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Abstract

Small object detection for 3D point cloud is a challenging problem because of two lim-
itations: (1) Perceiving small objects is much more difficult than normal objects due to
the lack of valid points. (2) Small objects are easily blocked which breaks the shape
of their meshes in 3D point cloud. To alleviate these problems, we design a point-
based detection network PSA-Det3D which mainly consists of a pillar set abstraction
(PSA) and a foreground point compensation (FPC). The PSA improves the query ap-
proach of set abstraction to expand its receptive field of the network, which benefits the
point-wise feature aggregation for small objects. The FPC fuses the foreground points
and the estimated centers to optimize the candidate points selection. This module im-
proves the detection performance for occluded objects effectively. The experiments on
the KITTI 3D detection benchmark show that our proposed PSA-Det3D outperforms
existing point-based algorithms for small object detection.

1. Introduction

LiDAR-based 3D object detection is widely applied in autonomous driving and
robotics [1, 6, 10]. Existing detectors have achieved high accuracy for car category,
but the detection performance for small objects such as pedestrian and cyclist is still
unsatisfactory. Thus, how to improve the detection of small objects in 3D point cloud is
an important yet challenging problem [7]. Some methods apply the multimodal fusion-
based approaches in the 3D object detection network [15, 27, 30]. Due to the detailed
information provided by the cameras and LiDAR sensors, they achieve high accuracy
for both normal and small objects. However, the complex fusion networks increase the
computational cost of these methods and thus limit their application.

Although the researches on point-based methods [3, 23, 32, 33] have achieved re-
markable progress, the limitations of small objects are not sufficiently considered yet.
There are two obvious limitations for LiDAR-based small object detection: (1) Per-
ceiving small objects is much more difficult than normal objects because the sparse
LiDAR-based point clouds usually do not provide sufficient information of small ob-
jects. However, the existing point-based methods [3, 23, 33] usually apply the native
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set abstraction (SA) [20] to encode the features, either for normal objects or small ob-
jects. (2) Small objects are easily blocked in 3D point cloud. Since the scanning beam
of LiDAR sensor is not penetrating, the occlusion not only reduces the number of the
valid points for small objects but also breaks the shape of their meshes. As the semantic
information of the occluded objects are affected, the normal approaches [3, 23] based
on semantic features can hardly detect such objects normally.

Considering the above limitations, we first propose a pillar set abstraction (PSA) to
learn informative point-wise features for small objects. Motivated by the pillar-based
methods [12, 13, 29], our PSA adopts a pillar query operation before feature aggrega-
tion to expand the receptive field of the encoder network. Compared with the tradi-
tional SA, PSA can help to improve the performance of detection network, especially
for small objects, with only a small increase on computational cost.

Furthermore, we present a foreground point compensation (FPC) to locate the ob-
jects under occlusion. In our FPC, we not only segment the foreground points but also
estimate the centers of all possible objects. The centroid information can effectively
compensate for incorrect segmentation results caused by occlusion. We fuse the cen-
ters and the foreground points to generate the detection proposals. Both the PSA and
FPC are utilized in our point-based object detection network, PSA-Det3D.

In summary, our main contributions include:
(1) We propose a pillar set abstraction to learn informative features for sparse point

clouds of small objects, which adopts a pillar query operation before feature ag-
gregation to expand the receptive field of the network.

(2) We propose a foreground point compensation to locate the occluded objects. This
module optimizes the selection of candidate points by the fusion of foreground
points and estimated center points.

(3) We propose a novel 3D object detection network, PSA-Det3D, which is evaluated
on KITTI 3D object detection benchmark. Extensive experimental results confirm
the outstanding accuracy of PSA-Det3D for small object detection.

