasets containing several gigabytes of human annotated data.
Annotating such huge amount of data is time consuming and
requires expert domain knowledge. Several attempts have been
made to devise techniques to help the machine learning models
learn good representation of the underlying data distribution
without the availability of large amount of annotated data. Re-
cent advances made in this regard include transfer learning [6],
semi-supervised learning [7], [8], weakly-supervised learning
[9], etc.

In this paper, we have concentrated our efforts on self-
supervised representation learning, which is a subclass of
unsupervised learning. Self-supervised learning can be used to
learn meaningful feature representations from spatial, temporal
or spatio-temporal data without the help of human supervision.
This objective is generally achieved by solving various pretext
tasks, like image inpainting [10], solving jigsaw puzzles [11]–
[14], temporal order correction [15]–[20], geometric trans-
formation prediction [21]–[23], etc. The pretext tasks and
the associated labels are generally defined depending on the

nature of the data. The objective of the pretext task is to
extract explainable and transferable representations that can be
useful in solving a downstream tasks, such as, object detection,
tracking, semantic segmentation etc. However, in medical im-
age analysis, applications of self-supervised learning methods
are limited. Jiao et al. (2018) [24] applied a combination of
temporal order correction and geometric transformation pre-
diction methods for standard plane detection in fetal ultrasound
videos.

The objective of this paper is to propose a self-supervised
representation learning method to learn features from MR
videos of knee without human annotations. These features
are used to reliably detect ACL Tear injuries sustained in
the knee of a human in the downstream task. The pretext
task in our method attempts to solve a jigsaw puzzle and
learns meaningful visual representations by solving it. We
have shown with rigorous experimental evidences that this
method helps the pretext models to learn spatial context-
invariant features in MR video clips, unlike previous works
where the features learnt by the pretext models are covariant
to the transformations applied [10]–[12], [25].

The contributions of this work are as follow:
‚ We propose a novel Convolutional Neural Network ar-

chitecture for efficiently solving jigsaw puzzle as pretext
task. This model can be trained from scratch to learn
explainable visual representational features.

‚ We also propose an unique Divide-and-Teach strategy to
train the model for the downstream task in case of GPU
memory constraint. This strategy also enables the model
to learn temporally independent features.

‚ Our work is demonstrated to be effective in extracting
explainable and transferable context invariant features as
evident from results obtained in the downstream task.

II. METHODOLOGY

In this paper, the goal is to learn feature representation of the
spatio-temporal information available from the MR videos. We
achieve this goal by devising a novel CNN architecture, which
predicts the order in which the patches. The arrangements
are chosen using Algorithm 1 and the patches are arranged
according to the chosen arrangement using Algorithm 2. In
the following subsections, we focus on designing the pretext
algorithm and subsequently the downstream algorithm for
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detecting ACL tear injury from knee magnetic resonance
videos.

A. Pretext Task Algorithm

The pretext task in our method is similar to jigsaw puzzle
solving strategy. In this learning strategy, we divide a randomly
chosen frame of a MR video clip into N square patches of
dimension t L?

N
u ˆ t L?

N
u, where L is the dimension of the

square frame, N is the number of patches we want to divide
the frame into, and txu equals the nearest integer less than or
equal to x. Dividing the frame into N patches gives N ! ways
to jumble the patches. For N “ 9, we have 9! “ 3, 62, 880
rearrangements. Let us denote the set of all arrangements as J .
Also, let the rearrangement, applying which the frame remains
ordered, as in Fig. 1a, be denoted by τ0. For our work, L “
256 and N “ 9, thus t L?

N
u “ 86.

Since solving a classification task with such a large number
of classes would require a huge amount of data and com-
putational time, we choose a subset A Ă J by following
the Algorithm 1. which describes the steps we use to choose

Algorithm 1: SETARR : How to choose the set of
arrangements
Result: A : Set of Arrangements
Given
J : Set of all possible arrangements
UA : A is a sample drawn from uniform distribution U
C : Number of classes in the pretext task

Initialize A1 “ A “ t τ0 u;
for i = 1 : 9! - 1 do

if hammingDistpa,J risq ą 4@a P A1 then
A1 “ A1

Ť

tJ risu;
end

end
for i = 1 : C - 1 do

A “ A
Ť

UArA1s
end

the permuted rearrangement orders to be included in A. We
initialize the set of arrangements with the ordered arrangement
r1, 2, 3, 4, 5, 6, 7, 8, 9spτ0q and choose the threshold of ham-
ming distance as tN2 u. The hamming distance between two
permutations is defined as the number of positions in which
they differ. In our experiments, we consider N “ 9, thus the
threshold of hamming distance equates to 4. We progressively
keep on adding elements from the set J if the hamming
distance from the all elements in the set A1 is more than 4.
This algorithm ensures that the elements in the chosen set
are neither too close nor too far from other elements in the
permutation space. This maintains a balance in the difficulty
of the pretext classification task.

