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a b s t r a c t 

The spread of the COVID-19 pandemic is observed to follow the shape of “waves” (i.e., the rise and fall of 

population-adjusted daily new infection cases with time). Different geographic regions of the world have 

experienced different position and span of these waves over time. The presence and strength of these 

waves broadly characterize the dynamics of the pandemic spread in a given area, so their characterization 

is important to draw meaningful intervention and mitigation plans tailored for that area. In this paper, 

we propose a novel technique to represent the trend of COVID-19 spread as a sequence of a fixed-length 

text string defined on three symbols: R (rise), S (Steady), and F (fall). These strings, termed as trend 

strings , enabled us searching for specific patterns in them (such as for waves). After analyzing county- 

level infection data, we observe that, US counties—despite their wide variation in trend strings—can be 

grouped into a number of heterogeneous classes each of which might have a representative COVID spread 

pattern over time (in terms of presence and propensity of waves). To this end, we conduct a latent class 

analysis to cluster 3142 US counties into four distinct classes based on their wave characteristics for 

one year pandemic data (January 2020 to January 2021). We observe that counties in each class have 

distinct socio-demographics, location, and human mobility characteristics. In short summary, counties 

have differing number of waves (class 1 counties have only one wave and class 3 counties have three) and 

their positions also vary (class 1 had the wave later in the year whereas class 3 had waves throughout 

the year). We believe that this way of characterizing pandemic waves would provide better insights in 

understanding the complex dynamics of COVID-19 spread and its future evolution, and would, therefore, 

help in taking class-specific policy interventions. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The United States is ravaged by the COVID-19 pandemic. Since 

he first case recorded on January 22, 2020, the country has re- 

orted over 86 millions confirmed cases with a death toll exceed- 

ng one million [1] . At the onset of more than two full years into

he pandemic, it is important to understand the dynamics of the 

andemic spread as it have evolved since January 2020. The lit- 

rature in epidemiology reports that epidemics of infectious dis- 

ases are frequently characterized by the presence of one or more 

waves” [2–4] , where a “wave” represents the rise of the daily in- 

ection cases up until a high peak and then declining over time to 

each a bottom peak (followed by rising again). The understanding 

f when and how these waves emerge is very critical to take effec- 
∗ Corresponding author. 

E-mail address: muddin@umkc.edu (M.Y. Sarwar Uddin) . 
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ive intervention and control measures. Interestingly, different geo- 

raphic areas of the world (e.g., countries, states, or counties) have 

xperienced different positions and spans of these waves over time 

s so in the United States, which we study in this paper. 

Related work: The rise and fall of cases have been well doc- 

mented in pandemic history. The famous 1918 Spanish influenza 

andemic (1918–1920) reportedly spread through several US and 

uropean cities in multiple waves with varying frequency and tim- 

ng of individual epidemic peaks [5–7] . Mishra et al. [2] recollect 

andemic waves in history (from Bubonic plague in 14th century, 

o Smallpox to present day COVID-19) and analyzed disease spread 

haracteristics. 

Various modeling effort s, both mathematical and empirical, 

ave been reported in the literature that attempted to model and 

escribe the dynamic evolution of pandemic spread in the US 

nd other countries. Studies include agent-based simulations and a 

ultiple wave model [8] , data-driven model based on Susceptible- 

nfectious-Removed (SIR) model applied at US county-level and its 

https://doi.org/10.1016/j.patrec.2022.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.08.017&domain=pdf
mailto:muddin@umkc.edu
https://doi.org/10.1016/j.patrec.2022.08.017


M.Y. Sarwar Uddin and R. Rafiq Pattern Recognition Letters 162 (2022) 31–39 

o

p

t

s

(

(

w

2

w

c

a

d

m

m

n

s

g

s

p

m

d

p

w

c

c

t

C

v

(

p

t  

[

fi

i  

i

a

d

d

c

(

i

s

m

p

l

w

t

c

a

t

w

t

a

w

i

c

a

t

i

s

o

i

t

i

a

t

c

i

g

e

a

s

2

2

n

H

I

C

r

l

r

M

p

p

e

f

c

s

s

e

U

F

Table 1 

US County-level Summary Statistics (Number of counties, N = 3142 ). 

Variable Source Description 

COVID-19 Infection 

rate 

[30] Number of daily new cases per 1000 

people 

COVID-19 status 

Test completed [31] Number of COVID-19 tests 

completed per 1000 people 

Imported cases [31] Number of daily external trips by 

infectious persons from out of 

county 

Human Mobility 

Social distancing index 

(An integer from 

0–100 measuring 

the extent of social 

distancing) 

[31] Weighted sum of % of people 

staying home and reduction of 

human movement in different 

aspects, such as work trips, 

non-work trips, and distance 

traveled. ‘0’ indicates no social 

distancing; ‘100’ denotes all 

residents are staying at home and 

no visitors are entering the county 

Percentage change in 

non-workplace visits 

[32] Percentage change in visits to 

non-workplace (retail, recreation, 

grocery and pharmacy) with respect 

to the baseline (Jan 3 - Feb 6, 2020) 