2. Related work

2.1. Voxel-based Methods
Voxel-based methods convert the irregular point clouds into dense voxels or pillars

before sending them to the network. VoxelNet [34] is the pioneer architecture that uses
a 3D convolution network to detect 3D object from point clouds. SECOND [31] imple-
ments a fast backbone with 3D submanifold convolution network which significantly
improved the efficiency of voxel-based network. In PointPillars [12], a pillar-based ag-
gregation operation is proposed to obtain the pseudo-image feature map from bird’s eye
view (BEV). It simplifies both the voxelization process and the architecture of detec-
tion network to improve the computational efficiency. TANet [16] uses triple attention
mechanism in the feature encoding network to improve the detection performance for
small objects and the robustness. HotSpotNet [4] converts the voxel-wise features into
a new representation and predicts boxes with an anchor-free pipeline. Voxelization re-
duces the complexity and irregularity of the input data, but the generated voxels lose
detailed information of the raw point clouds simultaneously, which is detrimental for
small object detection.
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2.2. Point-based Methods

Point-based methods learn 3D features from raw point clouds directly without pre-
processing. Existing point-based detectors [2, 3, 18, 20, 23, 28, 32, 33] usually learn
the point-wise features using PointNet++ and predict 3D proposals based on these fea-
tures. PointNet [2] successfully applies the neural network to aggregate the point-wise
features through the multi-layer perceptron (MLP) networks. They also conduct exper-
iments on different 3D computer vision tasks to prove the generalizability of PointNet.
PointNet++[20] enhances the performance of feature extraction by embedding the far-
thest point sampling (FPS) algorithm and the grouping operation based on PointNet.
PointRCNN[23] is a two-stage object detection algorithm proposed by Shi et al. in
2019. It adopts PointNet++ for the point-wise feature extraction and predicts 3D boxes
based on the foreground point segmentation. 3D-CenterNet[28] predicts the position
of the object centers and estimates the bounding boxes around them. Pointformer [18]
use a local and global transformer network for feature learning in a object detection
model. SASA [3] present a semantics-augmented set abstraction module to maintain
more foreground points in the point-based encoder. Zhang et al. [33] implement a
fast single-stage detector IA-SSD by using an instance-aware downsampling strategy
to select foreground points of interest and predict the centroids of objects.

2.3. Point-Voxel Fusion Methods

In addition to the above methods, there is another stream that uses the voxel-based
and the point-based networks in a single detector [5, 11, 14, 21, 22]. Fast PointRCNN
[5] adopts a point-based network to fuse the voxel-wise features from a voxel-based
backbone for the optimization of 3D proposals. In PV-RCNN [22], the voxel-wise
features are mapped to each sampled key point through the voxel set extraction mod-
ule where the obtained point-wise features are further used to optimize the proposals.
SA-SSD [11] projects the voxel-wise features back to the point-wise features to ex-
ploit point-wise supervisions in an auxiliary network. The auxiliary network guides
the voxel-wise features in the backbone network to be aware of the object structure,
thus improving the detection performance while introducing no extra computation in
the inference stage. M3DETR [9] learns multi-representation features of point cloud
and fuse the features using a multi-scale transformer network. The point-voxel fusion
methods contribute to a better detection performance, but how to effectively fuse the
features of the two modalities is still an open and challenging problem.

3. Our Method

As shown in Fig. 1, PSA-Det3D mainly comprises three components: (a) a point-
based backbone with PSA layers; (b) a foreground point compensation (FPC) block;
and (c) an RCNN which generates the final detection results. The input point set P
first passes through the backbone to produce the point-wise features F. In this block,
several stacked PSA layers are utilized to build the feature encoder. Then the point-wise
features are sent to the FPC block. We predict 3D bounding boxes BB and calculate
the foreground confidence by a segmentation following PointRCNN [23] in the FPC
first. Then we employ a center estimation as well as a fusion algorithm to optimize the
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Figure 1: Outline of PSA-Det3D. The input points pass through (a) backbone network with PSA layer to
produce the point-wise features. The (b) foreground point compensation is used to predict 3D proposals
based on the features. The final detection results are generated in the (c) RCNN.

candidate points and generate 3D proposals. At last, the proposals are refined by an
RCNN. The details of the PSA and FPC will be described below.