Running Algorithm 1 on J resulted in a subset of 1887
permutations. We adopted a uniform random sampling without
replacement strategy according to an uniform distrbution U ,
to get the reduced set A arrangements from the chosen

1887 arrangements. It should be noted that the number of
arrangements, A is equal to the number of classes C in the
pretext classification task.

(a) (b)

Fig. 1: (a) Image showing the numbering of the patches in
an ordered frame. (b) Image showing the patches after being
arranged using Algorithm 2

We chose the augmentation from a finite set G, which
can be expressed as a Cartesian product of four finite sets
R, Tx, Ty and S, i.e., G “ R

Ś

Tx
Ś

Ty
Ś

S, where
R “ t´15˝, 0˝, 15˝u, Tx “ Ty “ t´t0.1Lpu, 0, t0.1Lpuu and
S “ t1, 1.2u. Here R, Tx, Ty,S denote the finite sets of angles
of rotation in degrees, magnitude of translation along x-axis
and y-axis in pixels and scale factors, respectively. Lp denotes
the dimension of each side of a square patch obtained after
applying Algorithm 2.

To obtain the jumbled patches (Fig. 1b) and the pretext
labels, we apply Algorithm 2 to the frames randomly sampled
from each MR video. Firstly, each frame F is partitioned
into N parts, each of dimension t L?

N
u. Augmentation g is

obtained by uniformly sampling an element from the finite
set G and applied to each partition denoted by mapIpg,P 1q.
Then, the reference point (refx, refy) for each patch is
obtained by uniformly sampling values from the range [0,
t L?

N
u ´ 64]. A patch of dimension 64 ˆ 64 is cropped from

the larger partition P 1 of dimensions t L?
N

u ˆ t L?
N

u with the
reference point (refx, refy) as its origin. Finally, the patches
are arranged according to an arrangement T drawn from the
set A according to an uniform distribution over the set, to
get the jumbled patches PA (using mapIpT ,PAq). PA is
the input to the pretext model and the arrangement T is
the corresponding pretext ground truth label. It should be
mentioned here that Lp ‰ t L?

N
u. In our experiments, we set

t L?
N

u “ 85.

B. Motivation behind proposed architecture
Pretext task models are very prone to learning low level signals
like void regions, boundary edges and corners, etc. When using
the jigsaw puzzle solving strategy without the augmentations,
the model tends to learn low level signals similar to the
clues that humans often use when solving jigsaw puzzles. The
approach we follow in this paper also compels us to take a
subset of the large pool of possible rearrangements.

In one of our initial models, we used a single Inception-
ResNet-v2 network pre-trained on ImageNet, to detect the
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Algorithm 2: JUMPAT : How to obtain the jumbled
patches

Result: PA : Jumbled Patches from a frame F
Given
A : Set of rearrangements
G : Set of geometric transformations
Uzr¨s : z is a sample drawn from uniform distribution
U over any set

T : an arrangement to be applied on the patches and
sampled uniformly from the set A

mapIp¨q : a function which denotes a given
arrangement or augmentation being applied to an
image (or patch)

Initialize
F : a random frame from a MR video sample
PA “ t u
L1 “ t L?

N
u

row “ col “ refx “ refy “ 0
for i=1:9 do

row “ t i?
N

u

col “ i mod
?
N

P 1 “ Frrow.L1 : prow` 1qL1, col.L1 : pcol` 1qL1s
g “ UgrGs
P 1 “ mapIpg, P

1q

refx “ Uxr0,L1 ´ 64s
refy “ Uyr0,L1 ´ 64s
P 1 “ P 1rrefx : refx ` 64, refy : refy ` 64s
PA “ PA

Ť

P 1
end
T : Uτ rAs
PA “ mapIpT ,PAq

arrangements. The input was all the 9 patches put together
like in Fig. 1b. After analysing the learned feature maps, we
observed that the model used the low level signals like bound-
ary corners and edges and discontinuities between patches
to learn discriminative features. This tendency of the model
to learn features without proper generalization of the loss
surface prevents it from learning meaningful context invariant
visual representational features. Fig. 2 shows the gradient
class activation mapping [26] outputs of the aforementioned
model along with the ground truth label and the probability
of prediction.

