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Abstract

Single-stage object detectors have been widely applied in computer vision
applications due to their high efficiency. However, we find that the loss
functions adopted by single-stage object detectors hurt the localization ac-
curacy seriously. Firstly, the standard cross-entropy loss for classification is
independent of the localization task and drives all the positive examples to
learn as high classification scores as possible regardless of localization accu-
racy during training. As a result, there will be many detections that have
high classification scores but low IoU or detections that have low classifi-
cation scores but high IoU. Secondly, for the standard smooth L1 loss, the
gradient is dominated by the outliers that have poor localization accuracy
during training. The above two problems will decrease the localization ac-
curacy of single-stage detectors. In this work, IoU-balanced loss functions
that consist of IoU-balanced classification loss and loU-balanced localization
loss are proposed to solve the above problems. The IoU-balanced classifica-
tion loss pays more attention to positive examples with high IoU and can
enhance the correlation between classification and localization tasks. The
IoU-balanced localization loss decreases the gradient of examples with low
IoU and increases the gradient of examples with high IoU, which can improve
the localization accuracy of models. Extensive experiments on challenging
public datasets such as MS COCO, PASCAL VOC and Cityscapes demon-

*Corresponding author
Email addresses: ShengkaiWu@hust.edu.cn (Shengkai Wu),
yangjinrong@hust.edu.cn (Jinrong Yang), xgwang@hust.edu.cn (Xinggang Wang),
lixiaoping@hust.edu.cn (Xiaoping Li)

Preprint submitted to Elsevier December 15, 2020



strate that both IoU-balanced losses can bring substantial improvement for
the popular single-stage detectors, especially for the localization accuracy.
On COCO test-dev, the proposed methods can substantially improve AP by
1.0% ~ 1.7% and AP75 by 1.0% ~ 2.4%. On PASCAL VOC, it can also
substantially improve AP by 1.3% ~ 1.5% and APg, APgq by 1.6% ~ 3.9%.
The source code will be made publicly available.

Keywords: loU-balanced classification loss, loU-balanced localization loss,
Object detection, Accurate localization, Class imbalance, Example mining

1. Introduction

Along with the advances in deep convolutional networks, lots of object
detection models have been developed. All these models can be classi-
fied into single-stage detectors [1I, 2 3, [l [5, 6] and multi-stage detectors
[7, 18, @, 10 1T, T2, 13]. Improving the localization accuracy of object detec-
tion models is a challenging topic and many methods such as Cascade R-CNN
[8], RefineDet [4] have been proposed to realize this goal by attaching more
complex subnetworks which will hurt the efficiency of models. In this work,
we aim to improve the localization accuracy of models without sacrificing effi-
ciency. We find that the classification and localization loss functions adopted
by most of the detection models are not good enough for accurate localization
and the localization ability can be substantially improved by designing better
loss functions that make no changes to the model’s architecture. There are
two problems with the loss functions adopted by most of the object detectors.

Firstly, the correlation between classification and localization task is weak.
Most of the object detectors adopt the standard cross-entropy loss for clas-
sification which is independent of the localization task and this kind of clas-
sification loss will drive the model to learn as high classification scores as
possible for all the positive examples regardless of their localization accuracy
during training. As a result, the predicted classification scores will be inde-
pendent of the localization accuracy and there will be many detections that
have high classification scores but low IoU or detections with low classifi-
cation scores but high IoU. These detections having the mismatch problem
between the classification score and localization accuracy will hurt the per-
formance of models in the subsequent procedure during inference. One the
one hand, when traditional non-maximum suppression (NMS) or it’s variants
such as Soft-NMS [14] is applied, there will be cases that the detections with



high classification scores but low IoU suppress the ones with low classifica-
tion scores but high IoU. On the other hand, during computing COCO AP,
all the detections are ranked based on the classification scores and there will
be cases that the detections with high classification scores but low IoU are
ranked ahead of the detections with low classification scores but high ToU,
which will decrease the average precision. As a result, we claim that enhanc-
ing the correlation between classification and localization task is important
for accurate localization. Secondly, during training, the gradients of localiza-
tion loss for object detectors are dominated by outliers, which are examples
with poorly localization accuracy. These outliers will prevent the models
from obtaining high localization accuracy during training. Fast R-CNN [12]
proposes smooth L1 loss to suppress the gradients of outliers to a bounded
value and can prevent exploding gradients effectively during training. How-
ever, the domination of outliers’ gradients still exists during training and
it is important to make more suppression on the gradient of outliers while
increasing the gradient of inliers.