3.1. Pillar Set Abstraction

The SA of PointNet++ is widely applied to learn the point-wise features in existing
point-based methods [3, 23, 28, 32, 33]. In SA, the input points are divided into several
balls around the sampled key points in 3D space through a ball query operation [20].
We use the point cloud of a pedestrian as an example to simulate this operation. As
shown in Fig. 2, the ball query of SA generates balls around the key points to aggregate
their local features. However, this operation is restricted by the number of sampled
points and the ball radius adopted [17]. If the number of the key points reduces to two
or even one, the ball-based grouping operation cannot keep a high coverage anymore.
This is probably one of the main reasons for the decreased accuracy on small objects
because of insufficient context information. Simply increasing the radius of the balls
cannot solve the problem because it would introduce severe noise to the aggregated
features and the fine-grained 3D information may lose.

The pillar-based methods [12, 29] provide a special query operation that partitions
points into pillars by increasing the boundaries of voxels in the z-direction. Motivated
by this, we propose a novel pillar set abstraction (PSA) which implements the pillar-
based grouping operation in the SA of PointNet++ [20]. Specifically, we use the FPS
algorithm to sample key points and PointNet to learn the features in the PSA layer.
After the FPS, we employ a pillar-based grouping operation to partition points into
several groups. This operation is represented by the following formula:

GA(k) = {p ∈ P | HD(p, k) < r0}, k ∈ K

HD(p, k) =

√
(p(x) − k(x))2 + (p(y) − k(y))2

P = {pn}
Ni−1
n=0 ,K = {kn}

No−1
n=0 ,No ≤ Ni

(1)
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where GA is the array of pillar-based grouping result, P is the set of input points, Ni

is the number of input points, K is the set of key points, No is the number of sampled
points, HD(p, k) is the horizontal distance between points p and k.

The pillar-based grouping of our PSA is also simulated for comparison. As shown
in Fig. 2, the generated pillar captures most of the points even if there is only one key
point used. In other words, the PSA provides more valid points to the MLPs and thus
helps to learn informative features.

3.2. Foreground Point Compensation

After feature learning, the point-based detector needs to select candidate points for
3D proposal generation. Existing methods [3, 18, 23] usually adopt the foreground
point segmentation to select the most valuable points. However, the foreground scores
cannot fully reflect the quality of the predicted proposals [24] because the relationship
between 3D proposals and points is not considered. Additionally, the occlusion of
small objects will inevitably affects the accuracy of the segmentation due to the lack
of semantic information. An increasing number of approaches produce the candidate
points by locating the object centers [19, 28, 33], which is an effective improvement
compared with the foreground point segmentation. Therefore, our proposed FPC fuses
both the foreground points and the object centers to optimize the selection of candidate
points. As shown in Fig. 1, we adopt a box prediction and segmentation to predict
preliminary 3D proposals and semantic scores. Next, we present a center estimation
algorithm to predict object centers, which are then used for candidate points selection
in a fusion module. We detail the center estimation in algorithm 1.

The inputs include the size of input points N, the foreground confidences CFG and
the set of generated 3D bounding boxes BB. The mask of centers Mcenter is calculated
based on the intrinsic relationship between the predicted 3D boxes and the coordinates
of the point cloud. First, the point with the highest foreground confidence is selected as
the first center t0. The corresponding 3D box BB[t0] is used to identify the other points
in the same box which are marked as ignored points in the mask Mignored. Then, we
continue to select the next unmarked point with the highest confidence, and perform
the same operation until all points have been marked as centers or ignored points.