C. Pretext Task Model Architecture

In this paper, we have used a semi-parallel architecture for
our pretext tasks, where we predict the order in which the
patches are arranged. We call this architecture JPOPNet (JPOP
stands for Jumbled Patch Order Prediction) and is shown in
Fig. 3. The results presented in the previous section show
the reason behind the adoption of a semi-parallel architec-
ture in this paper. We feed each of the 9 patches in the
input into one of the 9 parallel convolutional channels. Each
convolutional channel is made up of 2 Convolutional blocks.

Fig. 2: Gradcam output shows the regions (indicated by red)
where the model built using pre-trained Inception-ResNet-
v2 gains maximum information. It is clearly visible that the
maximum attention is on the low level signals as mentioned
in Section II-B

Each convolutional block consists of two convolutional layers
followed by a maxpooling layer. The number of filters of both
the convolutional layers, in the two convolutional blocks are
256 and 512, respectively. The maxpooling layer has a pool
window of dimensions 2ˆ 2 and a stride of 2.

The output from all the 9 channels are then concatenated
to get a output volume of dimension 16 ˆ 16 ˆ 4608. This
output volume is then convoluted with a convolutional layer
with filters 3ˆ3ˆ2048 to reduce the dimensionality and gives
an output of dimensions 16 ˆ 16 ˆ 2048, which is then fed
into two separate branches. The first branch is a convolutional
block, which consists of two convolutional layers with 1024
filters, with only the second layer having stride 2, thereby
causing the spatial dimension of the output to be reduced to
half of its input. The second branch contains a convolution
layer with 1024 filters with kernel size 3ˆ 3 and followed by
a maxpooling layer which reduces the dimensions to half. The
outputs from the two channels are again concatenated to form
an output volume of dimension 8ˆ 8ˆ 2048. Global average
pooling is applied to this output of dimension 8 ˆ 8 ˆ 2048
to obtain an output of dimension 2048, which is then fed into
a network of two fully connected layers of dimension 1024.
The second fully connected layer is connected to the output
consisting of C nodes, where C is the number of classes.

D. Downstream Task Algorithm

In this paper, the objective of the downstream task is to
predict whether the knee has sustained injury to the Anterior
Cruciate Ligament or not.
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Fig. 3: Proposed network model for Pretext Task.

Fig. 4: Network model used for Downstream Task

Algorithm 3: DIVFRAM : How to divide the frames
temporally
Result: I : Input
Initialize
I “ r s;
start index “ 0;
end index “ 0;
Given
F : All frames in the MR videosclip
N : Number of frames
for i = 1 : 9 do

n “ r N
9´i`1 s

end index = end index + n
Append F [ start index : end index ] to I
start index = end index

end

For performing the downstream task, we construct a
model (Fig. 4) consisting of two parts, feature extractor and
discriminator. From the pretext model, the 9 branches with 4
convolutional layers each acts as the feature extractors. We
also devise an unique Divide-and-Teach training methodology.
Since the frames were uniformly sampled from each MR
video, each convolutional layer is capable of extracting useful
features from the frames, irrespective of the temporal position

of the frame in the MR video. We divide |F | frames into
9 parts before feeding to the 9 channels of the CNN, |F |
being the total number of frames in the MR video. After
the respective outputs are obtained from each channel, we
concatenate the outputs over the frames to obtain an output
of dimension |F | ˆ 64ˆ 64ˆ 512, which is then fed into the
classifier to obtain the predictions.

E. Downstream Model Architecture

The downstream model consists of two parts: feature ex-
tractor and the discriminator, as shown in Fig. 4. The feature
extractor is made up of the 9 parallel branches of the pretext
model. The output from the 9 branches are concatenated to
form an output of dimensions p64 ˆ 64 ˆ 512q. The output
obtained from the feature extractor is fed to the discriminator.