In this work, we propose loU-balanced loss functions which consist of IoU-
balanced classification loss and IoU-balanced localization loss to improve the
localization accuracy of models. IoU-balanced classification loss pays more
attention to positive examples with high ToU. The higher the IoU of the
positive example is, the more contribution to the classification loss it makes.
Thus, the positive examples with higher IoU will generate higher gradients
during training and are more likely to learn higher classification scores. On
the contrary, the positive examples with lower IoU are more likely to learn
lower classification scores. This method will enhance the correlation be-
tween the classification and localization task. IoU-balanced localization loss
up-weights the gradients of examples with high IoU while suppressing the
gradients of examples with low IoU, making the model more powerful for ac-
curate localization. Sufficient experiments on the challenging datasets such as
MS COCO, Pascal VOC and Cityscapes demonstrate that loU-balanced loss
functions can substantially improve the performance of single-stage detectors
without sacrificing efficiency as Figure [1| shows. In addition, IoU-balanced
losses can also improve the performance of multi-stage detectors, but the im-
provement is not as large as that for the single-stage detectors. It’s because
that for multi-stage detectors, the proposals generated by the first stage de-
tector such as RPN are more accurate than the human-designed anchors in
the single-stage detectors and the problem mentioned above is alleviated.

Our main contributions are as follows: (1) We demonstrate that the stan-
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Figure 1: Speed (ms) versus accuracy (AP) on COCO test-dev. IoU-balanced losses can
consistently improve performance of different popular single-stage object detectors without
sacrificing the inference time.

dard cross-entropy loss for classification and the smooth L1 loss for localiza-
tion can hurt the localization accuracy of models and the localization ability
can be substantially improved by designing better loss functions. (2) We
propose IoU-balanced classification loss to enhance the correlation between
the classification and localization tasks, which can substantially improve the
performance of single-stage detectors. (3) We introduce IoU-balanced lo-
calization loss to up-weight the gradients of inliers while suppressing the
gradients of outliers, which makes the models more powerful for accurate
object localization.

The rest of this paper is organized as follows. Section [2|introduces the re-
lated research work. Section [3lintroduces the IoU-balanced classification loss
and IoU-balanced localization loss in details. Section [4] presents sufficient ex-
periments on several challenging datasets and demonstrates the effectiveness
of our methods. Conclusions are given in Section

2. Related Work

Accurate object localization. Accurate object localization is a chal-
lenging topic for object detection and many methods to improve localization
accuracy have been proposed in recent years. Multi-region detector [15] ar-
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gues that a single regression step is insufficient for accurate localization and
thus proposes iterative bounding box regression to refine the coordinates of
detections, followed by NMS and box voting. Cascade R-CNN [§] trains
multi-stage R-CNNs with increasing [oU thresholds stage-by-stage and thus
the multi-stage R-CNNs are sequentially more powerful for accurate local-
ization. RefineDet [4] improves one-stage detector using two-step cascade
regression. The ARM first refines the human-designed anchors and then the
ODM accepts these refined anchors as inputs for the second stage regression,
which is beneficial for improving localization accuracy. All these methods
add new modules to the detection models and thus hurt efficiency. On the
contrary, IoU-balanced loss functions improve localization accuracy without
changing models’ architecture and don’t affect the efficiency of models.

Hard example mining. To improve the models’ ability of handling
hard examples, many hard example mining strategies having been developed
for object detection. RPN [7] defines the anchors whose IoU with ground
truth boxes are not larger than 0.3 as hard negative examples. Fast R-CNN
[12] defines the proposals that have a maximum IoU with ground truth boxes
in the interval [0.1, 0.5) as hard negative examples. OHEM [16] computes
losses for all the examples, then ranks examples based on losses, followed by
NMS. Finally, the top-B/N examples are selected as hard examples to train
the model. SSD [1] defines anchors whose IoU is lower than 0.5 as negative
examples and ranks negative examples based on losses. The top-ranked neg-
ative examples are selected as hard negative examples. RetinaNet [3] designs
focal loss to solve the extreme imbalance between easy examples and hard
examples, which reduces the losses of easy examples whose predicted clas-
sification score is low and focuses more attention on hard examples whose
predicted classification score is high. Libra R-CNN [I7] constructs a his-
togram based on IoU for negative examples and selects examples from each
bin in the histogram uniformly as hard negative examples. Different from
these strategies, IoU-balanced loss functions don’t change the sampling pro-
cess and only assign different weights to the positive examples based on their
IoU.