(a) Pedestrian point cloud (b) Ball-based grouping (c)  Pillar-based grouping

Ball

Pillar

Figure 2: Both (b) ball query operation and (c) pillar query operation are simulated on the (a) point cloud of
a pedestrian.
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Algorithm 1: Center Estimation algorithm

Input: the size of input points: N; the input points: P = {pn}
N−1
n=0 ; the

foreground confidences: CFG = {Ci}
N−1
n=0 ; the set of bounding boxes:

BB = {bbn}
N−1
n=0 ;

Data: Center point mask: Mcenter[0...N − 1]; Ignored point mask:
Mignored[0...N − 1]

1 Initialize Mcenter with zeros;
2 Initialize Mignored with zeros;
3 for i = 0 to N − 1 do
4 idx = argmax(CFG);
5 CFG[idx] = 0;
6 if Mcenter[idx] == 0 and Mignored[idx] == 0 then
7 for j = 0 to N − 1 do
8 if P[ j] ∈ BB[idx] then
9 Mignored[ j] = 1;

10 end
11 end
12 Mcenter[idx] = 1;
13 end
14 end
15 return Mcenter

To generate the refined scores of 3D proposals, we design an algorithm to fuse the
center mask Mcenter with the foreground confidences CFG. The final score generated
through the FPC CFPC is formulated as follows:

CFPC = CFG + r ·CFG · Mcenter (2)

where r is a hyperparameter that determines the fusion ratio.
As shown in Fig. 3, we demonstrate the selection of candidate points during the

FPC, where the groundtruth boxes are represented by red boxes. As the red points
represent the selection of the segmented foreground points, we can see that some oc-
cluded pedestrians are not detected by the segmentation due to the occlusion in 3D
point cloud. These pedestrians are then recognized by the estimated centers which are
drawn as blue points. Finally, our FPC generates the proper candidate points by fusing
the foreground points as well as the estimated center points, which are illustrated as
gold points.

3.3. Refinement and loss function

We adopt the box refinement layer and the loss function from [23]. The 3D bound-
ing box regression loss Lreg can be formulated as

Lreg =
1

Npos

∑
p∈pos

(L(p)
bin + L(p)

res) (3)
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Figure 3: Illustration of the FPC. We fuse the foreground points and the estimated center points to generate
the optimized candidate points.

Table 1: Performance comparison of 3D object detection with existing methods on KITTI test split. All
results are evaluated by mean Average Precision with 40 recall positions via the official KITTI evaluation
server.

Methods Car 3D AP (%) Ped. 3D AP (%) Cyc. 3D AP (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

VoxelNet [34] 77.47 65.11 57.73 39.48 33.69 31.50 61.22 48.36 44.37
SECOND [31] 84.65 75.96 68.71 45.31 35.52 33.14 75.83 60.82 53.67

PointPillars [12] 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92
PointRCNN [23] 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
Pointformer [18] 87.13 77.06 69.25 50.67 42.43 39.60 75.01 59.80 53.99

IA-SSD [33] 88.34 80.13 75.04 46.51 39.03 35.61 78.35 61.94 55.70
SASA [3] 88.76 82.16 77.16 - - - - - -

PSA-Det3D 87.46 78.80 74.47 49.72 42.81 39.58 75.82 61.79 55.12

Table 2: Quantitative comparison of different approaches on the val split of the KITTI dataset. Our PSA-
Det3D achieves the best performance for small objects including “pedestrian” and “cyclist”.

Methods Car 3D AP (%) Ped. 3D AP (%) Cyc. 3D AP (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

VoxelNet [34] 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11
SECOND [31] 90.55 81.61 78.61 55.94 51.14 46.17 82.96 66.74 62.78

PointPillars [12] 87.75 78.40 75.18 57.30 51.41 46.87 81.58 62.94 58.98
PointRCNN [23] 92.07 80.61 78.35 64.01 57.34 51.10 92.10 73.03 68.52
Pointformer [18] 90.05 79.65 78.89 - - - - - -

IA-SSD [33] 91.88 83.41 80.44 61.22 56.77 51.15 88.42 70.14 65.99
SASA [3] 92.19 85.76 83.11 67.46 61.52 55.75 91.57 73.89 69.63

PSA-Det3D 91.34 80.53 78.09 68.35 63.09 57.09 92.23 74.11 69.97

where Npos is the number of foreground points, L(p)
bin is the bin-based regression losses

and L(p)
res is smooth L1 loss of regression.