The classifier consists of three convolutional blocks, each
containing two convolutional layers. Both the layers in each
convolutional block has filter size 3 ˆ 3 but only the second
convolutional layer has stride 2. This reduces the dimensions
to half without the use of maxpooling layers. The three convo-
lutional layers result in an output of shape |F |ˆ8ˆ8ˆ1024.
We then apply Global Average Pooling to the output, followed
by maxpooling over frames. This gives an output of dimension
1024, which is then fed into a network of two fully connected
layers, each containing 1024 nodes. The output from this layer
is finally fed into the output node. The downstream task is a
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binary classification task, hence sigmoid activation is applied
on the output node to obtain predictions in the 0 to 1 range.

III. EXPERIMENT AND RESULTS

A. Dataset

In our experiments, we use the MRNet [27] dataset as our
reference dataset. The MRNet dataset contains 1370 knee MR
video clips in total. Out of 1370 clips, 1130 MR video clips
are included in the training set and 120 MR video clips are
considered as the tuning or validation set. The rest 120 are used
for external validation. Out of the 1,130 training examples,
only 208 videos contain ACL tear. It is evident that the dataset
we are using for this work is highly imabalanced. This gives
us an opportunity to explore the effects of self-supervised
learning techniques on imbalanced datasets.

B. Pretext Task Experimental Details

The model was trained with data produced following the
algorithm discussed in Section II-A. We optimized the categor-
ical cross-entropy loss of the model using RMSprop optimizer
with an initial learning rate of 10´4 decayed at the rate of 0.95
per epoch. We used a batch size of 32 during both training and
validation stages. Since, our ultimate goal is to extract features
from frames which are not jumbled, it seemed logical to tune
the network only on the ordered frames. The pretext model
was trained entirely from scratch on a NVIDIA RTX 2080Ti
11GB GPU. The training was stopped when the validation
accuracy flattened.

C. Pretext Task Results

In this subsection, we have presented the results of ACL
tear injury detection from Knee MR videos. In Fig. 5, we
can see the region which needs to be focused on.. To analyze
the generalization and feature learning capacity of the model,
we train with 500 and 1000 random permutations chosen
according to as Algorithm 1. As shown in Table I, even
after increasing the number of permutations, the proposed
model performs well on the pretext tasks, thereby justifying
the capability of the model in learning meaningful features
to efficiently distinguish between such large number of equi-
spaced permutations of the image patches.

TABLE I: Pretext Task Experimental Results

No. of
permutations

No. of
parameters

Validation
Accuracy

500 173 Million 96.4%

1000 173.5 Million 93.5%

D. Downstream Task Experimental Details

In the downstream task, due to memory constraint on the
NVIDIA RTX 2080Ti, we limited the number of frames to
minp|F |, 36q, where |F | is the number of frames in the MR
video clips. If the number of frames in any MR video clip
is more than 36, we use uniform random sampling to select

(a) (b)

(c) (d)

Fig. 5: Region of Interest for ACL tear detection. Image (c)
and (d) showing the enlarged view of the ROIs marked in red
in the image (a) and (b), respectively. The image in Fig. 5a
(also 5c) and 5b (also 5d) are examples of a torn ACL and a
uninjured ACL, respectively.

36 frames from |F | number of frames. This strategy helps the
model deal with missing frames and also temporally sparse
data. Also, we kept the batch size limited to 1. The downstream
model was trained by optimizing the binary cross-entropy loss
of the model using Adam optimizer with an initial learning
rate of 10´5. Since the dataset is highly imbalanced, we used
oversampling to balance the dataset before training our model.
The number of positive ACL tear injury samples in the MRNet
dataset is 208 and the number of negative samples is 922.
We oversampled the minority class to 922. This oversampled
dataset was then used to train the downstream model. During
the validation stage also, we chose minp|F |, 36q number of
frames and then partitioned the frames into 9 parts using
Algorithm 3. Apart from the Divide-and-Teach training strat-
egy mentioned in Sec. II-D, data augmentations like random
rotation, translation and scaling were also applied on each
frame during training.

E. Downstream Task Results

In the downstream task, we gradually increased the number
of parameters by adding different layers. As the number of
parameters increases, the models’ capability of approximating
the function mapping from the input space to the output space
also increases. It can be observed from the results presented
in Table II that increasing the number of parameters boosts
the performance, even when the positive samples are under-
represented in the pretext task. The detailed ablation studies
are described in Sec. III-F. For the ACL tear detection task,
the best results were obtained using our final model with 77
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million parameters. It achieved an accuracy of 76.62% (95%
CI 74.50, 78.83) on the validation set and an AUC score of
0.8481 (95% CI 0.8284, 0.8651).