Correlation between classification and localization task. Most of
the detection models adopt the parallel classification and localization sub-
networks for classification and localization task. And they rely on indepen-
dent classification loss and localization loss to train the models. This kind
of architecture results in the independence between classification and local-
ization task, which hurt the models’ localization accuracy. Fitness NMS [1§]
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classifies localization accuracy into 5 levels based on the IoU of regressed
boxes and designs sub-networks to predict the probabilities of each local-
ization level independent or dependent of classes for every detection. Then
fitness is computed based on these probabilities and combined with the clas-
sification score to compute the final detection score, which enhances the
correlation between classification and localization task. The enhanced detec-
tion score is used as the input for NMS, denoted as Fitness NMS. Similarly,
IoU-Net [19] adds an IoU prediction branch parallel with the classification
and localization branches to predict the IoU for every detection and the pre-
dicted IoU is highly correlated with the localization accuracy. Different from
Fitness-NMS, the predicted IoU is directly used as the input for the NMS,
denoted as IoU-guided NMS. IoU-aware RetinaNet [20] attaches an IoU pre-
diction head parallel to the regression head to predict the localization accu-
racy. During inference, the final confidence is computed by multiplying the
predicted IoU and classification score. MS R-CNN [21] designs a MaskIoU
head to predict the IoU of the predicted masks aiming to solve the problem
of the weak correlation between classification score and mask quality. During
inference, the predicted mask IoU is multiplied with the classification score
as the final mask confidence, which is highly correlated with the mask qual-
ity. Unlike IoU-Net, the enhanced mask confidence is only used to rank the
predicted masks when computing COCO AP. Different from these methods,
IoU-balanced classification loss directly uses the IoU of positive examples to
compute weights assigned to positive examples without sacrificing efficiency.

Outliers during training localization subnetwork. Compared with
R-CNN [I3] and SPPnet [22], Fast R-CNN [12] adopts smooth L1 loss to
constrain the gradients of outliers as a constant, which prevents gradient ex-
plosion. GHM [6] analyzes the example imbalance in one-stage detectors in
terms of gradient norm distribution. The analysis demonstrates that for the
localization subnetwork of a converged model, there are still a large number
of outliers and the gradients can be dominated by these outliers during train-
ing, which hurts the training process for accurate object localization. Thus
GHM-R is proposed to up-weight easy examples and down-weight outliers
based on the gradient density of every example. However, gradient density
computation is time-consuming and can slow down the training speed. Libra
R-CNN [17] claims that the overall gradient of smooth L1 loss is dominated
by the outliers when balancing classification and localization task directly.
As a result, balanced L1 loss is proposed to increase the gradient of easy
examples and keep the gradient of outliers unchanged. Different from these
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methods, IoU-balanced localization loss computes the weights of every pos-
itive example based on their IoU and up-weights examples with high IoU
while down-weighting examples with low IoU.

3. Method

3.1. Preliminaries

Loss functions are extremely important for the performance of object de-
tection models. With the development of object detection models, many
different kinds of loss functions have been proposed. For most of the popular
object detection models such as Faster R-CNNJ7], RetinaNet[3] and SSD[I],
cross-entropy loss as Equfl] shows is commonly adopted as the classification
loss and smooth L1 loss as Equl2| shows is commonly adopted as the local-
ization loss. p; and p; represent the predicted classification score and the
corresponding ground truth label respectively. For positive examples and
negative examples, p; equals to 1 and 0 respectively. z; equals to [; — g;
where [; and §; represent the parameterized coordinate vectors of the pre-
dicted box and the corresponding ground truth box respectively.

CE(pi, pi) = —pilogp; — (1 — p;) log(1 — p;) (1)

x;? .
SmOOthLl (,],‘Z) = { 28 5 Zf ‘:C'L| >~ 5

|zi| — 5§ otherwise

(2)

As the standard cross-entropy loss assigns equal weight(1) for all the
positive examples with different localization accuracy, it will drive the models
to learn as high classification scores as possible for all the positive examples
regardless of their localization accuracy. As a result, the classification score
will have low correlation with the localization accuracy. For the localization
loss, because the number of positive examples with low localization accuracy
is larger and the gradient of these kind of positive examples is larger, the
gradient produced by these examples will dominate the training process of
the localization branch, which hurts the localization accuracy of models. So
we propose IoU-balanced loss functions to make the positive examples to
adaptively adjust their weight based on their localization accuracy. Both
these losses can make object detection models more powerful for accurate
localization. These two losses will be introduced in details in the following
sub-sections.



3.2. IToU-balanced Classification Loss

As demonstrated above, the weak correlation between classification and
localization tasks will hurt the models’ performance during NMS and comput-
ing COCO AP. Thus IoU-balanced classification loss is proposed to enhance
the correlation between the classification and localization task as Equf3|4]
show.