4. Experiments

Our 3D detector is evaluated on the KITTI object detection benchmark [8] which
provides 7481 training samples and 7518 test samples. The objects are labeled as three
levels of difficulty (“easy”, “moderate” and “hard”), according to their occlusion level
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Figure 4: The detection result PointRCNN (le f t), SASA (middle) and PSA-Det3D (right). The green and
blue boxes indicate the predicted pedestrians and cyclists respectively while the groundtruth boxes are rep-
resented by the red boxes.

and truncation ratio. Based on the common practice in related research, we divide train-
ing data into “train” split (3712 samples) and “val” split (3769 samples) for training and
evaluating detection networks.

4.1. Implementation Detail

Our PSA-Det3D is implemented based on the OpenPCDet framework [26]. As only
objects appearing on the image plane are labeled, the point clouds of KITTI dataset are
first filtered through a projection from 3D to 2D. Next, we randomly sample 16384
points from the remaining points as the input of our detector. In terms of network
parameters, the sizes of key points in four PSA layers are set to 8192, 1024, 256 and
64 respectively. The receptive radius of the PSA layers is set to 0.1, 0.5, 1.0 and
2.0 in meters. We implement the FPC module in the proposal generation layer after
the foreground point segmentation and the 3D box prediction. The fusion ratio r of
formula 2 is set to 0.5.

During training, we adopt three commonly used data augmentation methods, in-
cluding random flipping about the X axis or Y axis, random scaling, and random rota-
tion about the Z axis. The network is trained on 2 TITAN Xp GPUs for total 80 epochs
with Adam optimizer [25] and one cycle learning rate schedule.

4.2. Online evaluation on test set

We evaluate the detection performance of our method and several other methods
from existing literatures [3, 12, 23, 31, 33, 34] on KITTI test split dataset for “car”,
“pedestrian” and “cyclist” under three different difficulties. The results on “moderate”
are usually adopted as the main indicator for final ranking. Note that, since [3] does
not submit the result for “pedestrian” and “cyclist” to KITTI server, we only report
its performance for “car”. For the most challenging “pedestrian” detection race track,
our method achieves 42.81% “moderate” 3D AP, outperforming Pointformer [18] by
0.38%. Compared with the most recent point-based detector IA-SSD [33], we improve
the 3D AP of “pedestrian” category by 3.21%, 3.78% and 3.97% on three difficulties.
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4.3. Offline evaluation on val split

Apart from the detection results on the test split, we also report the performance
comparison on the val split of the KITTI dataset in Table 2. It can be seen that our
method achieves the best performance for both “pedestrian” and “cyclist”. Comparing
with the baseline model PointRCNN, our PSA-Det3D boosts the AP by 3.34%, 5.75%,
5.99% for “pedestrian” and 0.13%, 1.08%, 1.45% for “cyclist” respectively. Since
we mainly focus on small object detection in this paper, the performance for “car” is
basically the same as that of our baseline model.

We visualize some representative results using different methods in Fig. 4. We can
observe that PointRCNN [23] locates most of the objects in the point clouds but there
are still some unrecognized objects, which means that the accuracy of PointRCNN on
small object detection is unsatisfactory. SASA [3] generates plenty of 3D proposals to
figure out more objects, but some incorrect boxes are introduced simultaneously. The
performance of PSA-Det3D (right) is generally the best since it identifies more objects
than PointRCNN while producing fewer false boxes than SASA.