From the gradient class activation mappings in Fig. 6,
it can be seen that the downstream model focuses on the
desired region. Though, there are some models that perform
the classification task of injury from MR video frames, to the
best of our knowledge, none of them provides any insight or
explanation for the decision made by their models.

(a) (b)

(c) (d)

Fig. 6: Gradient Activation Class Mappings on the 256ˆ 256
frames show that the downstream task model focuses on the
ACL. image (c) and (d) are the zoomed in versions of the
images in (a) and (b),respectively like in Fig. 5

F. Ablation Studies

To optimize our model architecture, we built multiple mod-
els by changing the different hyperparameters associated with
the model. Among all the variants, the model shown in Fig.
4 corresponds to the final model which performed the best in
the downstream task. In a variant (Model-1), a maxpooling
layer was introduced instead of the first convolutional block
in the Discriminator and the two convolutional layers in the
second convolutional block contained 512 filters each. Also,
only one fully connected layer was used in Model-1. In the
second variation (Model-2), we increased the capacity by
adding another fully connected layer with 1024 nodes and
increasing the number of filters of the convolutional layers in
the second convolutional block to 1024. The maxpooling layer
in the classifier of Model-1 remains unchanged in Model-2.
In the best performing model (Proposed, shown in Fig. 4),
we replaced the maxpooling layer in the discriminator by a
convolutional block containing two convolutional layers with
512 filters each and only the second layer have a stride of

2. The performance results of all the three models have been
shown in Table II.

TABLE II: Ablation study on downstream task for detection
of ACL injury

Model Number of
parameters

Accuracy
(5%-95% CI)

AUC (5%-95%
CI)

Proposed 77 Million 76.62
(74.5-78.83)

0.848
(0.828-0.865)

Model-2 75 Million 73.4 (71.0-75.6) 0.834
(0.812-0.850)

Model-1 72 Million 71.7 (70.2-72.9) 0.813
(0.797-0.829)

G. Effects of Class Imbalance

The pretext and the downstream task, both contribute to
the ultimate objective of detection of ACL injury from knee
MR videos. The motivation of our work is to build a pretext
model, capable of learning spatial context invariant visual
representational features. The results presented in Table III
show that in case of an imbalanced dataset, the features of
the majority class receive more weightage than the minority
class in the pretext task. Every sample in the training set
is chosen exactly once when preparing the pretext training
samples. Thus, for each pretext label, there are more samples
from the majority class than from the minority class.

When the oversampled dataset is used to train the model in
the pretext task, equal number of samples from both classes
are selected for preparing the training samples. Thus, the
features from both the original classes are learnt with equal
weightage. The downstream model showed an increase in the
True Positive Rate and a reduction in Type 2 error. However,
Type 1 error increased slightly, subsequently lowering True
Negative Rate.

TABLE III: Ablation Study on the effects of class imbalance
on the task of detection of ACL tear injury

Model Accuracy
(5%-95% CI)

AUC (5%-95%
CI)

without
oversampling

76.62
(74.5-78.63)

0.848
(0.828-0.865)

with
oversampling

76.72
(74.9-78.70)

0.848
(0.826-0.87)

H. Comparison with Supervised Methods

To compare our method with supervised learning techniques
we present the results of the MRNet [27] model on the
same dataset. Apart from limiting the number o frames to a
maximum of 36, the MRNet [27] was trained using the original
conditions.
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TABLE IV: Comparison with supervised learning method

Method ACL Tear
Accuracy (%) AUC

MRNet [27] 86.63 0.963
Ours 76.62 0.848

IV. CONCLUSION

The objective of this work is to explore the capabilities of
self-supervised learning algorithms in medical image analysis.
It has been shown that our proposed pretext model extracts
structural features particularly from the region of interest
which can support a downstream task of classification further.
The challenges associated with this pretext task are discussed
and analyzed thoroughly. However, approaches involving self-
supervision depend largely on the quality of the features that
the pretext models learn and this shapes the performance of the
downstream task. This is the first work of this kind and we look
to further explore other techniques which can accommodate
different kinds of injuries in a single downstream task by
learning more robust and meaningful visual representational
features in the pretext tasks.
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[10] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros, “Con-
text encoders: Feature learning by inpainting,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544,
2016.

[11] D. Kim, D. Cho, D. Yoo, and I.-S. Kweon, “Learning image repre-
sentations by completing damaged jigsaw puzzles,” 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), pp. 793–802,
2018.