N M
Los = Z wz‘(iOUz') * CE(pz»ﬁi) + Z CE(pmﬁi) (3)
i€Pos i€ENeg
N
w;(iou;) = iou] szl (4)

. liou;7 CE(p;, p:)
i=

Pos and Neg represent the sets of positive training examples and nega-
tive training examples respectively. iou; represents the regressed loU for each
regressed positive example. The weights w;(iou;) assigned to positive exam-
ples are positively correlated with the IoU between the regressed bounding
boxes and their corresponding ground truth boxes. As a result, the examples
with high IoU are up-weighted and the ones with low IoU are down-weighted
adaptively based on their IoU after bounding box regression. During train-
ing, the examples with higher IoU will contribute larger gradients and thus
the model is easier to learn higher classification scores for these examples.
On the contrary, the gradients contributed by examples with low IoU will
be suppressed and thus the trained models are more likely to learn lower
classification scores for these examples. In this way, the correlation between
classification scores and localization accuracy is enhanced as demonstrated
by Figure [3alin the following experiment. The parameter 7 is used to control
to what extent the IoU-balanced classification loss focuses on examples with
high ToU and suppresses examples with low IoU. Besides, the normalization
strategy as Equl] shows is adopted to keep the sum of classification loss for
positive examples unchanged compared with the standard cross-entropy loss
during training.

3.83. ToU-balanced Localization Loss

As analyzed above, if the training process is dominated by the gradients
of outliers, the localization accuracy of detectors will get hurt. Thus, we
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propose IoU-balanced localization loss to up-weight the examples with high
IoU and down-weight the examples with low IoU as Equl5|[f] show.

N
Lipe = Z Z w;(iou;) * smoothp (1" — gi™) (5)
i€ Pos meczx,cy,w,h
i(i0U5) = o 00 (6)

N
> > smoothp (II" — §™)

1€ Pos méecx,cy,w,h

N
> > dou? * smoothyr (I — ")

i€ Pos méEcx,cy,w,h

w;(iow;) = iou) *

(7)

(1¢2 15 1 1) represents the parameterized coordinates of the predicted
box and (§¢%, g:¥, g, ) represents the parameterized coordinates of the cor-
responding ground truth box. The parameterization strategy is the same as
that in R-CNN [I3]. The parameter A is designed to control to what ex-
tent IoU-balanced localization loss focuses on inliers and suppresses outliers.
The localization loss weight wj,. is manually adjusted to keep the sum of
localization loss unchanged compared with the original smooth L1 loss for
the first iteration of the training procedure. Normalization strategy can also
be used to keep the sum of localization loss unchanged during the whole
training procedure as Equ[7]shows. However, the experiments show that this
normalization strategy is slightly inferior compared with manually adjusting
Wyee. This may be caused by that the normalization factor is decreased as
the ToUs of positive examples increase during training. Thus, the strategy of
manually adjusting wy,. is adopted in all the following experiments.

We constrains that the gradients are not propagated from w;(iou;) to I
. Denoting d = ™ — ¢ , the gradient of IoU-balanced smooth L1 loss with
respect to [ can be expressed as:

Ow(iou) * smoothr; w(iou) * & if |d] <o, (8)
olm | w(iou) * sign(d)  otherwise.

The IoU function representing the relationship between IoU and d is com-
plex and Bounded IoU [I§] simplifies this function by computing an upper
bound of the IoU function. The same idea is adopted in this paper and read-
ers can refer to Bounded IoU for more details. Given an anchor or a proposal



bs = (s,Ys, Ws, hs), an associated ground truth box b, = (z, ys, wy, hy) and
a predicted bounding box b, = (x,, y,, Wy, hy) , the upper bound of the IoU
function is as follows:

. wy — |Ax|
ioug(x,by) = ————— 9
B( t) w; + |AIL’| ( )
. . w. Wt
b)) = min(—2, -t 10
ioug (w, by) mm(wt,wp) (10)
where Az = x, — ;. Because there exists that |d*| = |Az/wy|, [d¥| =
llog(w,/w;)|, we can get:
. wy — wg |d|
ioug(x,by) = ————— 11
i (D)
ioug(w, by) = e 17! (12)

which satisfies |d*| < w;/ws to ensure ioug(z,b;) > 0. ioug(y,b;) and
ioug(h, b;) are similar to ioug(z,b;) and ioug(w, b;) respectively. Assuming
that 6 = 0.111 and w; = w,, we have

Ow(ioup) * smoothr; Wioe * (L_L—Zy%l ifldf <o (13)
od a Wipe * (};—fl} ’ sign(d) otherwise
for d = d* or d = d® and
Ow(ioug) * smoothy, _ { Wiee f,\e_/\‘.d‘% if|d| S Y (14)
od Wioe ¥ € Ml sign(d)  otherwise

for d = d* or d = d".

The gradient norm of standard smooth L1 loss (A = 0) and the upper
bound of gradient norm for IoU-balanced smooth L1 loss (A = 0.5,1.0,1.5,1.8)
with respective to d°*, d®, d¥, d" are visualized in Figure . Compared with
the standard smooth L1 loss, [oU-balanced smooth L1 loss can increase the
gradient norm of inliers and reduce the gradient norm of outliers, making the
model more powerful for accurate localization.
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Figure 2: The gradient norm of the standard smooth L1 loss (A = 0) and the upper bound
of gradient norm for IoU-balanced smooth L1 loss (A = 0.5,1.0,1.5,1.8) with respect to
d®, d%, d¥, d". The localization weight wj,. is manually adjusted to keep the sum of
localization loss unchanged when A is changed compared with the standard smooth L1
loss.