Socio-demographic and Location Characteristics 

Age above 60 [33] % of people older than 60 years 

African-Americans [33] % of African-Americans 

Population Density [33] Population density as total number 

of people/total land area (sqmile) 

Metro status [34] Metro status based on 2013 NCHS 

urban-rural classification; 1 = metro, 

0 = nonmetro 
ther variants such as deterministic SEIR (SIR plus Exposed com- 

artment) model for US state-level infections [9,10] , SIR simula- 

ions [11] , stochastic transmission model [12] , spatiotemporal “risk 

ource” model [13] , spatiotemporal multivariate time series model 

US state-level) [14] , Bayesian hierarchical spatiotemporal model 

US county-level) [15] , and detection and forecast of pandemic 

aves [16] . Articles [17,17] compared pandemic waves in 2020 and 

021 in different countries and regions and demonstrated that 

aves differ significantly across regions. Focused studies for spe- 

ific regions are also available: Africa [18] , South-East Asia [19] , 

nd Europe [20,21] . The effects of COVID-19 pandemic waves on 

ifferent socio-economic sectors are also analyzed in the literature: 

ental health [22] , transportation [23] , and economy and govern- 

ent responses [24] . 

While these effort s attempted to model the progress and dy- 

amics of COVID spread for a given geographical unit (country, 

tate, or county), only a few prior works tried to group geo- 

raphic regions based on their COVID spread patterns. A recent 

tudy [14] reported the heterogeneity of COVID-19 transmission 

atterns across US states in association with the weather or cli- 

ate factors from March to September 2020. Based on the pan- 

emic data from 18 countries, [8] suggested that the COVID-19 

andemic can be successfully modeled as a series of epidemic 

aves and identified the presence of three such waves in those 

ountries. Rios et al. [25] applied hierarchical clustering on world 

ountries based on the number of new cases and deaths and 

racked the temporal transition of countries across clusters as the 

OVID-19 pandemic evolved. In contrast, we captured the temporal 

ariation of infection cases across US counties as a pattern string 

discussed later) and then clustered the counties based on those 

attern string characteristics. 

The definition of pandemic waves vary in literature. In addition 

o usual rise and fall of daily new cases as adopted by most articles

2,17,18,21] , other formative definitions exist. Zhang et al. [26] de- 

ned waves in terms of a ratio R (the average number of people 

nfected by a single infectious individual) where R > 1 and R < 1

ndicate up-trend and down-trend, respectively. Fisayo and Tsuk- 

goshi [27] designates waves as eventual effect of on human life: 

irect effect leading to deaths and disability (first wave), effects 

ue to measures taken to limit the spread (second wave), and so- 

ial determinants of health, and its effects on the next generation 

third wave). 

Our contribution: In this paper, we analyze the heterogene- 

ty of COVID-19 spread patterns across US counties and their as- 

ociation with particular socio-demographic, location, and human 

obility characteristics of those counties over the one year of the 

andemic from January 2020 to January 2021. One of the chal- 

enges to analyze these spread patterns is that these patterns vary 

idely across US counties. We postulate that US counties, despite 

he variations, can be grouped into a number of heterogeneous 

lasses so that same class counties share similar spread patterns 

nd socio-demographic, location, and human mobility characteris- 

ics but the characteristics across classes vary. Towards this end, 

e made two contributions. First, we propose a novel technique 

o represent the pandemic spread in a county as a text string of 

 fixed length of three symbols: R (rise), F (fall), and S (Steady), 

hich indicates the year around increase and decline of daily new 

nfection cases in that county. This representation enables us to lo- 

ate the presence of pandemic waves and to determine their spans 

nd heights in the respective counties. Second, we conduct a clus- 

ering analysis using LCA (Latent Class Analysis) to group counties 

nto classes based on their pandemic spread patterns and the as- 

ociated socio-demographic, location, and mobility factors. Unlike 

ther popular clustering techniques, such as hierarchical cluster- 

ng [25] and K-means clustering [28] , LCA not only produces clus- 

ers, but also provides probabilistic support for cluster membership 
32 
n terms of designated attributes [29] , which is very important for 

nalyzing and explaining clusters and their formations. 

We conduct the clustering at the county level because coun- 

ies are arguably the smallest administrative units in the US for 

oordinating COVID responses. We believe that this way of cluster- 

ng would help to build different prediction models for different 

roups for better pandemic forecast and thus would help in taking 

ffective county-level localized preventive measures and resource 

llocation (e.g., counties with similar trends can choose a similar 

et of actions). 