4.4. Ablation Study

To analyze the effectiveness of the proposed PSA and FPC, we conduct compre-
hensive ablation studies. All models are trained on the train set and evaluated on the
val set for “pedestrian” and “cyclist” categories of KITTI dataset [8].

Table 3: Effectiveness of the PSA layer for small objects with different numbers of key points.
Methods Query Number of 3D mAP for Batch FPSkey points Ped. and Cyc.(%) sizes

PointRCNN [23] Ball 4096 67.70 21 8.97
8192 67.72 20 7.85

+PSA Pillar 4096 69.11 20 8.57
8192 70.43 19 7.69

4.4.1. Effect of Pillar Set Abstraction
To investigate the effectiveness of the proposed PSA, we replace the encoder net-

work of the PointRCNN with PSA and evaluate their performance and computational
cost on KITTI dataset. We report the maximum number of batches that can be paral-
lelized on one TITAN Xp(12GB) as well as the inference speed. As shown in Table
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Figure 5: Comparison of different fusion ratio r in FPC.
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3, the methods “+PSA” achieves higher accuracy than the baseline model with only a
small increase on computational cost. It is worth noting that when the number of key
points in the first abstraction layer increases to 8192, the performance of PSA-based
method is further boosted by 1.32%.

The results in Table 4 show that the PSA improves the detection performance for
small object by 2.73% on 3D mAP. This is mainly because the native point-wise en-
coder of PointRCNN is difficult to perceive small objects, especially the pedestrian.
Note that our PSA significantly improves the 3D AP for “pedestrian” by 4.71%, 4.79%
and 4.17% on three difficulties, which indicates that our PSA aggregates more infor-
mative features for small objects.

Table 4: Ablation study on the PSA and the FPC.
+PSA +FPC 3D mAP (%) Ped. 3D AP (%) Cyc. 3D AP (%)

E. M. H. E. M. H.
67.70 64.01 57.34 51.12 92.10 73.03 68.53

X 70.43 68.72 62.13 55.29 92.06 74.18 70.19
X 70.19 66.98 61.06 55.93 93.64 74.55 69.97

X X 70.81 68.35 63.09 57.09 92.23 74.11 69.97

4.4.2. Fusion Ratio of FPC
According to formula 2, the parameter r determines the fusion ratio between the

estimated centers and the segmented foreground points. To investigate the optimal
fusion ratio of FPC, we conduct an experiment that compares the performance of PSA-
Det3D using different r to figure out the best fusion setting. The comparison results in
Fig. 5 indicate that the fused confidences outperform the cases which use the estimated
centers or foreground points only. It is reasonable to set the fusion ratio to 0.5 for a
balanced fusion between the foreground points and the centers. Although a large fusion
ratio setting like 1.0 can further improve the recall rate, the accuracy will be affected
since too many candidate points are introduced.

4.4.3. Effect of Foreground Point Compensation
By comparing the first row and the third row of Table 4, we can observe that our

FPC brings a remarkable improvement by 2.49% on 3D mAP for small objects. It is
noted that the FPC significantly boosts the 3D AP for “pedestrian” by 2.97%, 3.72%,
4.81% on three difficulties, where the improvement on “moderate” and “hard” pedestri-
ans is greater than the “easy” pedestrians. As the difficulty reflects the occlusion level,
this result suggests that the proposed FPC can recognize the occluded objects and thus
significantly improves the 3D AP on “moderate” and “hard” difficulties.

5. Conclusion

In this work, we propose a point-based network PSA-Det3D to alleviate the lim-
itations of small object detection in 3D point cloud. The pillar set abstraction (PSA)
and the foreground point compensation (FPC) are the core parts of PSA-Det3D. The
PSA improves the query approach of SA with pillar query to learn informative features
for small objects. The FPC module fuses the foreground points as well as the centroid
information to recognize more occluded small objects during the proposal generation.
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The experiments on the KITTI 3D detection benchmark show that the proposed method
outperforms existing point-based algorithms for small object detection.
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