4. Experiments

4.1. Ezxperimental Settings

We evaluate the proposed loU-balanced losses on the popular single-stage
object detection models including anchor-based detectors(SSD]I], RetinaNet[3])
and anchor-free detector FoveaBox[23]. Besides, we also analyze the effec-
tiveness of IToU-balanced losses on the two-stage detector Faster R-CNN. And
only the loss functions in these models are changed during training for a fair
comparison.

Dataset. We evaluate our method on three popular object detection
datasets including MS COCO|[24], PASCAL VOC|25] and Cityscapes|26]. For
MS COCO, it consists of 118k images for training (train-2017), 5k images
for validation (val-2017) and 20k images with no disclosed labels for test
(test-dev). There are totally over 500k annotated object instances from 80
categories in the dataset. For PASCAL VOC, the VOC2007 contains 5011
images for training (VOC2007 trainval) and 4952 for test (VOC2007 test).
The VOC2012 contains 17125 images for training (VOC2012 trainval) and
5138 for test (VOC2012 test). We train models on the union of VOC2007
trainval and VOC2012 trainval and evaluate models on VOC2007 test. For
Cityscapes, it consists of a large, diverse set of stereo video sequences recorded
in streets from 50 different cities. 5000 of these images have high-quality
pixel-level annotations and 20000 additional images have coarse annotations.
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For the fine annotated images, it’s split into 2975 images for training, 500
images for validation and 1525 images with no annotations for test. In our
experiments, only fine annotated images are used. We train models on the
training split and evaluate models on the validation split.

Evaluation Metrics. For experimental results on MS COCO and Citys-
capes datasets, the standard COCO-style metrics are adopted which includes
AP (averaged on IoUs from 0.5 to 0.95 with an interval of 0.05), AP5y (AP
at IoU threshold 0.5), AP7; (AP at IoU threshold 0.75), APg (AP for small
scales), APy, (AP for medium scales) and AP, (AP for large scales). For
experimental results on PASCAL VOC, we report AP at different IoU thresh-
olds and the averaged AP.

Implementation Details. All the experiments are implemented based
on PyTorch and MMDetection [27]. As only 2 GPUs are available, linear
scaling rule [28] is adopted to adjust the learning rate during training. For
the main results, all the models are evaluated on COCO test-dev. Except for
SSD, all the IoU-balanced models and the baselines are trained for a total
of 12 epochs using image scale of [800, 1333]. IoU-balanced SSDs and their
baselines are trained for a total of 120 epochs with image scale of [300, 300]
and [512, 512]. Some papers report the main results obtained by training
the models for totally 1.5 longer times and with scale jitter. These tricks
are not adopted in our experiments. In the ablation studies, RetinaNet with
ResNet50 as backbone are trained on train-2017 and evaluated on val-2017
using image scale of [600, 1000]. Faster R-CNN with backbone ResNet50
is trained on train-2017 and evaluated on wval-2017 using image scale of
(600, 1000]. For the experiments on PASCAL VOC and Cityscapes, the best
parameters for IoU-balanced losses searched in the COCO experiments are
adopted. For Cityscapes, we pretrain models on the COCO and finetune on
the Cityscapes. If not specified, all the other settings are kept the same as
the default settings provided by MMDdetection.

4.2. Main Results

In the main results, the performance of our proposed method is com-
pared with the state-of-the-art object detection models on the COCO test-
dev in Table[I] For a fair comparison, we adopt the reimplemented models
in MMDetectioin [27] as the baselines. For anchor-based detectors, IoU-
balanced loss functions can consistently improve AP by 1.1% for RetineNet
with different backbones and largely improve AP by 1.7%, 1.3% for SSD300
and SSD512 respectively. For anchor-free detector FoveaBox, IoU-balanced
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Model Backbone Schedule AP AP;y APy APs APy APg