. Material and methods 

.1. Data sources and time frame 

The datasets used for this study are drawn from heteroge- 

eous sources as listed in Table 1 . The sources include John 

opkins COVID-19 data repository [30] , Maryland Transportation 

nstitute (MTI) COVID-19 Impact Analysis Platform [31] , Google 

OVID-19 Community Mobility reports [32] , and US Census Bu- 

eau 2018 [33] . The John Hopkins US dataset contains the county- 

evel daily infection data (daily cumulative confirmed, deaths, and 

ecovered) since the first case in the US (Jan 22, 2020). For the 

TI dataset, we extracted data from their publicly available web 

ortal. Google COVID-19 Community Mobility reports contain the 

ercentage change in visitor locations from a baseline in differ- 

nt geographic areas of the world including the US (5‘week period 

rom Jan 3 to Feb 6, 2020 was used as the baseline). The report 

ategorizes activity places into a set of commonly referred types, 

uch as retail and recreation, groceries and pharmacies, parks, tran- 

it stations, workplaces, and residential. Furthermore, the socio- 

conomic and location attributes of counties are obtained from the 

S Census Bureau 2010. Multiple datasets are joined using county 

IPS (Federal Information Processing Standard) codes. 
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Fig. 1. (a) Daily infection cases over the entire US, (b) Fraction of counties exceed- 

ing a certain infection count. 
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Table 2 

Notations used in this paper. 

Defining Pandemic Waves 

i Index to denote a county 

N Number of counties 

� Time interval index 

I (i ) 
d 

(t) Daily infection rate at time t at county i 

I (i ) 
m (t) Moving average of daily infections 

β(i ) 
� The slope of the trend line 

τ The cutoff threshold of slopes for RISE and FALL 

�(i ) Pattern string defined on alphabet {R, F, S} 
Latent Class Analysis 

c Index to denote a class/group (total C classes) 

j Attribute of a county 

K j Possible values of attribute j

Y i jk Binary indicator if county i took value k for attribute j

X i Covariates of county i 

ρc Class probabilities or mixing probabilities 

πc jk Class-conditional probabilities 

ηc Coefficients of covariates for class c
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Figure 1 a shows the daily new infection cases reported in 

he entire US for one full year from January 22, 2020 to Jan- 

ary 21, 2021. As we can observe, there have been a series of ups 

nd downs in the daily infection cases suggesting that the pan- 

emic passed through a series of “waves” (also known as sub- 

pidemics [8] ). Figure 1 a clearly demonstrates the presence of 

hree such waves during the one year timeline: the first wave ap- 

ears between January and May (Jan 22, 2020–May 30, 2020), the 

econd one appears somewhat over the summer (Jun 1, 2020–Sep 

8, 2020), and the third one spans the last four months of the year; 

ep 19, 2020–Jan 21, 2021). We denote these three time spans as 

arly, mid , and late time window of pandemic waves (we also use 

he term Window 1, Window 2, and Window 3 interchangeably). 

oreover, Fig. 1 b shows the fraction of US counties that have ex- 

eeded a certain number of daily new cases over the span of the 

ear. It turns out that this fraction also grew in wave-like fashion 

ith occasional jumps here and there as time progressed. 

Although the overall US trend line shows a distinct pandemic 

aves, the county-level infection data are more irregular and curvy 

nd, therefore, do not necessarily resort to clearly visible wave-like 

andemic spread trends. We need to process the infection data in 

 certain way to extract the hidden wave-like spread pattern in 

hem (which we describe next). 

. Method 

In this study, we first develop a technique to characterize the 

OVID-19 spread across US counties based on the presence of wave 

atterns of daily infection cases over one year time span. Then, we 

luster the counties based on their wave patterns. 

.1. Formation of pandemic wave patterns 

The pandemic wave of a given geographic area corresponds 

o the rise/increase of daily new infection cases followed by the 

all/decline in daily new cases within a certain span of time. To 

dentify the presence of waves in country-level infection time- 

eries data, we split the entire timeline (Jan 22, 2020 to Jan 21, 

021) into 12 equal length intervals (each interval of length around 

0 days). For each interval, we determine whether the daily new 

nfection cases per 10 0 0 population in that interval are growing 

 rise ), or declining ( fall ), or remaining as steady , by denoting them

y three distinct symbols, R , F , and S , respectively. In that, we ob-

ain a 12-letter textual string for each county that represents the 

ear-long pandemic progress in that county. These text strings are 

hen processed to locate the presence of one or more pandemic 

aves (if any) in respective counties. The symbols used in this pa- 

er are shown in Table 2 : 
33 
.1.1. Trend lines of daily infections per county 

We observe that county-level time-series data of the infection 

ates (daily new cases for 10 0 0 population) are very irregular and 

igzag in shapes as the reported cases vary widely from one day 

o the next day due to various reasons. In order to smooth out 

he variations and to filter out short-spanned instantaneous jumps 

n the time-series data, we take a moving average of the infection 

ates. Let I (i ) (t) denote the time-series of daily new confirmed in- 

ections per 10 0 0 population at day t for a county i , and I (i ) 
m 

(t)

enote the moving average of the time-series values. The κ-day 

oving average is calculated as (for κ = 2 l + 1 , we use κ = 15 ): 

 

(i ) 
m 

(t) = 

1 

κ

l ∑ 

δ= −l 

I (i ) 
d 

(t + δ) (1) 

The moving average of the infection rates along days constitutes 

he trend line of COVID growth in a given county. We then split 

he entire timeline (366 days) into a set of consecutive intervals 

ach of which has an equal length and analyze the individual time 

egments for a possible rise and fall trend. Let the length of this 

nterval be � days. In that, we obtain a series of intervals as 1, 

, 3, . . . , L , in the entire timeline where D is the total number of

ays in the time-series data, and L = 

⌈
D 
�

⌉
. We denote an arbitrary 

nterval by � and the associated range of days of the interval as 

 � = (T � −1 , T � ] , where T � = � × � and T 0 = 0 . For one year of infec-

ions data at hand and with the consideration of 30-day interval 

 � = 30 ), we obtain 12 such intervals. In that, the infection time- 

eries data constitutes a sequence of 12 such consecutive intervals. 