[12] M. Noroozi and P. Favaro, “Unsupervised learning of visual represen-
tations by solving jigsaw puzzles,” in IEEE European Conference on
Computer Vision (ECCV), vol. 9910 of Lecture Notes in Computer
Science, pp. 69–84, Springer, 2016.

[13] C. Wei, L. Xie, X. Ren, Y. Xia, C. Su, J. Liu, Q. Tian, and A. Yuille,
“Iterative reorganization with weak spatial constraints: Solving arbi-
trary jigsaw puzzles for unsupervised representation learning,” 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1910–1919, 2019.

[14] U. Ahsan, R. Madhok, and I. Essa, “Video jigsaw: Unsupervised
learning of spatiotemporal context for video action recognition,” 2019
IEEE Winter Conference on Applications of Computer Vision (WACV),
pp. 179–189, 2019.

[15] H. Buckchash and B. Raman, “Sustained self-supervised pretraining
for temporal order verification,” in Pattern Recognition and Machine
Intelligence, pp. 140–149, 2019.

[16] A. El-Nouby, S. Zhai, G. W. Taylor, and J. Susskind, “Skip-clip: Self-
supervised spatiotemporal representation learning by future clip order
ranking,” ArXiv, vol. abs/1910.12770, 2019.

[17] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang, “Self-
supervised spatiotemporal learning via video clip order prediction,” 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10326–10335, 2019.

[18] F. Siar, A. Gheibi, and A. Mohades, “Unsupervised learning of visual
representations by solving shuffled long video-frames temporal order
prediction,” ACM SIGGRAPH 2020 Posters, pp. 1–2, 2020.

[19] I. Misra, C. L. Zitnick, and M. Hebert, “Shuffle and learn: Unsupervised
learning using temporal order verification,” in IEEE European Confer-
ence on Computer Vision (ECCV), pp. 527–544, 2016.

[20] B. Fernando, H. Bilen, E. Gavves, and S. Gould, “Self-supervised video
representation learning with odd-one-out networks,” 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 5729–
5738, 2017.

[21] L. Jing and Y. Tian, “Self-supervised spatiotemporal feature learning by
video geometric transformations,” ArXiv, vol. abs/1811.11387, 2018.

[22] L. Jing, X. Yang, J. Liu, and Y. Tian, “Self-supervised spatiotemporal
feature learning via video rotation prediction.,” arXiv: Computer Vision
and Pattern Recognition, 2018.

[23] S. Yamaguchi, S. Kanai, T. Shioda, and S. Takeda, “Multiple pretext-task
for self-supervised learning via mixing multiple image transformations,”
ArXiv, vol. abs/1912.11603, 2019.

[24] J. Jiao, R. Droste, L. Drukker, A. T. Papageorghiou, and J. Noble, “Self-
supervised representation learning for ultrasound video,” 2020 IEEE
17th International Symposium on Biomedical Imaging (ISBI), pp. 1847–
1850, 2020.

[25] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in International Conference on
Learning Representations, 2018.

[26] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 618–626, 2017.

[27] N. Bien, P. Rajpurkar, R. Ball, J. Irvin, A. Park, E. Jones, M. Bereket,
B. Patel, K. Yeom, K. Shpanskaya, S. Halabi, E. Zucker, G. Fanton,
D. Amanatullah, C. Beaulieu, G. M. Riley, R. Stewart, F. Blankenberg,
D. Larson, R. Jones, C. Langlotz, A. Ng, and M. Lungren, “Deep-
learning-assisted diagnosis for knee magnetic resonance imaging: Devel-
opment and retrospective validation of mrnet,” PLoS Medicine, vol. 15,
p. e1002699, 2018.

Preprint. Under consideration at Pattern Recognition Letters. 7


	I Introduction
	II Methodology
	II-A Pretext Task Algorithm
	II-B Motivation behind proposed architecture
	II-C Pretext Task Model Architecture
	II-D Downstream Task Algorithm
	II-E Downstream Model Architecture

	III Experiment and Results
	III-A Dataset
	III-B Pretext Task Experimental Details
	III-C Pretext Task Results
	III-D Downstream Task Experimental Details
	III-E Downstream Task Results
	III-F Ablation Studies
	III-G Effects of Class Imbalance
	III-H Comparison with Supervised Methods

	IV Conclusion
	References