YOLOv2 [29] DarkNet-19 - 21.6 440 192 50 224 355
YOLOv3 [30] DarkNet-53 - 33.0 579 344 183 354 419
SSD300 [1] VGG16 - 23.2 412 234 53 232 396
SSD512 [1] VGG16 - 26.8 46.5 27.8 9.0 289 419
Faster R-CNN [7] ResNet-101-FPN - 36.2 59.1 39.0 182 39.0 482
Deformable R-FCN [31]  Inception-ResNet-v2 - 375 58.0 408 194 40.1 525
Mask R-CNN [9] ResNet-101-FPN - 38.2 60.3 41.7 20.1 41.1 50.2
Faster R-CNN* ResNet-50-FPN 1x 36.2 585 389 21.0 389 453
Faster R-CNN* ResNet-101-FPN 1x 38.8 60.9 42.1 226 424 485
FoveaBox* ResNet-50-FPN 1x 37.0 56.7 39.1 20.3 40.0 456
SSD300* VGG16 120e 25.7 442 264 7.0 271 415
SSD512* VGG16 120e 29.6 49.5 31.2 11.7 33.0 44.2
RetinaNet* ResNet-50-FPN 1x 35.9 55.8 384 199 388 450
RetinaNet* ResNet-101-FPN 1x 38.1 585 40.8 21.2 415 482
RetinaNet* ResNeXt-32x4d-101-FPN  1x 394 60.2 423 225 428 498
ToU-balanced FoveaBox  ResNet-50-FPN 1x 38.0 56.9 40.1 21.2 408 46.7
ToU-balanced SSD300 VGG16 120e 274 450 28.8 85 289 43.0
ToU-balanced SSD512 VGG16 120e 309 50.1 329 126 345 45.1
ToU-balanced RetinaNet ResNet-50-FPN 1x 370 56.2 39.7 206 398 46.3
ToU-balanced RetinaNet ResNet-101-FPN 1x 39.2 587 423 215 424 494
ToU-balanced RetinaNet ResNeXt-32x4d-101-FPN  1x 40.5 60.3 43.6 23.0 43.7 51.0

Table 1: Comparison with the state-of-the-art methods on COCO test-dev. The symbol
”*” means the reimplementation results in MMDetection [27]. The training schedule is
the same as Detectron [32].”1x” and ”120e” means the model is trained for 12 epochs and
120 epochs respectively.

losses improve the AP by 1.0%. This demonstrates that IToU-balanced losses
are effective on different kinds of single-stage detectors, even on the state-of-
the-art anchor-free detector. In addition, the improvement for AP5q is only
0.1% ~ 0.8% while that for APz is 1.0% ~ 2.4% which demonstrates the
effectiveness of IoU-balanced loss functions for accurate localization. Com-
pared with two-stage detector Faster R-CNN, IoU-balanced RetinaNets with
the same backbone have surpassed Faster R-CNN by 0.4% ~ 0.8% on AP
and by 0.2% ~ 0.8% even on APs.

4.3. Analysis

Component Analysis. The effectiveness of different components is an-
alyzed as Table [2| shows. IoU-balanced classification loss and IoU-balanced
localization loss can improve AP by 0.7% and 0.8% respectively and combin-
ing them can improve AP by 1.3%. In addition, IoU-balanced classification
loss has consistent improvement for average precision at different IoU thresh-
old. This demonstrates the importance of enhancing the correlation between
classification and localization tasks. IoU-balanced localization loss slightly
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IoU-Cls IoU-Loc AP AP50 AP75 APS APM APL APGO AP70 APSO APgo
344 539 36.6 172 382 48.0 492 419 300 11.2

Vv 35.1 546 375 184 38,5 478 50.2 427 310 114
vV 352 53.7 376 179 393 485 493 423 318 131
Vv Vv 35.7 543 380 177 394 488 50.0 43.0 321 135

Table 2: The effectiveness of IoU-balanced classification loss and IoU-balanced localization
loss for RetinaNet-ResNet50 on COCO wal-2017. The abbreviations of "IoU-Cls” and
”ToU-Loc” represent IoU-balanced classification loss and IoU-balanced localization loss
respectively.

decreases APsq by 0.2% but substantially improves APyg and APy, by 1.8%
and 1.9% respectively. This demonstrates that up-weighting the gradients of
inliers while down-weighting the gradients of outliers for the localization loss
is especially beneficial for accurate localization.

n AP A Wie AP
0 344 0 1.0 34.4
1.0 34.7 0.5 1.575 35.0
1.4 350 1.0 2226 35.1
1.5 351 1.5 3.049 352
1.6 349 1.8 3.649 35.1

Table 3: The effectiveness of varying n in IoU-balanced classification loss and A in IoU-
balanced localization loss respectively.

Ablation Studies on IoU-balanced Classification Loss. The pa-
rameter 7 in IoU-balanced classification loss controls to what extent the
model focuses on the positive examples with high IoU. As Table [3|shows, the
model can achieve the best performance of AP 35.1% when 7 equals to 1.5.
As shown in Figure [3a, compared with the baseline, loU-balanced classifica-
tion loss can increase the average classification scores for the examples with
high ToU by 0.5% ~ 2.1% and decrease the average classification scores for
the examples with low IoU by 2.7% ~ 4.6%, which demonstrates that the
correlation between classification and localization task is enhanced by the
IoU-balanced classification loss.