We subsequently find a piece-wise linear approximation of the 

urvy trend line per interval for a given county. For that, we run a 

inear regression on each interval of the time-series data to com- 

ute the slope of the line segment that best fits the moving av- 

rage of the daily news cases with respect to the respective days 

n that interval. For a given interval � , we fit the following linear

quation for a county i : 

 

(i ) 
m 

(t) = α(i ) 
� + β(i ) 

� × t, for T � −1 < t ≤ T � (2) 

here α(i ) 
� 

and β(i ) 
� 

are the intercept and slope of the estimated 

ine, respectively, for interval � for county i , which are estimated 

y the Ordinary Least Square (OLS) method. 

.1.2. String representation of trend lines 

Once the slopes are obtained, we observe their values for the 

ossible rise and fall trends in the infection rates. Ideally, a posi- 

ive slope indicates a rise whereas a negative slope indicates a fall 

uring the corresponding interval. The higher value of a positive 

lope (resp. lower value of a negative slope) means a higher degree 
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Fig. 2. Daily infection trend for Worcester county, Maryland (FIPS code 24047). The 

corresponding pattern string ( SSR · · · FR ) appears at the bottom. 
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f rise (resp. higher degree of fall). We also check the goodness-of- 

t measure of the regression by observing its R-squared value ( R 2 ), 

hich is a value between 0 and 1, and a higher value indicates 

igher fit. 

To this effect, we set a threshold τ , to designate a cutoff mar- 

in for positive and negative slopes to flag the trend as “rise” and 

fall”. In particular, if the positive slope is above τ and the R 2 value 

s higher than 0.75, we flag the change as “rise”. In contrary, if the 

egative slope falls below −τ with R 2 ≥ 0 . 75 , we designate that as

fall”. Otherwise, we designate the trend as “steady” indicating no 

ignificant upward or downward changes in daily infection cases 

uring that interval. We use three symbols: R , F , and S , to denote

he rise, fall, and steady respectively. In that, the trend of COVID- 

9 infection cases of each county can be represented as a string 

f length L defined on the alphabet { R, S, T }. We refer to this

tring as the pattern string and denote the pattern string as �(i ) for 

ounty i . Each element of the pattern string, �(i ) 
� 

, � = { 1 , 2 , . . . , L }
s calculated as: 

(i ) 
� = 

⎧ ⎨ 

⎩ 

R , if β(i ) 
� > τ and R 

2 ≥ 0 . 75 

F , if β(i ) 
� < −τ and R 

2 ≥ 0 . 75 

S , otherwise 

(3) 

The pattern string in a given county ultimately represents the 

ime varying progress of COVID spread in that county. Figure 2 

hows such a pattern string, SSRFSRRFRRFR , for a sample US 

ounty, Worcester, Maryland. 

.1.3. Identification of pandemic waves from pattern strings 

The construction of the pattern strings from numerical infection 

ates enables us to analyze the pandemic trend in a very signifi- 

ant way. For instance, we can search for one of more sub-strings 

f specific patterns of our interests. In particular, we search for the 

ccurrences of a “wave pattern” expressed by the following reg- 

lar expression: R+(S ∗)F+ . The pattern intends to match a sub- 

tring in a given pattern string that contains a series of rises ( R ’s),

ollowed by zero or more steady cases ( S ’s), and subsequently fol- 

owed by one of more falls ( F ’s). Each occurrence of this wave pat-

ern in the pattern string corresponds to the presence of one pan- 

emic wave in the corresponding county and multiple occurrences 

ndicate multiple waves. 

Obviously, each wave should have a rise followed by a fall. But, 

here are counties where only rises are observed without any fall 

uggesting that the daily infection cases are monotonically rising. 

his is usually observed during the late pandemic window (Win- 

ow 3). We refer to this kind of trend as pure RISE, which is de-
34 
oted by this regular expression: (R+(S) ∗)+ (a series of rises fol- 

owed by steady cases but NO falls till the end). For Worcester 

ounty, as in Fig. 2 , we observe that the county experienced three 

andemic waves with different degree of intensities (i.e., heights) 

nd a RISE at the end. 

We observe that out of 3142 US counties, 1389 counties have 

ne pandemic wave, whereas 1275, 265, and 4 counties have 2, 3, 

nd 4 waves respectively (209 counties have zero waves). For each 

ounty, we determine the position, span, and height (the peak in- 

ection cases during a wave) of those pandemic waves. We then 

se these information to cluster the counties into a number of 

roups that we describe next. 

.2. Clustering of pandemic wave patterns 

We conducted a Latent Class Analysis (LCA) [35,36] to partition 

142 US counties into a small number of heterogeneous groups or 

lasses so that the counties belonging to the same class show sim- 

lar characteristics in their pandemic waves, while maximizing the 

eterogeneity across groups. LCA probabilistically assigns counties 

o different classes based a set of categorical “indicator” variables 

hat are to measure the differences and similarities among coun- 

ies based on their pandemic spread pattern characteristics. LCA 

lso takes a set of “covariates” to characterize the membership 

f different counties into different classes so as to analyze what 

ocio-demographic, location, and human mobility characteristics of 

 county makes the county to belong to a certain class versus the 

thers. LCA constructs two sub-models for the above two tasks and 

ointly estimate the model parameters. In the following we describe 

he LCA method followed by the application of LCA for the classi- 

cation of counties and the fit statistics. 

.2.1. Latent class analysis 

LCA is a mixture model that hypothesizes that there is an un- 

erlying unobserved categorical variable that divides a collection of 

ntities (in our case, the US counties) into mutually exclusive and 

xhaustive latent classes [36,37] . Suppose each member of a pop- 

lation (here counties, indexed by i ), contains J indicator variables 

indexed by j), each of which can take a value from a set of K j pos-

ible outcomes. Let Y i jk a binary indicator, as such Y i jk = 1 if county 

 takes k th outcome for its jth categorical variable, and Y i jk = 0 oth-

rwise. For a given number of classes, say C, LCA attempts to si- 

ultaneously compute: (a) the probability that a respondent falls 

nto a certain class, denoted by ρc , for c = 1 , 2 , . . . , C, and (b) the

lass-conditional probability, denoted by πc jk , that observation in 

lass c produces the k th outcome on the jth variable. The proba- 

ility of observing a certain respondent is, therefore, given by: 

 r(Y i | π, ρ) = 

C ∑ 

c=1 

ρc 

J ∏ 

j=1 

K j ∏ 

k =1 

(πc jk ) 
Y i jk (4) 

The parameters that the LCA model estimates are: (a) the class 

embership probability vector, [ ρc ] (size C), and (b) the class- 

onditional probability matrix, [ πc jk ] (size C × ∑ 

j (K j − 1) ). The pa- 

ameters are computed via the maximum log-likelihood estimation 

MLE). More formally, MLE tries to estimate ρc and πc jk so as to 

aximize the likelihood of obtaining the observed Y i ’s as they are, 

hich is given by the following expression: 

 = 

N ∏ 

i =1 

P r(Y i | π, ρ) ⇒ ln L = 

N ∑ 

i =1 

ln P r(Y i | π, ρ) (5)

Putting Eq. (4) in the above, we obtain: 

n L = 

N ∑ 

i =1 

ln 

( 

C ∑ 

c=1 

ρc 

J ∏ 

j=1 

K j ∏ 

k =1 

(πc jk ) 
Y i jk 

) 

(6) 
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Fig. 3. Conceptual diagram of the Latent Class Analysis. 

Fig. 4. Median daily new cases per class and density plot of wave heights. 
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Table 3 

Class conditional probabilities of indicator variables ( π-table). 

Class 1 Class 2 Class 3 Class 4 

Class size (out of 3142) 972 891 701 578 

Class probabilities 0.31 0.28 0.22 0.19 

Early wave? 

Yes 0.00 0.00 1.00 0.00 

No 1.00 1.00 0.00 1.00 

Mid wave? 

Yes 0.00 1.00 0.47 1.00 

No 1.00 0.00 0.53 0.00 

Late wave or rise? 

Had wave (rise & fall) 0.77 0.85 0.55 0.00 

Had only rise 0.20 0.13 0.45 1.00 

No wave or rise 0.03 0.00 0.00 0.00 

Height of early wave 

Wave does not exist 1.00 1.00 0.00 1.00 

Low 0.00 0.00. 0.33 0.00 

Medium 0.00 0.00 0.33 0.00 

High 0.00 0.00 0.34 0.00 

Height of mid wave 

Wave does not exist 1.00 0.00 0.53 0.00 

Low 0.00 0.39 0.16 0.24 

Medium 0.00 0.30 0.16 0.39 

High 0.00 0.31 0.16 0.37 

Height of late wave 

Neither wave nor rise 0.03 0.00 0.00 0.00 

Low 0.37 0.27 0.37 0.45 

Medium 0.28 0.35 0.33 0.33 

High 0.33 0.39 0.30 0.22 

Number of waves 

Zero 0.22 0.00 0.00 0.00 

One 0.77 0.00 0.17 0.88 

Two 0.01 0.92 0.54 0.11 

Three or more 0.00 0.08 0.28 0.01 

Metropolitan status 

Metro area 0.31 0.27 0.44 0.55 

Non-metro area 0.69 0.73 0.56 0.45 
LCA attempts to estimate ρc and πc jk as to maximize the above. 

he class probabilities, ρc ’s, are however regressed from a set of 

covariates” by applying the multinomial logistic (MNL) regression. 

n that, LCA finds a set of per class coefficient vectors, denoted 

s ηc of size V + 1 for class c, instead of scalar ρc ’s. Therefore,

he number of parameters that LCA jointly estimates is equal to 

 

∑ 

j (K j − 1) + (V + 1)(C − 1) , the sizes of the matrices [ π ] and

 η] , respectively (for detail, refer to [37] ). 