Ablation Studies on IoU-balanced Localization Loss. As Figure
shows, the parameter A\ in IoU-balanced localization loss controls to which
extent the model increases the gradient norm of inliers and decreases the gra-
dient norm of outliers. The localization loss weight w;,. is manually adjusted
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Figure 3: (a) Average classification scores of detections within different IoU range. IoU-
balanced classification loss can increases the average classification scores for the detections
with high IoU(0.6 ~ 0.95) by 0.5% ~ 2.1% while decreasing the average classification
scores for the detections with low IoU(0.5 ~ 0.55) by 2.7% ~ 4.6%. (b) The percentage
of detections that have higher IoU than the corresponding IoU thresholds. IoU-balanced
localization loss can increase the percentage of detections with high IoU by 0.8% ~ 4.8%
relative to the baseline.

Average score
o © o o o o
N w » w o ~N

=]
=

to keep the sum of localization loss unchanged when changing the parameter
A. As Table |3| shows, the best performance of AP 35.2% is obtained when A
equals to 1.5. As shown in Figure [3b] ToU-balanced localization loss increases
the percentage of detections with high IoU by 0.8% ~ 4.8% relative to the
baseline model. This demonstrates that the IoU-balanced localization loss
can make the model more powerful for accurate localization.

method Backbone AP APsy APz;; APs APy APp APg APy APgy APy
ResNet-18 30.8 49.6 324 16.1 340 40.7 450 376 26.1 8.6
ResNet-50 35.6 555 383 20.0 39.6 46.8 51.0 432 31.1 113

baseline ResNet-101 37.7 575 404 21.1 422 49,5 533 46.0 33.7 13.0
ResNeXt-32x4d-101  39.0 59.4 41.7 226 434 509 552 476 349 14.1
ResNet-18 32.0 49.7 340 16.3 348 43.3 458 39.0 28.0 10.6
ResNet-50 36.7 55.7 39.3 20.7 406 480 51.5 443 328 139

ToU-balanced losses ResNet-101 38.8 58.0 41.6 21.1 43.1 51.3 b54.1 469 353 154

ResNeXt-32x4d-101 404 60.2 431 232 448 522 559 486 369 16.3

Table 4: The effectiveness of IoU-balanced losses for RetinaNet with different backbones
on COCO wval-2017 with the image scale [800, 1333].

Effectiveness on Different Backbones. To validate the effectiveness
of IoU-balanced losses on different backbones, we conduct experiments across
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different backbones on RetinaNet with image scale [800, 1333]. As shown in
Table [ ToU-balanced losses can consistently improve AP by 1.1% ~ 1.4%
for different backbones, which shows that IoU-balanced losses are robust to
different backbones. And AP5y and APg are improved by 0.1% ~ 0.8% while
APgy and APy, are improved by 1.6% ~ 2.6%. It’s obvious that IoU-balaced
losses are especially effective for improving the models’ localization accuracy
regardless of the models’ capacity.

Figure 4: Visualization of detection results from the baseline (a,c) and IoU-balanced
RetinaNet-RsNet50 (b,d).

Qualitative Evaluation. Some detection results from the baseline and
IoU-balanced RetinaNet-ResNet50 on the COCO wval-2017 images are vi-
sualized to give a qualitative evaluation of the advantages of IoU-balanced
losses. As shown in Figure [ IoU-balanced losses can increase the classifi-
cation scores of detections with high IoU while decreasing the classification
scores of detections with low IoU. In addition, the localization accuracy can
be improved. For example, the top-right bear in Figure is detected by
two boxes A and B with classification score 0.31 and 0.39 respectively when
using the baseline model. After the IoU-balanced RetinaNet is applied, the
classification score of A is decreased below the visualization threshold 0.2
and the localization accuracy of B is also improved. For the tie in Figure
the classification score is 0.25 when using the baseline and is increased to
0.40 when IoU-balanced RetinaNet is used.

4.4. Generalization to Other Datasets

To validate the generalization ability to other datasets of our method, we
also conduct experiments on PASCAL VOC and CityScapes.
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PASCAL VOC. As Table[5|shows, IoU-balanced losses can substantially
improve AP by 1.3% ~ 1.5% for SSD and RetinaNet on PASCAL VOC
dataset. The improvement for APsy is 0.1% ~ 0.5% while that for APg
and APy is 1.6% ~ 3.9%, demonstrating the effectiveness of IoU-balanced
losses for accurate localization. This is similar to the observations in the
experimental results on COCO dataset and demonstrates that IoU-balanced
losses have generalization ability to other datasets and can be applied to
different application scenes.