.2.2. Model indicators and covariates 

The latent class model developed in this study include both in- 

icator variables and covariates. Indicator variables are used to de- 

ne latent classes by estimating a measurement model whereas 

ovariates are used to predict the probability of an county belong- 

ng to a latent class through the estimation of a structural model. 

ig. 3 shows the conceptual latent class model in the combination 

f measurement and structural components with the set of indica- 

or variables and covariates selected for this analysis. To capture 

he heterogeneity in COVID-19 pandemic spread patterns across 

ifferent counties, we used various wave related attributes, such 

s the presence of pandemic waves in Window 1, Window 2, and 

indow 3, the total number of waves, the height of the waves by 

hree categories: low, mid, and high based on whether their val- 

es fall below 33-percentile, between 33- and 66-percentile, and 

bove 66-percentile value, respectively, among all the wave height 

alues in the respective windows ( Fig. 4 a shows the height density 

n three windows). If more than one wave fall into one window, 

e consider the highest height among them. Note that only rise 

xists in Window 3. We also consider the metropolitan status of 

 county as one of the binary indicators. To understand the class 

embership profile we consider several active and inactive covari- 

tes that consist of various socio-demographic, location, and hu- 

an mobility characteristics. In particular, these covariates include 

raction of people aged above 60 years and fraction of African- 

mericans living in a county, population density, number of COVID 

ests completed, social distance index, number of inter-regional 
35
rips by infectious persons (imported COVID cases), cumulative in- 

ection cases, and changes in work and non-work place visits from 

aseline period. 

.2.3. Model estimation and fit statistics 

We used poLCA (Polytomous Variable Latent Class Analysis) 

ackage [37] in R to estimate the LCA model parameters for our 

tudy. The package provides a set of goodness of fit measures 

or a fitted model, such as χ2 , AIC (Akaike Information Crite- 

ion) [38] and BIC (Bayesian Information Criterion) [37,39] , which 

ry to balance between over- and under-fitting of the model to the 

ata by penalizing the log-likelihood value with respect to the es- 

imated parameters. In all measures, a lower value means a better 

t. We varied the number of classes from 2 to 5 and recorded the 

ssociated fit measures. We also empirically assessed the extent to 

hich the resulting classes could be logically described and inter- 

reted. Based on this, the four-class model did fit the best with the 

ollowing membership proportions: 0 . 31 , 0 . 28 , 0 . 22 , and 0.19. 

. Results and discussions 

.1. Four classes and their wave patterns 

The class-conditional membership probabilities are shown in 

able 3 . The daily median infection rates for different classes are 

hown in Fig. 4 a, where a county is assigned to the class that has

he largest posterior probability (modal assignment). The corre- 

ponding spread patterns (the moving average of daily infections) 

or a randomly selected 100 counties from each given class are 

hown in Fig. 5 . 

The first class (Class 1, the largest class with 31 percent share) 

orresponds to the late-wave pattern that, as the name suggests, 
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Fig. 5. Pandemic wave patterns of four classes. (a) Class 1 has one late wave, (b) Class 2 has mid and late waves, (c) Class 3 have mixture of waves in all windows, (d) Class 

4 has mid wave and late rise. 
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omprises a single wave only during the third pandemic window 

77 percent, cf. Table 3 ). The counties belonging to this class ex- 

erienced the pandemic hits comparatively later in the year and 

hey do not contain any wave in the first and second windows 

 Fig. 5 a). These counties also have varying heights of their late 

aves; a higher fraction of them (37 percent) had lower daily in- 

ection rates (low-height category). In terms of demographic char- 

cteristics, Class 1 counties mostly belong to non-metropolitan ar- 

as (69 percent). Prior studies also found that COVID spread was 

low, at least at the beginning of the pandemic, in rural counties 

ompared to the urban ones in the US [15,40] . 

The second class (Class 2) represents the mid and late-wave 

attern containing counties that experienced two and more pan- 

emic waves started from summer (mid-wave) to fall period (late- 

ave) (92 percent counties have two waves and the rests have 

hree or more waves). We observe from Fig. 5 b that, a higher frac-

ion of counties of this class (39 percent) had low infection rates 

uring the summer, but the rate subsequently got increased after- 

ard and a higher fraction of counties (39 percent) fall into the 

igher range of infection rates in their late waves. Similar to Class 
36 
, the majority of the counties (73 percent) of this class are from 

on-metropolitan areas. 

The third class (Class 3) of counties (with a share of 22 per- 

ent out of 3142 counties) have a unique aspect that these coun- 

ies have pandemic waves in all windows (early, mid, and late) in 

ifferent proportions (cf. Table 3 ). This is also the only class that 

xperienced a pandemic wave in the early phase of the pandemic 

in the first window). Around 83 percent counties of this class had 

wo or more number of waves throughout the year and 17 per- 

ent had only one wave (the one in the first window). The trend 

atterns shown in Fig. 5 c reveal that Class 3 counties have higher 

nfection rates in the early stage. The infection cases got flatten 

own a little bit in the middle of the year and then rose again the

atter stage. The higher median values of new cases in the early 

indow and the lower median values of cases in the mid window 

eveal this trend in Fig. 4 b. Unlike Class 1 and Class 2, a consider-

ble fraction of counties (above 44 percent) in this class are located 

n metropolitan areas. 

Finally, the last class (Class 4) is the smallest class among the 

our classes (19 percent counties). The counties belonging to this 
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Table 4 

Coefficients of active covariates with respect to class 1 ( η-table). 

Active covariates Class 2 Class 3 Class 4 

Intercept 3.016 2.316 -0.681 

Frac. of people aged 60 + -4.390 ∗∗∗ -5.268 ∗∗∗ -3.239 ∗∗

Frac. of African-Americans 2.385 ∗∗∗ 6.789 ∗∗∗ 6.159 ∗∗∗

Social distance index 

In early wave -0.039 ∗∗ 0.037 ∗∗ 0.022 

In mid wave 0.003 0.045 ∗ 0.164 ∗∗∗

In late wave 0.009 -0.061 ∗∗ -0.172 ∗∗∗

Test done per 1K (in log) 

In early wave 1.923 ∗∗∗ 1.087 -0.244 

In mid wave -1.571 -1.990 -7.231 ∗∗∗

In late wave -0.064 0.637 5.690 ∗∗∗

Imported cases (in log) 

In early wave -0.733 ∗∗∗ 1.133 ∗∗∗ -0.437 ∗

In mid wave 2.933 ∗∗∗ 0.828 ∗∗ 7.339 ∗∗∗

In late wave -2.178 ∗∗∗ -1.734 ∗∗∗ -5.793 ∗∗∗

∗ , ∗∗ , ∗∗∗ mean 10%, 5% and 1% level of significance respectively. 

Table 5 

Class-wise probability-weighted summary for covariates. 

Active covariates Class 1 Class 2 Class 3 Class 4 

People aged 60 + (%) 27.0 25.0 24.0 24.0 

African-Americans (%) 3.0 6.0 13.0 19.0 

Social distance index 27.3 26.8 28.3 28.1 

Imported cases (early) 3151 2649 17649 4881 

Inactive covariates 

Population density 85.7 101.6 547.7 260.5 

Cumulative inf. cases 81.9 108.3 115.9 101.3 

Work % change -22.5 -22.6 -24.9 -24.3 

Non-work % change (early) -11.8 -7.8 -16.3 -11.3 

Non-work % change (mid) 12.3 4.3 -1.6 -7.4 

Non-work % change (late) -12.9 -15.6 -18.9 -16.8 
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Fig. 6. Distribution of four latent classes across the US. 
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lass had no early waves, but had mid waves and late rises. These 

ounties experienced higher infection rate (higher peak) during the 

econd pandemic window (mid-wave) compared to other classes 

cf. Fig. 4 b). In the third window, however, the trend got only a rise

ut no fall (the infection cases are monotonically growing without 

ny decline). The presence of this “rise” pattern in the late window 

s a unique aspect of this class compared to the other three classes. 

he monotone rise of median cases of this class (in Fig. 4 b) is sug-

estive to this trend. Notably, a higher fraction of the counties of 

his class (55 percent) belong to metropolitan areas. 

.2. Prediction of latent class membership 

The effects of active covariates on class membership are pre- 

ented in Table 4 . Here the coefficients ( ηc ’s) relative to Class 1

re displayed. The class-wise probability weighted mean values for 

oth active and inactive covariates are shown in Table 5 . This ta- 

le shows that Class 1 and Class 2 counties have lower population 

ensities compared to Class 3 and 4. Since Class 1 counties ex- 

erienced only the late pandemic waves and they have consider- 

bly low infection rates in early and mid year, these counties had 

he smallest cumulative infection cases across all classes, whereas 

lass 3 counties had the largest cumulative cases because they ob- 

erved pandemic waves in all three windows. 

Table 4 reveals that counties with higher fraction of people 

ged over 60 years are more likely to belong to Class 1 compared 

o other three classes. It indicates that the presence of higher frac- 

ion of older adults does not make a county more vulnerable for 

andemic spread. Findings from other studies support this obser- 

ation with the claim that people in the older age group have a 

ower tendency to spread the disease than the younger popula- 

ion [41,42] . In contrast, counties with a higher share of African- 

merican people are less likely to belong to Class 1 than other 
37 
lasses. That means counties with a higher cumulative infection 

ate have a higher chance to have African-American people in their 

ounties than the counties with low rates. The positive association 

etween the infection rate and this racial group is also observed 

n [15,42–45] . 