Model Backbone AP  APsy APg AP7g APgy APy
SSD300 VGG16 493 773 T71.8 60.8 424 14.0
SSD500 VGG16 51.3 80.2 753 64.6 442 12.7
RetinaNet ResNet-50-FPN 51.9 79.5 749 64.3 44.7 165
RetinaNet ResNet-101-FPN 54.7 80.8 76.7 66.6 49.5 20.3
RetinaNet ResNeXt-32x4d-101-FPN  56.2 82.0 783 682 51.6 22.0
ToU-balanced SSD300 VGG16 50.6 77.8 724 624 449 14.7
ToU-balanced SSD500 VGG16 52.8 80.6 75.8 66.1 47.0 16.1
IoU-balanced RetinaNet ResNet-50-FPN 53.3 79.8 75.1 654 476 194
IoU-balanced RetinaNet ResNet-101-FPN 56.0 81.0 77.0 68.0 51.1 23.1

IoU-balanced RetinaNet ResNeXt-32x4d-101-FPN 57.7 82.1 783 69.5 53.7 25.1

Table 5: Experimental Results on PASCAL VOC. The models are trained on the union
of VOC2007 trainval and VOC2012 trainval and evaluated on VOC2007 test with image
scale [600, 1000]. Default settings are adopted as in MMDetection. IoU-balanced losses
adopt the best parameters searched in the COCO experiments.

Cityscapes. RetinaNet with ResNetb0 and ResNet101 are trained on
Cityscapes-train and evaluated on Cityscapes-val with image scale [2048,
800] and [2048, 1024]. As shown in Table [6| IoU-balanced losses can improve
RetinaNet with different backbones by 1.0% ~ 1.2% for AP, which shows that
IoU-balanced losses are also effective on the extremely difficult dataset and
can be applied to extremely challenging real scenarios such as autonomous
driving.

4.5. Discussion

Experimental Results on Two-stage Detector. IoU-balanced loss
functions are general methods and can also be applied to two-stage detector
Faster R-CNN. As shown in Table [7] IoU-balanced classification loss and
IoU-balanced localization loss can improve AP by 0.4% and 0.6% respec-
tively. In addition, IoU-balanced localization loss can improve AP7q ~ APy
by 1.1% ~ 1.4% demonstrating the effectiveness of IoU-balanced localization
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Model Backbone AP AP50 AP75 APS AP]\/[ APL
RetinaNet ResNet-50-FPN  39.1 64.1 385 157 40.0 59.1
RetinaNet ResNet-101-FPN 39.7 64.6 40.6 15.1 40.3 60.5
ToU-balanced RetinaNet ResNet-50-FPN  40.3 64.6 41.3 176 409 60.3
IoU-balanced RetinaNet ResNet-101-FPN 40.7 65.2 41.8 16.0 41.1 62.3

Table 6: Experimental Results on Cityscapes. The models are trained on Cityscapes-train
and evaluated on Cityscapes-val with image scale [2048, 800] and [2048, 1024]. Default
settings are adopted as in MMDetection.

IoU-Cls IoU-Loc AP AP50 AP75 APS AP]W APL AP()’O AP70 APSO APgO
35.7 56.8 385 188 39.7 474 521 439 306 9.3

Vv 36.1 574 388 195 40.0 48.0 525 448 311 94
vV 36.3 56.6 39.3 187 40.5 484 523 450 32.0 105
Vv Vv 36.3 570 391 19.0 40.1 488 525 448 316 10.3

Table 7: The effectiveness of IoU-balanced classification loss and IoU-balanced localization
loss for Faster-RCNN-ResNet50 on COCO wal-2017.

loss on improving model’s localization accuracy. However, combining them
gets no further improvement and the improvement for the performance of
Faster R-CNN is slightly inferior compared with that of single-stage detectors
which demonstrates the problem analyzed in Section [I]is slightly alleviated in
the two-stage object detector. This is caused by that the regressed proposals
generated by RPN in Faster R-CNN have higher localization accuracy com-
pared with the human-designed anchors used in the single-stage detectors.
The more accurate proposals used for training Faster R-CNN alleviate the
mismatch problem between the classification score and localization accuracy
and decrease the number of outliers during training the localization branch.

5. Conclusions

In this work, we demonstrate that the standard classification loss and
localization loss adopted by most of the current single-stage object detec-
tors can severely hurt the model’s localization accuracy and thus we propose
IoU-balanced loss functions that consist of loU-balanced classification loss
and IoU-balanced localization loss to improve localization accuracy of mod-
els. IToU-balanced classification loss is designed to enhance the correlation
between classification and localization tasks. And IoU-balanced localization
loss is designed to decrease the gradient norm of outliers while increasing
the gradient norm of inliers. Extensive experiments on MS COCO, PASCAL
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VOC and Cityscapes have shown that IoU-balanced loss functions have a
substantial improvement for the performance of single-stage detectors, espe-
cially for the localization accuracy.
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