We observe from Table 5 that, during the early phase of the 

andemic, counties belong to Class 3 and Class 4 got a consider- 

bly higher number of daily external trips from out of state/county 

higher fraction of counties with high imported COVID cases). In 

ddition, these two classes experienced higher reductions in work 

nd non-work place visits than the baseline (Jan 3 - Feb 6, 2020) 

ompared to Class 1 and Class 2. Notably, during summer (mid- 

ave), Class 1 and Class 2 counties experienced increased vis- 

ts in various non-work places than the baseline (+ve percentage 

hanges). On the other hand, Class 3 and Class 4 counties that are 

omparatively higher density counties posed restrictions on peo- 

les mobility due to higher COVID spread, thus experienced lower 

on-work place visits than the baseline during that period (-ve 

ercentage changes). 

Higher social distance index in early phases of the pandemic 

osed a higher possibility of counties to be included in Class 1 

han Class 2 (cf. Table 4 ). Although pandemic started late in Class 

 counties but those counties might follow the strict preventive 

easures in early phases than Class 2. On the other hand, a higher 

ocial distance index in the early phases increased the chance of 

ounties to be included in Class 3 than Class 1. This might be due 

o the fact that the pandemic hit earlier in Class 3 counties than 

lass 1 that bound people to stay at home by imposing restrictions 

n the movement of people in order to contain the spread. Again, 

he higher social distance index during summer (the second win- 

ow) increased the chances of counties to be included in Class 3 

nd Class 4 than Class 1. Furthermore, the higher tests done per 

opulation in the early window increases the propensity to belong 

o Class 2 and the higher testing during the later phase increases 

he chance of counties to belong to Class 4 compared to Class 1. 

Figure 6 shows US county-level map by four identified classes 

nd Table 6 lists the distribution of counties per class across four 

ajor US regions (the leading state per region is in parentheses). 

e observe that a higher number of Northeast counties experi- 

nced early pandemic hit (Class 3), whereas only a few West coun- 

ies experienced the same. Most of the West counties had pan- 

emic waves in the mid and late windows (Class 1 and 2). Most 

f the Midwest counties had a full wave only in the third window 



M.Y. Sarwar Uddin and R. Rafiq Pattern Recognition Letters 162 (2022) 31–39 

Table 6 

Distribution of latent classes across four US regions. 

Region Class 1 Class 2 Class 3 Class 4 

(#counties) (972) (891) (701) (578) 

Northeast 109 (PA) 8 (PA) 94 (NY) 6 (NY) 

Midwest 445 (MO) 334 (KS) 255 (IN) 21 (IN) 

South 227 (KY) 407 (TX) 292 (GA) 496 (TX) 

West 191 (MT) 142 (CA) 60 (CO) 55 (CA) 
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Class 1) whereas South counties experienced a rising trend in the 

ame window (Class 4). 

. Conclusions 

This paper analyzes the heterogeneity of COVID-19 spread pat- 

erns across US counties and their association with distinct socio- 

emographic, location, and human mobility characteristics of those 

ounties during the one year of the pandemic from January 2020 

o January 2021. In particular, we at first characterize the pandemic 

pread patterns of counties and then cluster the counties into a 

et of distinct classes based on the similarity of their spread pat- 

erns. Results suggest that 3142 US counties can be divided into 

our such classes where the counties in each identified class have 

articular age and racial distribution, metropolitan status, social 

istance index, external trips, and other characteristics. For ex- 

mple, Class 1 is composed of non-metropolitan counties with a 

igher fraction of older adults (age 60+) and a lower fraction of 

frican-Americans. These counties experienced only the fall pan- 

emic waves and had the lowest number of external trips and cu- 

ulative infection cases across all classes. The majority of Class 

 counties also belong to non-metropolitan areas but unlike Class 

, this class experienced two waves during summer and fall peri- 

ds. In contrast, a higher fraction of Class 3 and Class 4 counties 

epresent metropolitan areas with high population density. These 

wo classes had a higher number of external trips from outside 

ounties/states and had higher reductions in both work and non- 

orkplace visits during the pandemic. Unlike other classes, Class 3 

ounties had pandemic waves in all three periods: spring, summer, 

nd fall. Last, Class 4 counties experienced summer wave and fall 

ise. 

This study provides important insights regarding the variations 

n COVID-19 spread patterns across US counties during the first 

ear of the pandemic. We note that immediately after our study 

eriod (that is, after January 2021), vaccinations effort s have been 

xtensively rolled out throughout the US that helped COVID-19 

ases decline drastically in many counties. We next plan to study 

he effect of vaccinations and their aftermath on spread patterns 

cross US counties. Furthermore, in the future, we plan to de- 

elop a county-level prediction model for each identified class that 

ould forecast the progress and evolution of COVID-19 spread for 

hat class. Unlike a single model for all areas or counties, we argue 

hat the class-specific modeling will ensure a better fitting of data 

nd consequently will deliver better precision for future prediction, 

oth short-term forecast, and long-term prediction. In that, local 

olicymakers can use the developed models to track the spread of 

OVID-19 in their respective communities and can take necessary 

ction items, such as preventive measures and resource allocations, 

o curve and contain the spread. 
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